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Abstract

This study presents a collocation approach for the numerical integration of multi-order fractional differential equations with initial conditions in
the Caputo sense. The problem was transformed from its integral form into a system of linear algebraic equations. Using matrix inversion, the
algebraic equations are solved and their solutions are substituted into the approximate equation to give the numerical results. The effectiveness
and precision of the method were illustrated with the use of numerical examples.
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1. Introduction

In the fields of mathematics, physics, chemistry, and
engineering, differential and integral equations involving
fractions are of the utmost significance. The use of functional
equations, such as ordinary and partial differential equations,
is typical when applying mathematics to the modeling of
problems arising in the real world. In the early 1900s, Italian
mathematician Vito Volterra came up with a whole new sort
of equation that came to be known as integro-differential
equations in order to investigate the phenomenon of population
expansion. In these types of equations, one or more derivatives
of the function whose value is unknown is placed under the
integral sign. Integro-differential equations can be found in a
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variety of mathematical formulations of physical phenomena.
Additionally, these equations can be found in the modeling of
certain phenomena in the fields of science and engineering.
For instance, the equations of kinetics that support the kinetic
theory of rarefied gases, plasma, radiation transmission, and
coagulation are some examples. [1]. Some of the numerical
solution of fractional differential equations developed in the
literature include: Perturbed collocation method [2], Adomian
decompositions method by [3-5], Collocation method by [6-9],
Chebyshev- Gelerkin method [10], Bernoulli matrix method
[11], Differential transform method [12], Pseudospectral
method [13], Bernstein Polynomials method [14, 15], the
Mellin transform approach [16]. [17] utilized a numerical
approach based on the boubaker polynomial to generate
approximate numerical solutions to the multi-order fractional
differential equations. Their decision was to use an operational
matrix for fractional integration based on boubakar polynomi-
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als. Collocation approach for the computational solution of
fredholm-volterra fractional order of integro-differential equa-
tions was presented by [18]. They solved the problem by first
obtaining the linear integral form of it and then transforming
it into a system of linear algebraic equations by making use of
conventional collocation points.

In this research, the collocation method is utilized to solve
multi-order fractional differential equations of the form

N
DPy(x) = )" qi(x)D"y(x) + h(x)

ey
=0
subject to the initial condition
yWaj)=2, j=0,1,..,n—-1, ne N> ay, 2)

where y(x) is the unknown function, D% and D? are the Ca-
puto’s derivative, h(x) is the force known -prior. ¢g;(x) is the
known function, a; and 4; are known constants.

2. Basic Definitions

In this section, we present certain definitions and fundamental
ideas of fractional calculus for the purpose of the formulation
of the problem that has been presented.

Definition 2.1: The Caputo derivative with order @ > 0 of the
given function f(x), x € (a, b) is defined as

f(x )m a-1 (m)(S)dS

where m — 1 SaSm,meN,x>0
Definition 2.2: Let (a,),n > 0 be a sequence of real numbers.
The power series in x with coefficients a,, is an expression

EDey(x) = 3

N
Y(X) = ag+ar x+ar x> +azx>+- - ayx = Z ap X" = ¢(x) A4)
n=0

where ¢(x) =[1 x x> --- xV], A= an]”
then y(x,n) = x"A, n=0(1)N, ne Z*

Definition 2.3: Standard Collocation Method (SCM). This
method is used to determine the desired collocation points

within an interval. i.e [a,b] and is given by

l[ag a

b— i
vma+ 8= 105N (5)
Definition 2.4: Let y(x) be a continuous function, then
(k )(0)
off (§ D)) = y(w) - Z Ll ©)
wherem -1 < <1
Definition 2.5: Let p(s) be an integrable function, then
1 X
E(p(s) = =— f (x = " p(s)ds @)
olx (p e Jo 14

Definition 2.6: The Riemann -Liouville derivative of order a >
0 with n — 1 < @ < n of the power function f(f) = #"~¢ is given
by

N S
b= " ®

3. Mathematical Background

In this part, we create a collocation approach for numeri-
cally solving multi-order fractional differential equations utiliz-
ing power series polynomials as the basis function.

Lemma (3.1) (Integral form)
Let y(x) be a solution to (1) subject to (2), the integral form is

N 1 1

- W - 9
¥() () + ,Z; 2 TH ©
Xf - s q(s) [ f S(S—t)’”f‘“f‘ly(’"f)(t)dt ds

0 0

where
(k)
W(x) = Z J (O)xk 6 f (x — s h(s)ds

Proof. Multiply equation (1) by olff(.) gives
N
o} (DPy(0) = oI (Z q,-(x)D“fy(x)]+ off (h(x))  (10)
Jj=0

using (6) on equation (10) gives

¥ = Zy SUNINY [Z q,(x)D“fy()o] an
j=0
applying equations (3) and (7) to equation (11) gives
y(0)
Y@ = Z AR f (= 12)

k=0

[Zq,(x)r( - f (s — pymai! (mf)(t)dt)ds

Substituting equation (4) into equation (12) gives

y(k)(o) N 1 * 1
y(x) = Z r_(ﬁ)\fo (x—s)P

[Zq,(x)r( - f (s — By dm ) th)ds

O

(13)

3.1. Method of Solution

Collocating at x; in equation (13) gives

ul 1 1 [ .
y(x) = W(M)"‘%mr—w)ﬁ (xi — 7 'q,(s)
X ( f (st 2 i) dt)dsA (14)
0 dtm7
where
~ N y(k)(()) ' 1 X )ﬂ—lh y
W(xi)—kz:;Tx +F—(ﬁ)f(;(x—s (s)ds
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Simplifying equation (14) gives

P(x)A = W(x;)
N 1 -1,
| 2 Ty -y F(ﬂ) b = |
X ( INCED M (1)) dt) ds
15)
Factorizing the values of A from equation (15) gives
1 |- .
$x)— 2 =0 Tm, —a, )I“_(B) [, (i =5V q(s) R
X ( fo (s — £)™i—i~ d o (@) dt) ds
=W(x) (16)
Equation (16) can be in the form
V(xi)A :W(xi) (17)

where
V() = o(x: EN‘;L - sy,
(i) = $lxi)= = L(mj—a;) I'(B) fo (i = 57 74,(5)

( fo S(s - t)mf_”/_I% (@(1)) dt) ds (18)

and

T

A=lay a ay]

Multiplying both sides of equation (17) by V~!(x;) gives
A=V (x)W(x) (19)

Lemma (3.2)
Let y(x) be approximated by (11) and let

N
L(x) = off (Z q,~(x>D“fy(x)] (20)

j=0
If g;(s) = sP/, then
'+ DI'n—a;j+p;+1)

I'n—a;+ DI'B+n—-a;+p;+1)
XxB+z1—a,»+p,-A

L(x;n) =

2

Proof.
Applying equation (3) and (7) into equation (20) gives

[Z q;(x)D"y(x) [ = Z mr(ﬂ) f (x— s 'q;(s)

Jj=0
[f (S t)in/—aj y(m])(t)dt:|
0

(22)

Substituting (8) into (22) gives

N

1 1 .
= S — Sp/
JZ; Tn; — a) T) fo (=

s -1 r(l’l + 1) —m;
[jo‘(s—t)- - (—F(n—mj+1)tn )dt]dsA

dt
Lets—t:(l—v)s,thent:vs=>d—=s=>dt=sdv,
v

(23)

substituting into (23) gives

y r(}’l-i-l) 1 X . .
zzr(mj—aj)ﬂn—mjﬂ)r_(ﬁ)fo(X‘S)B S (24)

J=0

1
[S"—%' f (l—v)mf“’f‘lvn""fdt]dsA
0

Simplifying (24), we get
I'n+DI'n—a;+p;+1)

L(x;n) = APrneitriN(25
(xm) I'n—a;+ DI'GB+n—-a;+p;+1) (25)
O
Lemma (3.3)
Let y(¢) be approximated by (9), let
Cx) = off (h(x)) (26)
if h(s) = s™, then
_ Tm+1) o
€O = Fgrme 1)xﬁ
Proof.
Applying equation (7) into (26) gives
E (h(x)) = ~ sV 'h(s)d
ol 00) = o [ 57 ) s
Substituting for A(s) gives
1 < I
= — x— sy s"ds
w5 ), o
ds
Letx—s=(1-ux, s=ux—= T =x=ds = xdu.
u
I'(m+1) B+
= —— 7 Apm 27
0= Fgama D @7
O

Lemma (3.4)
Let y(x) be the solution of (1) and (2) then the numerical result
gives

y(x) = px)V™" (x) W(x) (28)
where
'+ DI'n—a;+p;+1)

In-a;j+DIB+n-a;+p;+1) i

+n—a;+p;

V(x)) =

and

I'm+1)  pgim
FrB+m+1)"

Nk
Wy ==y % Qs

e k!
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Proof.
Approximate solution of equation (17) is

y(x) = ¢(x) A
From equation (19) A =V~!(x;) W(x;)
where

Vi) = I'n+DI'n—a;+p;+1) T
' IFn—a;+ DIB+n-a;+pj+1)"
br+n+1r(r + 1) -
(c+n+DHIB+r+1)
I'(r+o0+n+2) Frto+n+l

(c+n+DIB+r+oc+n+2)

Substituting for A in the approximate solution gives the numer-
ical result

y(x) = ¢(x)V () W(x)

4. Convergence Analysis
In this section, we establish the convergence of the method by

substituting the approximate solution into equation (3.0)

Al 1 1
w0 = W)+ ) (29)

=i T(m; —a;) T(B)

x f x(x— P qi(s) [ f s(s— 0"y ()di | ds
0 0

Subtracting (9) from (29) gives

Eyn(x) = yn(x) = y(x).

Hence
|EN(x>|<F—(ﬂ) e Zr( U
H f (s— t)m-"”flEN(t)dt} ds
0
Therefore
lEN (x)lloo foi _ ol
Ol =@ Jy

ds

N 1 s
) — pymima=1
;nm,._a,.)qf“)( [Fiopertal)

5. Numerical Examples

In this section, we considered two numerical examples to eval-
uate the effectiveness and clarity of the method. A MAPLE
18 program is used to perform the computations. Let y,(x)
and y(x) be the approximate and exact solutions respectively.
Errory = [y,(x) — y(x)I.

Example 5.1. [2] Consider multi-order Fractional differential

equation .
D" y(x) = —x7'D*?y(x) — x%y(x) + f(x)

with this condition y' (0) = y(0) = 0 and exact solution y(x) =

x3 x2
22 r2.5)+01.5)  x\| o5
—6)—2(—%)})6

- 3 I'(3.5)+I'(2.5)
flo = [6’“( * T(1.5I25)
Solution 1. Comparing with equation (1.1) and Equation (1.2),
B=15a=05

['(2.50(3.5)

Using N = 4 for illustration, and applying equation (6) gives

1 1 x
YD) = W@ - 5 S TS f (x=9""sT(30)
U (s — )70 (r(ﬁl)l)" ldt]dsA

15105 n
F(ls)f( s) (s")ds A

1 X
k! +—r(1.5)jo‘(x—s)l's’lf(s)ds

Substituting (4) into equation (30) gives

1 15-1 1
¢(x) A = W) - (=05 T, 5)f( -85 s @G

fe-

- _1_‘(11.5) L‘X(x — S)I.S*ISO.S (Sn)dSA

pi-05-1 I'n+1)

" ldr|ds A
Tn—1+1)

R fo (=)' fs)ds

Equation (31) can be in the form
T(X)A =W(x) (32)

where

7(x)

¢(X)+—] L f‘x(x—s)l's_l 57!
I'(1-0.5TI(.5)
1-05-1_L(n+1) -1
U( - dt}ds

+m£ (.X— S)l.SflsO.S (s")ds
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collocating at x4 = H % % 1] and substituting the where
initial conditions gives
N (k)(o) 1 X
o)A =f(x)" (33) W(x) = Z L % —— | (x— 9" f(9)ds
i i e k! ra.s) Jo
where
Substituting (4) into equation (34) gives
7i(x)" =
00000000000 0.0000000000  0.0000000000  0.0000000000  0.0000000000
0.0470157986  0.2239605405  0.1797773130  0.0750069286  0.0274673600 1 X L5
0.1880631945  0.5184447788  0.7543711011  0.6176863534  0.4482932221 PDA = Wr)- ——— —— (x — )7 135)
04231421877  0.9539764130  1.8295669120  2.1838653930  2.3438648990 I'a-0.571(1.5)
07522527781 1.6010791410  3.5816739880  5.5056804110  7.7368811360 r 1
0 1 0 0 0 (s £)1=05-1 Te+1) ) "l ds A
1 0 0 0 0 1"( — 1+ 1)
_ f( )lSlOS(sn)dsA
f@)* = [0.0000000000 —0.1047703844 — 0.1366847478 0.3542984804 1.9240064220] r (1.5) 0
We now solve for the unknown values A making use of matrix where
inversion results in equation (33):
N (k)(()) 1 X
) . _ Y k 15-1 £00)d
- 1.365574320288040 x 10~ — 2.546407529280260 x 10~'2x W(x) = Xt | (=9 f(s)ds
4 ={ ~0.999999999275360x + 0.999999998413614x° + 6.644427230639850 x 10710* o k! I'(1.5) Jo
Equation (35) can be in the form
Example 5.2. [2] Consider multi-order Fractional differential
ple 5.2. [2] i (A =W () (36)

equation .

where

_ 1 1 ! 15-1 1
o | = ¢(x)+r<1—05)r(15>f(x v
with this condition y (0) = y(0) = 0 and exact solution y(x) =

3, .2 * 1—05-1 I'(n+1) -l
o X[ (F(2.5) +1I(1.5) xz) (F(S.S) +1°(2.5) X2 )} 1 [L‘ (s=0) I'n-1+ 1) dt} ds
0= 5| Tasras t o

D500+ LD + () =+

2

I'(1.5I(2.5) I'(2.5)I(3.5) 1 fx 1521 05+ n
+— -5 : d
ras) J, (x=15) s (s")ds
Solution 2. Comparing with equation (1.1) and Equation (1.2), Collocating at x4 = [ 41'1 % % 1] and substituting the
B=15a=05 initial conditions gives
Using .N =4 fo¥ illustrat.ion, T(x)* A =f(x)" (37)
Applying equation (6) gives
. where
" = W0 - e [ e
I'(1-0.5)T(.5) o
Ti(x) =
(S £)1-05-1 [(n+1) arl ds A 0.5000000000  2.3817583340 19118819450  0.7976779168  0.2921077680
Tn—1+1) 07071067812 1.9493225120  2.8363918970  2.3224651180  1.6855566990
0.8660254038  1.9524590850  3.7444893700  4.4696155660  4.7970791030
15-105 (gn 1.0000000000  2.1283791670  4.7612638900  7.3189233350  10.2849485700
f (= 915103 () ds A 1 . ‘ ; )
Iﬂ(l I(1.5) 0 1 0 0 0

Table 1: Exact, approximate and absolute error values for Example 1
S = [ 1.1142040280  0.5139267798  -0.7251261978 -2.5576594460 0 0O ]

X Exact Our methody-4 errory—4 eITor |01 4 . .
0.0 0.00000000000  1.36557432000e-14 13636014  5.0232¢-13  We now solve for the unknown values A making use of matrix
0.1 -0.900000000e-2  -0.89999999950e-2  5.0000e-12  2.6668e-10  inversion results in equation (37);

0.2 -0.320000000e-1  -0.31999999980e-1  2.0000e-11  9.6994e-10
0.3 -0.630000000e-1  0.06299999997000  3.0000e-11  1.9604e-09
0.4 -0.960000000e-1  -0.95999999980e-1  2.0000e-11  3.0781e-09
0.5  -0.12500000000  -0.1250000000000  0.0000000  4.1532e-09
0.6 -0.14400000000  -0.1439999999000  1.0000e-10  5.0056e-09
0.7 -0.14700000000  -0.1470000000000  0.0000000  5.4456e-09
0.8 -0.12800000000  -0.1280000001000  1.0000e-10  5.2733e-09
0.9 -0.810000000e-1  -0.81000000160e-1  1.6000e~10  4.2787e-09
1.0 0.00000000000  -2.3555727690e-10  2.3555e-10  2.2421e-09

5

1.428190898877800 x 10~'2 — 2.777014174171200 x 1010
H +1.000000001121990x? — 1.000000001716120x* + 6.387779194483300 x 10~10x*
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Table 2: Exact, approximate and absolute error values for Example 2
X Exact Our methody—4 eITOrN=4 error ) 4
0.0 0.00000000000 1.428190899000e-12 1.4281908990000e-12  3.7782e-12
0.1 0.00900000000 0.00899999998200 1.8000000000000e-11 2.4706e-09
0.2 0.03200000000 0.03199999997000 3.0000000000000e-11 1.4306e-08
0.3 0.06300000000 0.06299999997000 3.0000000000000e-11 3.9585e-08
0.4 0.09600000000 0.09599999999000 1.0000000000000e-11 78988e-08
0.5  0.12500000000 0.12499999990000 1.0000000000000e-10 1.2980e-07
0.6 0.14400000000 0.14399999990000 1.0000000000000e-10 1.8590e-07
0.7 0.14700000000 0.14699999980000 2.0000000000000e-10  2.3778e-07
0.8 0.12800000000 0.12799999970000 3.0000000000000e-10  2.7253e-07
0.9  0.08100000000 0.08099999952000 4.8000000000000e-10  2.7386e-07
1.0 0.00000000000 -3.6122208060e-10 3.6122208060000e-10  2.2207e-07

6. Discussion of Results

In this section, we discuss the numerical results obtained by
applying the derived numerical method to the solved examples.
We observed from the result obtained for example 1 as shown
in Table 1 that the approximate solution at N=4 gives y4(x) =
1.365574320288940 x 10~ — 2.546407529280260 x 10~2x+
1.000000001121990x? - 1.000000001716120x° +
6.387779194483300 x 107'x*. The numerical result al-
most converges to the exact solution and produces extremely
small errors. This demonstrated that our method outperformed
the proposed method by Uwaheren et al (2020).

The results of the numerical example 2 in Table 2 shows the
approximate solution at N=4 as y4(x) = 1.428190898877800 x
10712 = 2.777014174171200 x 10~'%x + 1.0000001121990x> —
1.0000001716120x> + 6.387779194483300 x 10~ '°x*. The nu-
merical result converge to the exact solution and give better re-
sult than the method proposed by Uwaheren et al (2020) at the
same value of N. This shows that the numerical method devel-
oped is consistent and converges faster.

7. Conclusion

In this paper, a new numerical method was developed for solv-
ing multi-order fractional differential equations with initial con-
ditions using collocation method. The numerical method de-
rived is consis- tent, efficient and reliable and easy to compute.
Maple code was used to implement the developed method.
Solved numerical examples show that the method is reliable and
suitable for these kind of problems. We also compare our ab-
solute errors with Uwaheren et al. (2020) as shown in Tables 1
and 2. Hence, we safely conclude that our method is preferable
to the existing methods.
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