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Abstract

We use the contraction mapping theorem to present the existence and uniqueness of solutions in a short time to a system of non-linear Volterra
integral equations in a certain type of direct-sum H[a, b] of a Hilbert space V[a, b]. We extend the local existence and uniqueness of solutions to
the global existence and uniqueness of solutions to the proposed problem. Because the kernel function is a transcendental function in H[a, b] on
the interval [a, b], the results are novel and very important in numerical approximation.
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1. Introduction

Non-linear Volterra integral equations have many applica-
tions in several fields, such as physics, chemistry, biology, and
engineering. For example, particle transport problems in as-
trophysics theory, electrostatics, potential theory, mathemati-
cal problems of radiative steady state, heat transfer problems,
and many other mathematical modeling are described by Volt-
tera integral equations [1-9]. In this paper, we introduce the
following system of non-linear Volterra integral equations for
t ∈ [a, b]:

f (t) = α(t) +

∫ t

a
F(t, s, f (s), g(s))ds, (1)

∗Corresponding author tel. no:
Email address: jabar.hassan@su.edu.krd (Jabar S. Hassan )

g(t) = β(t) +

∫ t

a
G(t, s, f (s), g(s))ds, (2)

where α, β ∈ H[a, b] is a direct sum of reproducing kernel
Hilbert space V[a, b] consisting of those absolutely continuous
functions whose derivative is square-integrable on [a, b]. F and
G are given functions that satisfy fixed regularity conditions. f
and g are unknown functions that need to be determined.

Recently, reproducing kernel Hilbert space methods have
been widely studied by many researchers to solve linear and
non-linear problems such as partial and ordinary differential
equations, as well as integral, fractional, and integral differen-
tial equations [4,7,9]. Obviously, considering the existence and
uniqueness of solutions to such kinds of problems is very im-
portant in pure and applied mathematics. In view of the fact
that most real phenomena and non-linear problems in the world
can not be solved analytically, researchers use numerical meth-
ods to obtain their approximate and numerical solutions in an
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appropriate space.
In this work, we examine the local and global existence and

uniqueness of solutions to a system of non-linear Volterra inte-
gral equations in the reproducing kernel Hilbert space H[a, b].
This space is a very favorable space in numerical approxima-
tion since its reproducing kernel function is a transcendental
function in [a, b].

2. Preliminary Notation

This section is assigned to present basic notation, defini-
tions, and theorems which will be used later.

Definition 1. Let S , ∅. A Hilbert space H of continuous
real-valued functions f : S → R is called reproducing kernel
Hilbert space if there exists a function K : S × S → R in H
such that
〈 f (·),K(·, s)〉H = f (s), and K(·, s) ∈ H for all f ∈ H and all
s ∈ S . Such a function K = K(·, ·) is said to be a reproducing
kernel function of H [4,6].

Definition 2. Let V[a, b] be the space of all absolutely contin-
uous functions f : [a, b] → R such that f ′ ∈ L2[a, b] [4,6].

Theorem 1. The function space V[a, b] equipped with the in-
ner product [4]

〈 f1, f2〉V[a,b] = f1(a) f2(a) +

∫ b

a
f ′1(t) f ′2(t)dt,

and associated with the norm

|| · || =
√
〈·, ·〉V[a,b],

is a reproducing kernel Hilbert space and the reproducing ker-
nel function K = K(·, ·) is defined by:

K(t, τ) =
1

2 sinh(b − a)
(

cosh(τ + t − b + a)

+ cosh(| τ − t | −b − a)
)
.

Definition 3. The function space

H[a, b] = V[a, b] ⊕ V[a, b],

consists of those functions ~h : [a, b] → R2 where ~h = (h1, h2)
such that h1 and h2 belong to V[a, b].

Definition 4. The inner product of the space H[a, b] is defined
by :

〈 ~f , ~g〉H[a,b] = 〈 f1, g1〉V[a,b] + 〈 f2, g2〉V[a,b],

where f = ( f1, f2) and g = (g1, g2). Such a space is called
direct sum of the reproducing kernel Hilbert space V[a, b].

3. Existence and Uniqueness

In this section, we discuss the Banach fixed point theorem to
show the local and global existence and uniqueness of solutions
to (1)-(2). To do this first, we need to introduce some basic
tools.

Let ~h ∈ H[a, b] and let A = {(t, s) : a ≤ s ≤ t ≤ b}. Define
maps T~h : [a, b]→ R and L~h : [a, b]→ R by:

T~h(t) =

∫ t

a
F
(
t, s,~h(s)

)
ds,

L~h(t) =

∫ t

a
G
(
t, s,~h(s)

)
ds,

such that the following conditions are hold for (k = 0, 1):

C1) ∂k

∂tk F and ∂k

∂tk G are uniformly bounded functions on A ×
R2.

C2) For some positive constants M and N such that

i)
∣∣∣∣ ∂k

∂tk F
(
x, s, ~f1(s)

)
− ∂k

∂tk F
(
y, s, ~f2(s)

)∣∣∣∣ 6 M
(
|x − y| +

‖~f1 − ~f2‖2
)
;

ii)
∣∣∣∣ ∂k

∂tk G
(
x, s, ~g1(s)

)
− ∂k

∂tk G
(
y, s, ~g2(s)

)∣∣∣∣ 6 N
(
|x − y| +

‖ ~g1 − ~g2‖2

)
.

Theorem 2. Let ~h ∈ H[a, b]. Then T~h ∈ H[a, b].

We first assert that T~h is absolutely continuous in [a, b]. By
condition (C1) for (k=0); F is uniformly bounded on A × R2

and condition (C2) part (i) there are positive constants M and
M1.

Let I j = {[a j, b j]}nj=1 be a finite collection of non-over lap-
ping intervals in [a, b], and let ε > 0 such that:

n∑
j=1

∣∣∣∣b j − a j

∣∣∣∣ < ε(
M1(b − a) + M

) .
Since,

n∑
j=1

∣∣∣∣T~h(b j) − T~h(a j)
∣∣∣∣ =

n∑
j=1

∣∣∣∣ ∫ b j

a
F
(
b j, s,~h(s)

)
ds

−

∫ a j

a
F
(
a j, s,~h(s)

)
ds

∣∣∣∣
=

n∑
j=1

∣∣∣∣ ∫ a j

a
F
(
b j, s,~h(s)

)
ds

+

∫ b j

a j

F
(
b j, s,~h(s)

)
ds

−

∫ a j

a
F
(
a j, s,~h(s)

)
ds

∣∣∣∣
2
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6
n∑

j=1

∫ a j

a j

∣∣∣∣F(
b j, s,~h(s)

)
− F

(
a j, s,~h(s)

)∣∣∣∣ds

+

∫ b j

a j

∣∣∣∣F(
b j, s,~h(s)

)
ds

∣∣∣∣
6

n∑
j=1

∫ a j

a
M1

∣∣∣∣b j − a j

∣∣∣∣ds +

∫ b j

a j

Mds

=

n∑
j=1

(
M1(a j − a)|b j − a j| + M|b j − a j|

)
6

(
M1(b − a) + M

) n∑
j=1

∣∣∣∣b j − a j

∣∣∣∣
< ε.

Hence, T~h is absolutely continuous on in [a, b]. Next, we want
to show ∂

∂t T~h(·) ∈ L2[a, b]. Leibniz rule implies for almost
every t ∈ [a, b] that

∂

∂t
T~h(t) =F

(
t, t,~h(t)

)
+

∫ t

a

∂

∂t
F
(
t, s,~h(s)

)
ds.

Then,

∫ b

a

∣∣∣∣ ∂
∂t

T~h(t)
∣∣∣∣2dt =

∫ b

a

∣∣∣∣∣F(
t, t,~h(t)

)
+

∫ t

a

∂

∂t
F
(
t, s,~h(s)

)
ds

∣∣∣∣∣2dt

≤ 2
∫ b

a

∣∣∣∣F(
t, t,~h(t)

)∣∣∣∣2dt

+ 2
∫ b

a

∣∣∣∣∣ ∫ t

a

∂

∂t
F
(
t, s,~h(s)

)
ds

∣∣∣∣∣2dt.

It follows from condition (C1) for (k=0,1 ) there are positive
constants N,D and the Cauchy-Schwartz inequality that∫ b

a

∣∣∣∣ ∂
∂t

T~h(t)
∣∣∣∣2dt ≤ 2

∫ b

a
N2dt

+ 2
∫ b

a

( ∫ t

a

( ∂
∂t

F
(
t, s,~h(s)

))2
ds

∫ t

a
12ds

)
dt,

implies∫ b

a

∣∣∣∣ ∂
∂t

T~h(t)
∣∣∣∣2dt ≤ 2

∫ b

a
N2dt

+ 2
∫ b

a

( ∫ t

a

( ∂
∂t

F
(
t, s,~h(s)

))2
ds

∫ t

a
12ds

)
dt

6 2N2(b − a) + 2(b − a)
∫ b

a

∫ t

a

( ∂
∂t

F(t, s,~h(t)
)2

dsdt

6 2N2(b − a) + 2(b − a)
∫ b

a

∫ b

a
D2dsdt

= 2N2(b − a) + 2D2(b − a)3

< ∞.

Therefore, T~h belongs to H[a, b] by definitions (2) and (3).
Similar arguments one can use to show that L~h belongs to
H[a, b].

Theorem 3. Let ~f ∈ H[a, b]. Then L ~f ∈ H[a, b].

The proof is analogous to the proof of Theorem 2. Set

α, β ∈ H[a, b]. Define operators Γ : H[a, b] → H[a, b] and
Λ : H[a, b]→ H[a, b] such that:

Γ~h(t) = α(t) + T~h(t);

Λ~h(t) = β(t) + L~h(t);

for all ~h ∈ H[a, b].

We divide the interval [a, b]into N equally sub-intervals a ≤
t0 < t1 < ... < tn ≤ b; where 4t = t j − t j−1 j = 1, 2, ...,N and
4t = b−a

N . The inner product in H[t j, t j + 4t] is defined by:

〈 ~f , ~g〉H[t j,t j+4t] = 〈 f1, g1〉V[t j,t j+4t] + 〈 f2, g2〉V[t j,t j+4t],

for all ~f , ~g ∈ H[t j, t j + 4t]. As a result, we see that the
operators Γ : H[t j, t j + 4t] → H[t j, t j + 4t] and Λ : H[t j, t j +

4t] → H[t j, t j + 4t] become

Γ~h(µ) = α(µ) +

∫ µ

t j

F
(
µ, s,~h(s)

)
ds;

Λ~h(µ) = β(µ) +

∫ µ

t j

G
(
µ, s,~h(s)

)
ds;

for all µ ∈ H[t j, t j + 4t].

Lemma 1. Let ~h ∈ H[t j, t j + 4t] and 4t < 1 [7]. Then∥∥∥~h∥∥∥2 ≤
√

2
∥∥∥~h∥∥∥H[t j,t j+4t].

remark 1. Assume that α(t j) = β(t j) for all j = 0, 1, ...,N − 1.

Theorem 4. Let ~h1,~h2 ∈ H[t j, t j + 4t]. Then∥∥∥∥Γ~h1 − Γ~h2

∥∥∥∥
H[t j,t j+4t]

6 δ(4t)
∥∥∥∥~h1 − ~h2

∥∥∥∥
H[t j,t j+4t]

,

where δ(4t) ≤ C
√
4t, for some positive constant C.

3



Hassan et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 1021 4

Since∥∥∥∥Γ~h1 − Γ~h2

∥∥∥∥2
H[t j,t j+4t] =

(
Γ~h1(t j) − Γ~h2(t j)

)2

+

∫ t j+4t

t j

( ∂
∂t

Γ~h1(t) −
∂

∂t
Γ~h2(t)

)2
dt

=
(
α(t j) − β(t j)

)2

+

∫ t j+4t

t j

(
F
(
t, t, ~h1(t)

)
− F

(
t, t, ~h2(t)

)
+

∫ t

ti

[ ∂
∂t

F
(
t, s, ~h1(s)

)
−
∂

∂t
F
(
t, s, ~h2(s)

)]
ds

)2

dt

Implies,∥∥∥∥Γ~h1 − Γ~h2

∥∥∥∥2
H[t j,t j+4t] 6 2

∫ t j+4t

t j

(
F
(
t, t, ~h1(t)

)
− F

(
t, t, ~h2(t)

))2
dt

+ 2
∫ t j+4t

t j

( ∫ t

ti

[ ∂
∂t

F
(
t, s, ~h1(s)

)
−
∂

∂t
F
(
t, s, ~h2(s)

)]
ds

)2

dt

By (C2) we get constants M1,M2 such that∥∥∥∥Γ~h1 − Γ~h2

∥∥∥∥2

H[t j,t j+4t]
≤ 2

∫ t j+4t

t j

M2
1

∥∥∥∥~h1(t) − ~h2(t)
∥∥∥∥2

2
dt

+ 2
∫ t j+4t

ti

( ∫ t

ti
M2

∥∥∥∥~h1(s) − ~h2(s)
∥∥∥∥

2
ds

)2
dt.

Then,

∣∣∣∣∣∣∣∣Γ~h1 − Γ~h2

∣∣∣∣∣∣∣∣2
H[t j,t j+4t]

6 2
∫ t j+4t

ti
M2

1 M2
3

∥∥∥~h1 − ~h2
∥∥∥2

2dt

+ 2
∫ t j+4t

ti

( ∫ t

ti
M2M3

∥∥∥~h1 − ~h2
∥∥∥

2ds
)2

dt

6 2M2
1 M2

3

∥∥∥~h1 − ~h2
∥∥∥2

2 (4t)

+
2
3

M2
2 M2

3

∥∥∥~h1 − ~h2
∥∥∥2

2 (4t)3

= 4t
(
2M2

1 M2
3 +

2
3

M2
2 M2

3(4t)2
)∥∥∥∥~h1 − ~h2

∥∥∥∥2

2
.

By using Lemma 1 that

∣∣∣∣∣∣∣∣Γ~h1 − Γ~h2

∣∣∣∣∣∣∣∣2H[t j,t j+4t] 6 δ2(4t)
∥∥∥∥~h1 − ~h2

∥∥∥∥2

H[t j,t j+4t]
,

Therefore,

∥∥∥∥Γ~h1 − Γ~h2

∥∥∥∥
H[t j,t j+4t]

6 δ(4t)
∥∥∥∥~h1 − ~h2

∥∥∥∥
H[t j,t j+4t]

,

Where δ(4t) < C
√
4t, and

C =

√
2M2

3

(
M2

1 + 1
3 M2

2 4
2 t

)
<

√
2M2

3

(
M2

1 + 1
3 M2

2

)
if 4t < 1.

Theorem 5. Let f , g ∈ H[t j, t j + 4t]. Then∥∥∥∥Λ f − Λg
∥∥∥∥

H[t j,t j+4t]
6 σ(4t)

∥∥∥∥ f − g
∥∥∥∥

H[t j,t j+4t]
,

where σ(4t) ≤ C
√
4t, for some positive constant C.

The proof is similar to the proof of Theorem 4.

Theorem 6. Let F and G satisfy conditions (C1) and (C2).
Then there exists a unique solution ~h = ( f , g) ∈ H[a, b] to (1)
and (2).

For all ~h = ( f , g) in the space H[a, b]. It is clear that ~h 7→ Γ~h
and~h 7→ Λ~h are maps from H[t j, t j+4t] into H[t j, t j+4t]. From
Theorems 4 and 5; since 4t is an arbitrary positive constant and
if we pick 4t small enough such that 4t < 1

C2 then we conclude
that δ(4t) < 1 and σ(4t) < 1. Therefore, by Theorems 4 and 5
the operators Γ and Λ are contraction mapping on H[t j, t j +4t],
respectively. It is clear

(
H[t j, t j +4t], ‖ · ‖H[t j,t j+4t]

)
is a complete

matrix space. Hence, the Banach contraction mapping theorem
guarantees that the operators Γ and Λ have a unique fixed point
~h = ( f , g) in H[t j, t j + 4t].

Let ε(4t) = min{δ(4t), σ(4t)}. The existence and unique-
ness of solutions in the entire interval [a, b] for (1) and (2) can
be achieved by iterating the local existence result. This is ac-
complished by taking [a, ε(4t)], [ε(4t), 2ε(4t)], ...[nε(4t), b].

4. conclusion

We studied the local and global existence and uniqueness
of solutions to a system of non-linear Volterra integral equa-
tions (1)-(2) in the reproducing kernel Hilbert spaces V[a, b]
and H[a, b]. The results are very significant in numerical meth-
ods since the reproducing kernel function of the space V[a, b]
is a smooth function on the compact interval [a, b] and it can be
used to solve a wide variety of linear and nonlinear problems.
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