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Abstract

In this work, a one-step L-stable Block Hybrid Multistep Method (BHMM) of order five was developed. The method is constructed for solving
first order Ordinary Differential Equations with given initial conditions. Interpolation and collocation techniques, with power series as a basis
function, are employed for the derivation of the continuous form of the hybrid methods. The discrete scheme and its second derivative are derived
by evaluating at the specific grid and off-grid points to form the main and additional methods respectively. Both hybrid methods generated are
composed in matrix form and implemented as a block method. The stability and convergence properties of BHMM are discussed and presented.
The numerical results of BHMM have proven its efficiency when compared to some existing methods.
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1. Introduction

Most Mathematical models are formulated using ordinary
differential equations (ODEs) of different orders. However, math-
ematical models that are based on ODEs of order one occur in
several engineering, applied sciences and economics problems.
Some of the ODEs have been proven not to have closed-form
solution hence the need to develop numerical methods to pro-
vide approximate solutions to these problems. Consider the Ini-
tial Value Problem of the form

y′(x) = f (x, y(x)), y(x0) = y0 (1)

Several numerical methods have been developed by different
researchers to circumvent the Dahlquist’s order Barrier Theo-
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rem [1 - 3] that restricted the use of Linear Multistep Methods
of high order to solve (1). Some of such researchers are En-
right [4], Akinnukawe and Okunuga [5], Gear [6], Okunuga
[7], Cash [8], Akinfenwa et al. [9, 10], Adesanya et al. [11],
Ijezie and Muka [12] to mention but a few. High-order A-stable
and L-stable numerical methods are developed by incorporat-
ing off-step points, additional stages and/or employing higher
differentiation of the solution (Lambert [13]). Generating ap-
proximate solutions for (1) in instances where they exist and
are unique but are insoluble via analytical means is very impor-
tant because they help in the analysis and validation of models
in which they evolve from. One of the objectives of developing
numerical schemes for solving (1) is to obtain methods with
wider stability regions, better convergent rates and computa-
tional efficiency.

160



Akinnukawe & Muka / J. Nig. Soc. Phys. Sci. 2 (2020) 160–165 161

In this article, Continuous Hybrid Methods (CHM) of order 5
are derived through Interpolation and Collocation techniques
(Onumanyi et al. [14]). Both methods incorporate off-step
points and the second derivative of the scheme to produce the
discrete hybrid methods which are composed and implemented
as a block method (BHMM) to simultaneously produce approx-
imation at nodal points. The BHMM has the advantage of being
self-starting, L-stable in nature and possesses high accuracy be-
cause it implemented as a block method (see [15], [16], [17]).

2. Derivation of BHMM

This section describes the derivation of the k-step hybrid
multistep method of the form:

k∑
j=0

α jyn+ j + αvyn+v = h
k∑

j=0

β j fn+ j + hβv fn+v + h2φkgn+k (2)

where h, n and v = 1
2 are the step size, grid index and off-

step point respectively while α j, β j, j = 0, 1, ..., k and φk are
parameters to be determined uniquely. An approximate solution
to (1) by the interpolating function

y(x) =

4k+1∑
j=0

b jt j (3)

where b j, j = 0, 1, ..., 4k + 1 are the unknown coefficients. Im-
posing condition for the construction of the proposed class of
methods are:

y(xn+r) = yn+r, r = 0, v (4)

y′(xn+r) = fn+r, r = 0(v)k (5)

y′′(xn+r) = gn+r, r = k (6)

Equations (4) - (6) will lead to a system of 4k + 2 equations.
These equations are solved simultaneously to obtain b j and the
values of b j are substituted into (3) to form the Continuous Hy-
brid Method (CHM) expressed in the form

y(t) =

k−v∑
j=0

α j(t)yn+ j + h
k∑

j=0

β j(t) fn+ j + h2φk(t)gn+k (7)

where t = x−xn+k−1
h and α j(t), β j(t), j = 0(v)k and φk(t) are the

continuous coefficients. The main scheme is generated evaluat-
ing CHM (7) at xn+k while the additional scheme is generated
from the second derivative of (7) at xn+v of the form

h2y′′(t) =

k−v∑
j=0

α j(t)yn+ j + h
k∑

j=0

β j(t) fn+ j + h2φk(t)gn+k (8)

The developed main and additional schemes are combined
and implemented simultaneously as a block hybrid multistep
method BHMM for the numerical integration of IVPs (1).

Following the steps discussed above, the Continuous Hy-
brid Method (CHM) for k=1 is equation (7)

y(t) =

k−v∑
j=0

α j(t)yn+ j + h
k∑

j=0

β j(t) fn+ j + h2φk(t)gn+k

where

 α0(t)
α 1

2
(t)

 =

[
1 0 − 480

23
1280
23 − 1200

23
384
23

0 0 480
23 − 1280

23
1200
23 − 384

23

]


t0

t1

t2

t3

t4

t5


(1)


β0(t)
β 1

2
(t)

β1(t)

 =


0 1 − 131

23
265
23 − 224

23
68
23

0 0 − 128
23

464
23 − 504

23
176
23

0 0 19
23 − 89

23
128
23 − 52

23





t0

t1

t2

t3

t4

t5


(2)

[
φ1(t)

]
=
[

0 0 − 7
46

17
23 − 26

23
12
23

]


t0

t1

t2

t3

t4

t5


(3)

Interpolating (7) at x = xn+1 to generate the main method at
k = 1 becomes

yn+1 =
7yn

23
+

16yn+ 1
2

23
+

h fn
23

+
8h fn+ 1

2

23
+

6h fn+1

23
−

h2gn+1

46
(9a)

Equation (8), the second derivative of (7) for k = 1 is

h2y′′(t) =

k−v∑
j=0

α j(t)yn+ j + h
k∑

j=0

β j(t) fn+ j + h2φk(t)gn+k

where

 α0(t)
α 1

2
(t)

 =

[
− 960

23
7680
23 − 14400

23
7680
23

960
23 − 7680

23
14400

23 − 7680
23

] 
t0

t1

t2

t3

 (4)


β0(t)
β 1

2
(t)

β1(t)

 =


− 262

23
1590
23 − 2688

23
1360

23
− 256

23
2784
23 − 6048

23
3520

23
38
23 − 534

23
1536
23 − 1040

23




t0

t1

t2

t3

 (5)
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[
φ1(t)

]
=
[
− 7

23
102
23 − 312

23
240
23

] 
t0

t1

t2

t3

 (6)

Interpolating(8) at x = xn+1/2, the additional method at k =

1 becomes

h2gn+ 1
2

=
240yn

23
−

240yn+ 1
2

23
+

31h fn
23

+
64h fn+ 1

2

23
+

25h fn+1

23
−

4h2gn+1

23
(9b)

The discrete hybrid methods (9a)and (9b) together forms
the One-step Block Hybrid Multistep Methods (BHMM). The
BHMM can be presented in a matrix block form as

A(1)Y$ = A(0)Y$−1 + hB(1)F$ + hB(0)F$−1 + h2C(1)G$ (10)

where

Y$ =

 yn+ 1
2

yn+1

 ; Y$−1 =

 yn− 1
2

yn

 ; F$ =

 fn+ 1
2

fn+1

 ;

F$−1 =

 fn− 1
2

fn

 ; G$ =

 gn+ 1
2

gn+1


The 2 by 2 matrices A(0), A(1), B(0), B(1),C(1),D(1) of the BHMM

(9) are defined as follows

A(1) =


240
23 0

− 16
23 1



A(0) =


0 240

23

0 7
23



B(1) =


64
23

25
23

8
23

6
23



B(0) =


0 31

23

0 1
23



C(1) =


−1 − 4

23

0 − 1
46



3. Analysis of BHMM

3.1. Order and Error Constant of the Method
Following Lambert [13] and Fatunla [18], a method was

proposed for finding the order p and error constant Wp+1 of the
block method (9) by first expanding y−, f− and g− functions by
Taylors series expansion about x and then comparing the coef-
ficients of h. It is established from our calculation that one-step
Block Hybrid Multistep Method have order and error constants
as p = (5, 5)T and Wp+1 = ( 13

44160 ,
1

66240 )T respectively where T
is transpose.

3.2. Zero Stability
A numerical method is said to be zero-stable if the roots

R j, j = 1, 2, . . . ,N of the first characteristic polynomial ρ(R)
satisfies |R j| ≤ 1, j = 1, . . . ,N and those roots with |R j| = 1 is
simple (see Lambert [3]). Applying the above conditions to the
derived block method, the first characteristic polynomial ρ(R) =

0 is calculated as

ρ(R) = det(RA(1) − A(0)) =
240
23

R(R − 1)

The BHMM is found to be zero-stable since ρ(R) = 0 satisfies
|R j| ≤ 1, j = 1, 2.

3.3. Convergence
According to Henrici [19], a numerical method converges

if it is consistent and zero-stable. Since BHMM (9) is of order
5 > 1, then it is consistent and we have established earlier that
the method satisfies the conditions of zero-stability. Therefore,
the block method (9) converges.

3.4. Stability of BHMM
Applying the BHMM to the test equation

y′ = λy, λ ≤ 0

we obtain

Y$ = Q(z)Y$−1, z = λh

where Q(z) is the amplification matrix given by

Q(z) =
A(0) + zB(0)

A(1) + zB(1) + z2C(1)

Q(z) has eigenvalues (ζ1, ζ2) = (0, ζ2). The dominant eigen-
value ζ2 is the stability function with real coefficient as

ζ2 =
10.4348 + 4.17391z + 0.652174z2 + 0.0434783z3

10.4348 − 6.26087z + 1.69565z2 − 0.26087z3 + 0.0217391z4

The stability function is used to plot the Region of Absolute
Stability (RAS) of the BHMM (see Figure 1). The proposed
method BHMM is L-stable since the RAS covers the entire left
plane of the graph (A-stable) and the limit of the stability func-
tion ζ2 is zero as z→ ∞
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Figure 1. Stability Region of Block Hybrid Multistep Method

4. Numerical Results

The following problems are considered to examine the ac-
curacy and computational efficiency of BHMM. The computa-
tions were carried out using MATHEMATICA 9.0 software.
The following acronyms are used:

• ES = Exact Solution

• ESDMM = Error in SDMM

• EMHIRK = Error in MHIRK

• EBHMM = Error in BHMM

• EESDMM = Error in ESDMM

Problem 1: Consider the non-linear IVP

y′1 = λy1 + y2
2

y′2 = −y2

with initial conditions

y1(0) =
−1
λ + 2

, y2(0) = 1,

where λ = 104 and the exact solution of the IVP is given as

y1(x) = −
e−2x

λ + 2
, y2(x) = e−x

In Table 1, the numerical results obtained using BHMM
with h = 10−1 compares favourably with MHIRK method [10]
with h = 10−1 and is superior to that of Hojjati et al. [20] that
used h = 10−4.

Problem 2: Consider the following stiff problem arising
from Chemical Kinetic reactions in a Chemistry experiment.

y′1 = −0.013y1 − 1000y1y2 − 2500y1y3

y′2 = −0.013y1 − 1000y1y2

y′3 = −2500y1y3

with initial conditions

y1(0) = 0, y2(0) = 1, y3(0) = 1

The computed result at x = 2.0 from the new method BHMM
is compared with those of Ismail and Ibrahim (ESDMM [21]),
Hojjati et al. SDMM [20], Akinfenwa et al. MHIRK [10].
The step length h = 0.0125 was used for MHIRK method
and the new method BHMM and compared with Ismail and
Ibrahim ESDMM [21], Hojjati et al. SDMM [20] with step
length h = 0.001. The result obtained with the new method
BHMM is superior to others. See Table 2 for the numerical re-
sults.

Problem 3: Consider the non-linear system

y′1 = −2y1 + y2 + 2sin x

y′2 = 998y1 − 999y2 + 999(cos x − sin x)

with initial conditions

y1(0) = 2, y2(0) = 3, 0 ≤ x ≤ 10

with analytical solution given as

y1(x) = 2e−x + sin x, y2(x) = 2e−x + cos x
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Table 1. Comparison of Methods for Problem 1

x yi ES ESDMM[20] EMHIRK[10] EBHMM
3 y1 −0.2478257E − 06 2.478147E − 11 3.06450E − 15 5.00564E − 16

y2 0.4978707E − 01 2.471093E − 06 3.07825E − 10 5.02813E − 11
5 y1 −0.4539085E − 08 3.450217E − 14 9.35475E − 17 1.52787E − 17

y2 0.6737946E − 02 2.304573E − 08 6.94326E − 11 1.13414E − 11
10 y1 0.3059023E − 12 3.456372E − 18 8.49412E − 21 3.75372E − 20

y2 0.3059023E − 04 3.150734E − 10 9.35666E − 13 1.52836E − 13

Table 2. Comparison of Methods for Problem 2

x yi ES EESDMM[21] ESDMM[20] EMHIRK[10] EBHMM
2.0 y1 −0.361693316929E − 5 0.82E − 10 0.52E − 13 0.110E − 13 2.919E − 15

y2 0.9815029948230 0.61E − 05 0.19E − 08 0.220E − 08 5.586E − 10
y3 1.018493388244 0.57E − 05 0.63E − 08 0.220E − 08 5.584E − 10

The numerical results of Problem 3 are shown in Table 3
using step size h = 10−3. The derived method integrated the
problem efficiently that the numerical solution is close to that
of the analytical solution.

Table 3. The absolute error for Problem 3
x yi ES EBHMM

0.25 y1 1.805005525 4.50751E − 14
y2 2.526513988 4.84057E − 14

0.5 y1 1.692486858 9.85878E − 14
y2 2.090643881 9.81437E − 14

1.0 y1 1.577229867 9.45910E − 14
y2 1.276061188 9.54792E − 14

2.0 y1 1.179967993 1.68310E − 13
y2 −0.145476270 1.68365E − 13

4.0 y1 −0.720171217 2.21378E − 13
y2 −0.617012343 2.23044E − 13

6.0 y1 −0.274457993 1.01363E − 13
y2 0.9651277911 1.01474E − 13

8.0 y1 0.9900291719 1.93401E − 13
y2 −0.1448291085 1.94650E − 13

10.0 y1 −0.5439303110 6.10623E − 13
y2 −0.8389807292 6.09068E − 13

Problem 4: A stiff system of Initial Value Problems

y′1 = −8y1 + 7y2

y′2 = 42y1 − 43y2

with initial conditions

y1(0) = 1, y2(0) = 8, x ∈ [0, 15]

with exact solution given as

y1(x) = 2e−x − e−50x, y2(x) = 2e−x + 6 − e−50x

Problem 4 was integrated using the step size of h = 10−4 to
aid in comparing with other methods in literature as shown in
Tables 4 and 5. It is discovered that BHMM has better accuracy
than the others compared with.

Table 4. Numerical Results for Problem 4
x yi ES EBHMM
3 y1 9.9574136 × 10−2 2.68577 × 10−13

y2 9.9574136 × 10−2 2.65843 × 10−13

6 y1 4.9575044 × 10−3 1.68580 × 10−14

y2 4.9575044 × 10−3 1.80611 × 10−14

9 y1 2.4681961 × 10−4 7.57646 × 10−15

y2 2.4681961 × 10−4 5.43191 × 10−15

12 y1 1.2288424 × 10−5 2.10193 × 10−15

y2 1.2288424 × 10−5 2.54783 × 10−15

15 y1 6.1180464 × 10−7 2.29273 × 10−14

y2 6.1180464 × 10−7 1.87085 × 10−14

5. Conclusion

A one-step L-stable Block Hybrid Multistep Method (BHMM)
of order five was developed via interpolation and collocation
techniques. The BHMM has the advantage of being self-starting
and its L-stable in nature as displayed in figure 1. The block
method possesses high accuracy as shown in Tables (1) − (5)
where it was compared with some existing methods. The method
satisfies the zero-stability, consistency and convergence condi-
tions. BHMM has proved efficient for solving first-order Initial
Value Problems.
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Table 5. A Comparison of absolute errors of methods for Problem 4

x Methods Error |y(tn) − yn|

5 BHMM 3.1999 × 10−14

TDBDF [22] 1.5472 × 10−2

TDMM [23] 1.5476 × 10−2

10 BHMM 4.642 × 10−15

TDBDF [22] 9.0808 × 10−5

TDMM [23] 9.0808 × 10−5

15 BHMM 1.8709 × 10−14

TDBDF [22] 6.1186 × 10−7

TDMM [23] 6.1186 × 10−7
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