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1. Introduction

A braid (or n-braid) is a collection of n strands stretching
between 2 parallel planes that twist and cross. One example
is the pure braid in which the strands start and end with the
same permutation, see for instance, a 3-braid in Fig. 1 (left).
Identifying the two parallel planes of this 3-braid yield a link,
Fig. 1 (right).

Braids and links are used to model many physical systems
that include entanglement in their force field lines (integral curves),
see for example the coronal loops above the Sun’s photosphere
Fig. 1 (left). In this situation, the magnetic reconnection occurs

∗Corresponding author tel. no: +9647712246538
Email address: emailofcorrespondingauthor@mail.com (Nisreen

Alokbi )

Figure 1. A 3-braid (left) and a link obtained from the braid (right)

due to the entanglement of the magnetic field lines and then the
magnetic topology changes. This process leads to a conversion
of the magnetic energy into kinetic energy and a heating of the
plasma.

Understanding of magnetic reconnection is based on the
Sweet-Parker model [1]. In a magnetic field, the connectivity of
the field lines can occur only at null points, where the magnetic
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field vanishes. This model gives a rough scaling law predicting
the rate of reconnection at the null point. On the other hand,
there is no requirement that reconnection be limited to such lo-
cations; indeed, numerical experiments show the development
of turbulent reconnection in magnetic fields with no null points.

In astrophysical environments, the magnetic fields are usu-
ally inherently disordered, being characterised by field lines
that are tangled with one another 1 (right), [2, 3], typical picture
for braided magnetic field is shown in Fig.

Figure 2. Coronal loops above the Sun’s photosphere (left), some typical field
lines are braided and contained within a tubular domain (right).

Winding numbers are used easily to do many topological
calculations for example braid invariants which have applica-
tions in fluid mechanics, molecular biology and astrophysics
[4].

The idea of introducing integrals of magnetic fields in the
form of the Massey products first appeared in [5], and has been
developed in [6, 7, 8]. Different types of higher-order invari-
ants have been introduced, for instance, a fourth-order link-
ing was introduced by [9] and another integral formula for the
generalised Sato-Levine invariant was introduced by [10]. The
permutation problem is a serious obstacle for calculating third-
order linking numbers. A requirement for higher-order winding
numbers is to avoid such problems [11]. In this paper, we are
showing that the Evans-Berger and Akhmetev’s formulas coin-
cide in certain cases. Also, we will introduce another formula
for the fourth-order linking number in analogy to the formula
of lower-order. This formula is introduced in section (7), it al-
lows to measure the linking of the field lines of a magnetic field
(e.g. magnetic braid) when the lower order linking numbers are
trivial. This formula is tested on a pure braid and also the result
consist with that obtained algebraically in section 8.

2. Linking of two tubes

Suppose we have two closed curves α1 and α2. These curves
are parametrised by arclengths t and s, respectively. The posi-
tions along α1 and α2 are given by x1(t) and x2(s). Let r =

x1 − x2 be the relative position vector.
The linking number between α1 and α2, introduced by Gauss
(1867) has the following representation,

L12 =
1

4π

∮
α1

∮
α2

dx1

dt
·

dx2

ds
×

∇x1

1
|r|

ds dt. (1)

Gauss emphasised that L12 has a value equal to the signed num-
ber of crossing in a projection of the link. This Gauss integral

is invariant under deformations of the two curves in which in-
tersecting not allowed.
Now, in order to define the linking of two flux tubes we take two
thin flux tubes U1 and U2 with unit fluxes. The curves α1 and
α2 are enclosed in U1 and U2, respectively. The vector poten-
tial A2 due to U2 is defined according to the Ampér’s theorem
in the following form

A2 =
1

4π

∮
α2

dx2

ds
× ∇x

1
|r|

ds, (2)

where the vector functions x1(t) and x2(s) define points lying on
the curve α1 and α2, which are the axes of the thin flux tubes U1
and U2, respectively. Now assume we have unit fluxes, Gauss
linking integral can be written in the following way

L12 =

∮
α1

A2 · dl =

∮
α2

A1 · dl. (3)

Definition 1.
Let B1 and B2 be two divergence-free magnetic field and V be
a simply connected volume such that the boundary ∂V is a so-
called flux surface, i.e. B1 · n|∂V = B2 · n|∂V = 0. The cross-
helicity of these magnetic fields is defined in the following form

H (B1,B2) =

∫
V

A1 · B2 d3x

=

∫
V

A2 · B1 d3x. (4)

The cross-helicity measures the cross-linkage of flux between
B1 and B2. It can be written in a form to include the linking
number. If we apply it to a system of two isolated thin flux
tubes U1 and U2 which correspond to the fields B1 and B2, we
obtain

H (B1,B2) = φ1φ2L12(U1,U2). (5)

For this reason it is known as a second-order topological in-
variant (i.e. it is quadratic in magnetic flux φi). Eq. (3) can
be reformulated as a volume integral over the cross-helicity as
follows

L12 =

∫
U1

A2 · B1 dV

=

∫
U2

A1 · B2 dV . (6)

Now, define a new field M12 = A1 × A2, which is divergence-
free everywhere in the space Ũ = R3\ ∪2

i=1 Ui, and apply the
divergence theorem with the help of the vector identity [28],

∇ · (F ×G) = G · (∇ × F) − F · (∇ ×G).

Then Eq. (3) becomes

L12 =

∫
∂U1

M12 · n̂ dS

=

∫
∂U2

M12 · n̂ dS. (7)
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3. Third-Order Linking of Three Tubes

The Gauss integral cannot distinguish between the White-
head link or the Borromean rings on one hand and the trivial
link on the other hand. So, this integral is the lowest order used
to measure the entanglement of curves and interlocking of flux
tubes. Based on the Massey triple Evans and Berger (1992) con-
structed a third-order link integral which can be used to show
that the Borromean rings are not unlinked. This integral is one
of a whole hierarchy of linking integrals.
Now, suppose that the closed curves αi, i = 1..3 of the Bor-
romean rings are enclosed in tori Ui with vector potentials Ai

of magnetic fields Bi such that these fields vanish outside the
toroidal volume Ui, and let U′ be the complement of the sub-
space ∪3

i=1Ui ⊂ R3.
From algebraic topology, use the fact ‘the homology H1(Ui;R)
and the cohomology H1(Ui;R) are isomorphic’, by using the
Alexander Duality Theorem1, these are isomorphic to the ho-
mology and cohomology of the complement of Ui, and conse-
quently, any basis of H1(Ui;R) and any basis of H1(R3\Ui;R)
could be isomorphic. For this reason each tube Ui corresponds
to a unique cohomology class in H1(R3\Ui;R).
Also, we can identify the vector potential Ai with a differen-
tial one-form Ai such that dAi = Bi, where Bi is a differential
two-form corresponding to the magnetic field Bi in the tube Ui,
and d is the exterior derivative. Define the two-form Mi j which
are the dual of the divergence-free vector fields Mi j = Ai × A j

(defined recently). In this sense, the Gauss linking integral will
take the following form

Li j =

∫
∂Ui

Mi j = −

∫
∂U j

Mi j. (8)

Using stokes’ Theorem the last integral becomes

Li j =

∫
Ui

dMi j =

∫
Ui

Bi ∧ A j

= −

∫
U j

Ai ∧ B j. (9)

The linking numbers Li j (i , j) of the curves of the Bor-
romean rings vanish.
The one-forms Aq represent a cohomology classes in H1(U′;R)
and the two-form Mpq represent a cohomology classes in H2(U′,R).
We can add the two-form φi|U j B j to the form Mi j inside the tube
U j and take away the form φ j|Ui Bi from Mi j inside the tube Ui,
where φi|U j is a scalar potential satisfying A j = dφi|U j . This is
an approach by Berger to make the Mi j closed everywhere, and
this allows us to find a potential Ni j such that dNi j = Mi j. Now
the modified form is

Mi j =


Ai ∧ A j − φ j|Ui Bi on Ui,

Ai ∧ A j + φi|U j B j on Uj,

Ai ∧ A j o.w.
(10)

1Alexander Duality Theorem applies to the homology theory properties of
the complement of a subspace Xp in e.g. Euclidean space Rn, then Hq(Rn\X)
and Hn−q−1(X) are isomorphic.

The Poincaré lemma is helpful to show that closed forms repre-
sent cohomology classes, i.e. the closed forms are exact at least
locally. Here we remind the reader of the lemma :

Theorem 1 (Poincaré lemma).
Suppose X is a smooth manifold, Ωk(X) is the set of all smooth
differential k-form on X, and suppose ω is a closed form in
Ωk(X) for some k > 0. Then for every x ∈ X, there is a
neighbourhood U ⊂ X and a (k-1)-form η ∈ Ωk−1(X), such
that dη = ι∗ω, where ι is the inclusion ι : U → X, (this is a
proper Poincaré lemma) [12].
Moreover, if X is contractible, this η exists globally; there exists
a (k-1)-form η ∈ Ωk−1(X) such that dη = ω.

With the help of the Poincaré lemma, there exists a one-
form Ni j such that dNi j = Mi j. In the space ∪3

i=1Ui, the Massey
product associated with the cohomology classes is defined as
follows [13]. Let

M1
i jk = Ai ∧ N jk,

M2
i jk = Ak ∧ Ni j,

and define a two-form Mi jk by

Mi jk = M1
i jk − M2

i jk. (11)

This form represents an element in the cohomology class in
H2(U′,R) [13, 14]. The Massey product is introduced firstly
by the following volume integral, which is known as the third-
order linking integral

Li jk =

∫
Ui

dMi jk = −

∫
Uk

dMi jk, (12)

expanding the integrand term in the last equation yields

Li jk =

∫
Ui

d(Ai ∧ N jk − Ak ∧ Ni j)

=

∫
Ui

Bi ∧ N jk − φ j|Ui Bi ∧ Ak

=

∫
Ui

Bi ∧ (N jk − φ j|Ui Ak). (13)

By considering that the flux tube is thin with unit flux, the last
integral can be reformulated as a line integral (see e.g. [15], p.
14-15) to take the following form

Li jk =

∮
αi

N jk − φ j|Ui Ak

=

∮
αk

Ni j + φ j|Uk Ai. (14)

We will show how the line integral of the Massey product Eq.
(14) and the third-order winding number

ψabc = λabωbc + λbcωca + λcaωab. (15)

are related to each other in the particular case in which the braid
is closed (periodic) and then can be considered as a link.
The third-order winding number is an invariant quantity up to
smooth deformation and since every pure braid can be combed,
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it is enough to consider a combed braid only. Here, we take a
pure 3-braid as an example, comb it such that two strands, α j

and αk say, are fixed and the other, αi, winds around them.
For this braid the third-order integral, Eq. (15), becomes

Ψi jk = <

(∫
αi

λki dλi j

)
= −

1
4π2

∫
αi

(
ln rki

d
dt

ln ri j − θki
d
dt
θi j

)
dt. (16)

This is achieved by considering that αi and α j are complex func-
tions. The terms ri j and θi j are the modulus and argument of
αi j = αi − α j.
Now, we want to show how Eq. (16) can match (14). For this
purpose, the integral of the one-form Ak along the path αi equal
the flux induced by Bk weighted by the winding angle θik∫ αi(τ)

αi(0)
Akdt =

Φk

2π
θik(αi(τ)). (17)

Now differentiate with respect to τ to obtain

Ak =
Φk

2π
dθik. (18)

Since A j on Ui = dφ j|Ui , then φ j|Ui can be written as follows

φ j|Ui =
Φ j

2π
θi j. (19)

Also, the two-form M jk on Ui is just

M jk = A j ∧ Ak

=
Φ jΦk

4π2 dθi j ∧ dθki

:= dN jk. (20)

Since, zi j = ri j exp(−i θij) and zki = rki exp(−i θki) and since,
d ln zi j ∧ d ln zki = 0, then we can get the following relation

dθi j ∧ dθki =
dri j

ri j
∧

drki

rki
. (21)

Now, by using the above identity in the Eq. (20), the following
form can be used as a potential for the two-form M jk

N jk = −
Φ jΦk

4π2 ln ri jd ln rki. (22)

Assuming that the tubes Ui are filled with unit longitudinal
fluxes, Eq. (14) takes a new form equivalent to Eq. (16) af-
ter defining its terms as in Eqs. (17), (19) and (22).

4. Evans-Berger’s Formula for the Fourth-Order Linking
Number

Evans and Berger (1992) [9] have used the same idea of
construction of the third-order winding to build a formula for
the fourth-order linking number. They formulated the Massey
quadruple in vector notation so as to construct the fourth-order
link invariant for magnetic flux tubes in the form of a volume
integral. They used the example of a link including four curves,

say αi, i = 1..4, which are enclosed in thin toroidal volumes
Ui and each tube filled with divergence-free magnetic fields Bi.
These fields point in the same direction as the axial curves αi

and do not cross the boundary (i.e. Bi · n̂ = 0). For each field a
flux in the directions of the central line Φi. The magnetic fields
have vector potentials Ai (i.e. ∇ × Ai = Bi). For this link the
second and third order linkings vanish (i.e. Li j = Li jk = 0),
and since we are working in a simply connected space, there
exists a one-form Ni jk everywhere such that

Mi jk = dNi jk,

where Mi jk defined as follows

Mi jk =



Ai ∧ N jk + Ni j∧

Ak − ω jk |Ui Bi on Ui,

Ai ∧ N jk + Ni j∧

Ak − φi|U jφk |U j B j on Uj,

Ai ∧ N jk + Ni j∧

Ak + ωi j|Uk Bk on Uk,

Ai ∧ N jk+

Ni j ∧ Ak o.s.

(23)

One can check that the two-form Mi jk is closed, (i.e. dMi jk =

0). The scalar potentials ω jk |Ui and ωi j|Uk are defined in the way
that the following condition hold

dω jk |Ui = N jk − φ j|Ui Ak, (24)
dωi j|Uk = Ni j + φ j|Uk Ai. (25)

The integrand of the fourth-order linking integral, known as
“Massey quadruple product”, is defined as

Mi jkl = Ai ∧ N jkl + Ni j ∧ Nkl + Ni jk ∧ Al, (26)

then the fourth-order linking can be written as a surface integral
in the following way

Li jkl =

∫
∂Ui

Mi jkl = −

∫
∂Ul

Mi jkl. (27)

Now, by applying stokes’ theorem, Eq. (27) can be reformu-
lated as a volume integral as follows

Li jkl =

∫
Ui

dMi jkl = −

∫
Ul

dMi jkl. (28)

5. Integral formula for a generalised Sato-Levine invariant

A fourth-order integral W has been proposed by [10], for a
pair of divergence-free magnetic fields Bi and B j respectively
localised in two oriented tubes Ui and U j in R3. The integral
W is invariant up to deformations of the configuration space, its
value is preserved in the motion of tubes in an ideal medium.
This integral is a generalisation of the Sato-Levine invariant
which is defined for two tubes with zero linking number [16].
The Sato-Levine invariant β has been discovered independently
by Jerome Levine, also, [17] and [18] have also studied this in-
variant.
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The invariant is defined for a semiboundary link. Such a link
has the property that every a pair of its components has a zero
linking number, and the invariant is an integer which can be cal-
culated by studying the intersections of Seifert surfaces1 of the
components of the link. It’s proper definition is just for a pair
of two linked curves [16]. Later, [19] generalised it for a higher
order.
Akhmetiev start with a particular case of two tubes with zero
linking number to construct W [20], and later they improved
the formula to be applicable in more general cases, and they
described the dependence between the integral W and the gen-
eralised Sato-Levine invariant.

In the next section, we will review the construction of the
integral formula (W) of Akhmetiev and Ruzmaikin. We plan to
show how this formula is related to the fourth-order invariant
of Evans and Berger, so we will restrict ourselves to the case in
which the linking numbers is zero.

5.1. Formula of the invariant W

The following construction is taken from [10] to derive the
fourth-order integral W, but here it is restricted to case for which
the linking numbers vanish.
We denote by Ui and U j the magnetic flux tubes with fixed ori-
entation of their axial lines αi and α j respectively, equipped by
magnetic fields Bi and B j respectively. The vector potentials of
these fields are Ai and A j respectively.
Now, consider the restriction A j|Ui and define a multivalued
function τi : Ui → R as follows

τi(x) =

∫ x

x0

A j · ds, x ∈ Ui, τi(x0) = 0,

where x0 is a fixed point in Ui, and s is a path connecting the
point x0 and x in the torus Ui. The function τi can be defined
by A j|Ui say λ j.
In this case, the following relations hold for the tubes Ui and U j

respectively,

A j|Ui = ∇λ j, (29)
Ai|U j = ∇λi. (30)

Now consider the vector field associated with a certain closed
2-differential form if the axial lines of the tubes Ui and U j have
zero linking number

F = Ai × A j + λiB j − λ jBi − ∇ϕ.

The choosing for the potential ϕ suitably to makes F divergence-
free accordingly, since

∇ · (Ai × A j) = Bi · A j|Ui − Ai|U j · B j

∇ · (λiB j − λ jBi) = ∇λi · B j − ∇λ j · Bi

= B j · Ai|U j − Bi · A j|Ui .

1A Seifert surface is a surface bounded by one component of the link.

There exists a vector potential G for the field F, (i.e. ∇×G = F).
If we suppose the requirement ∇×G = 0 with a suitable bound-
ary condition, then the vector field G is uniquely determined by
F. Akhmetiev and Kunakovskaya have introduced the integral
W by the formula

W(Bi,B j) =

∫
R3

(G · F −

λ2
i B j · A j − λ

2
jBi · Ai)dx. (31)

6. The Consistency of Evans-Berger and Akhmetev’s For-
mulas

In this part, we will show how the formula of the integral
formula of Akhmetev is consistent with the fourth order-linking
of Evans and Berger after grouping the strands in pairs. Now
we will start with expanding the Formula (28) by calculating
the term dMi jkl

dMi jkl = dAi ∧ N jkl − Ai ∧ dN jkl

+dNi j ∧ Nkl + Ni j ∧ dNkl

+dNi jk ∧ Al − Ni jk ∧ dAl

= Bi ∧ N jkl − Ai ∧ M jkl +

Mi j ∧ Nkl + Ni j ∧ Mkl +

Mi jk ∧ Al − Ni jk ∧ Bl.

Now we will identify strand i and k and also strand j and
l. We can do this by renaming k = i and l = j and then do the
calculation

dMi ji j = Bi ∧ N ji j − Ai ∧ M ji j +

Mi j ∧ Ni j + Ni j ∧ Mi j +

Mi ji ∧ A j − Ni ji ∧ B j. (32)

We can ignore the sixth term in Eq. (32) because we will inte-
grate over the volume Ui where B j vanishes, and by summing
the third and fourth terms, we will get

dMi ji j|Ui = 2Mi j ∧ Ni j + Bi ∧

N ji j − Ai ∧ M ji j + Mi ji ∧ A j. (33)

Let us denote by K the last two terms in Eq. (33) and using
definition of Mi jk, as well as Eqs. (23) and (14), K becomes

K|Ui = −Ai ∧ (A j ∧ Ni j + N ji ∧

A j − φ
2
j |Ui Bi) + (Ai ∧ N ji

+Ni j ∧ Ai − ω ji|Ui Bi

+ωi j|Ui Bi) ∧ A j = φ2
j |Ui Ai ∧ Bi, (34)

(since, the terms ω ji|Ui and ωi j|Ui represent the third-order inte-
grals of only two tubes, they are equal to zero).
Now, by using Eqs. (10) and (23), one can verify that the sec-
ond term in Eq. (33) equal to −φ2

j |Ui Bi ∧ Ai , then we will get

dMi ji j|Ui = 2 Mi j ∧ Ni j. (35)

5
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Evans and Berger’s formula for the fourth-order linking number
becomes

Li ji j =

∫
Ui

2 Mi j ∧ Ni j. (36)

Now, by restricting the integration in Akhmetev’s formula, Eq.
(31), to one flux tube, e.g. Ui, and translate Eq. (36) into vec-
torial language, the resultant forms are consistent.

7. A Higher Analog of the Winding Number

Accounting of the higher-order winding integral is eased by
using differential forms. In the Brunnian 4-braid,

B4 = σ−1
3 σ2σ

−1
1 σ2σ

−1
1 σ2σ3σ3σ

−1
2

σ1σ
−1
2 σ1σ

−1
2 σ−1

3

all the second and third-order winding numbers vanish, see Fig-
ure 3 (left).

In order to describe the intricate tangling in such braid, we
need to define a higher-order invariant.
Consider four complex functions a = a(s), b = b(s), c = c(s),
and d = d(s) which define curves in the phase space C× I, such
that intersections among these curves are not allowed, and they
define periodic orbits. We obtain a pure 4-braid, say κ. Assume
a(0), b(0) and c(0) are all lie on the real line of the complex
plane, and |a(0) − b(0)| = |b(0) − c(0)| = |c(0) − a(0)| = r and
let midpoints are u = |b(0) − a(0)|/2, v = |b(0) − c(0)|/2 and
w = |c(0) − a(0)|/2.
The string a(s) can be written in the following parametrisation
form:

a(s) =



C0 0 ≤ s < π
C1 π ≤ s < 2π
C2 2π ≤ s < 3π
...

...

C13 13π ≤ s ≤ 14π

where

C0 = u + (− cos(s), sin(s), s)
C1 = v + (− cos(s − π), sin(s − π), s)
C2 = w + (− cos(s − 2π),− sin(s − 2π), s)

...

C13 = u + (cos(s − 13π),− sin(s − 13π), s)

Figure 3. Brunnian 4-braid B4 =

σ−1
3 σ2σ

−1
1 σ2σ

−1
1 σ2σ3σ3σ

−1
2 σ1σ

−1
2 σ1σ

−1
2 σ−1

3 .

This also can be obtained from κ where a(s) = κ(a(0)). The
other strings can be written in a similar way. Observe that all
the lower winding numbers (λi j and Ψi jk) vanish.
The following one-form

σabcd = (λab − λad)ψbcd

+(λbc − λba)ψcda

+(λcd − λcb)ψdab

+(λda − λdc)ψabc, (37)

is the analogy of ψabc (third-order winding number), and it is a
closed form as shown below

dσabcd = (ωab − ωad)ψbcd

+(ωbc − ωba)ψcda

+(ωcd − ωcb)ψdab

+(ωda − ωdc)ψabc. (38)

Since the integrand ψi jk is a closed form, then all the terms
which include dψi jk vanish. Expanding the last equation and
using ωi j = ω ji and Arnold’s identity,

ωi j ∧ ω jk + ω jk ∧ ωki + ωki ∧ ωi j = 0, (39)

then we will get

dσabcd = 0. (40)

The real part of the integral

Σabcd =

∫
κ

σabcd, (41)

provides a fourth-order winding number, which is an invariant
quantity up to deformation measuring the linkage of the four
strands of the braid κ.
In the following part, we will test this formula for a braid cor-
responding to a well known link “Brunnian ring”.
Now, we will apply the above formula for the braid B4 in Fig-
ure 3. First, we label the strings of the colours (red, blue, green
and black) by a, b, c and d, respectively.

Integrating the above form along the braid B̃(s), 0 ≤ s ≤ 1,
we get

Σabcd =

∫ 1

0
−λabλdaωac + λdaλacωab = 1. (42)

Figure 4 shows the fourth-order winding number of the Brun-
nian braid B4. The value of of this integral grows starting from
zero when there is no entanglement and then eventually be-
comes one which is the desired result.

The fourth-order winding number given by Eq. (41) can be
used to distinguish four unlinked strands from the entanglement
of the Brunnian braid.
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Figure 4. The fourth order invariant winding number for the braid B4.

8. Cup product is a generalization of the linking number

Practical algorithm for finding a finite presentation of the
fundamental group π1(X, x0) of an arbitrary finite regular CW-
space X which was illustrated in [21] and described in detail
in [22]. From such a presentation, one can calcualate the cup
product

∪ : H1(X,Z) × H1(X,Z)→ H2(X,Z) (43)

without need for any further significant computations since this
product is essentially an invariant of π1(X, x0) details in [23].

Figure 5. Pure cubical complex L representing the Brunnian link.

Figure 5 shows a pure permutahedral complex L represent-
ing a link with four components that represents the Brunnian
link. To investigate the link we embed it into the interior of a
contractible pure permutahedral complex R and form the com-
plement M = R \ L̊ of the interior of L.

Groups, Algorithms, Programming GAP [24] is a system
for computational Group Theory.

The following GAP session loads such a complex M from
the file purecubicalcomplex.txt available at [25]. The pure
permutahedral complex M. The session first constructs a smaller
homotopy equivalent pure permutahedral complex XM ' M.

The space XM is constructed using a zig-zag defomration re-
tract technique based on simple homotopy collapses which is
described explicitly in [21]. The session then uses XM to com-
pute the cohomology group Hn(M,Z) and a presentation for
G = π1M using the algorithm of [22].

gap> Read("purecubicalcomplex.txt");;

gap> XM:=RegularCWComplex(

ZigZagContractedComplex(M));

Regular CW-complex of dimension 3

gap> G:=FundamentalGroup(XM);

<fp group of size infinity on the generators

[f1,f2,f3,f4,f5,f6,f7]>

The following continuation of the GAP session uses the method
described in [23] to compute the cup product ∪iαi where αi are
free generators of H1(M,Z).

gap> cup:=CupProduct(G);

[ -1, 1 ]

It is well known that the cup product ∪iαi can be interpreted in
terms of the linking number Lk(K1,K2,K3,K4) where Ki are the
four components in the Brunnian link (see for instance [26]).

These GAP functions are provided by HAP [27] which is
one of GAP packages.

9. Conclusions

It is important to look for high-order linking numbers to
measure the entanglement of the field lines of the magnetic
braid, and by which one can avoid the problem of the permu-
tation. In this regard, we first found that the integral formula
for a generalised Sato-Levine invariant is consistent in certain
situations with Evans and Berger’s formula for the fourth-order
winding number. Also, we found that, in principle, one can go
forward to derive analogous high-order winding numbers. For
example we applied the fourth-order linking formula to Brun-
nian rings and verified that the linking number is 1. It can also
be calculated by computing the cup product on the cohomology
of a finite regular CW-space which is the complement R3\B4.
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