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Abstract

A novel mathematical delay model for simultaneous infection of HIV and hepatitis C virus is formulated and dynamically analyzed. Basic
properties of the model are established and proved. Basic reproductive threshold is systematically calculated as the maximum of three subthreshold
parameters. A disease free equilibrium is determined to be globally asymptotically stable for all values of the delay when the threshold is less
than unity. However, when the threshold is greater than one, endemic equilibrium emerged which is shown to be locally asymptotically stable for
any length of delay. Although the delay has no effect on stabilities of equilibria points, however, it is found to reduce the infectivity of the viruses
as the length of the delay is increased. Epidemiological interpretations of the results and numerical simulations illustrating them are given.
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1. Introduction

Around 2.75 million people who have human immunodefi-
ciency virus (HIV) are coinfected with hepatitis C virus (HCV)
globally and and on average HIV-infected individuals are six
time more likely to get HCV infection than HIV-uninfected [1].
Worldwide, HIV and HCV are public health challenges which
affected several populations. Across the continents, there are
about 37 million and 115 people infected with HIV and chronic
HCV infections, respectively.

Numerous mathematical models have been used to explore
theoretical aspects of the transmission dynamics for superinfec-
tion (strains or diseases never co-exist in a host) [2-4] and for
co-infection (diseases can co-exist in the host) [5-15]. Most of
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the co-infection models, for simplicity, do not allow simulta-
neous infection [5]. Owing to the growing empirical evidence
of simultaneous infection (see, for example, [16-20]), which is
now a major public health concern [16] and affects the epidemi-
ology [21] and evolution [22] of infectious diseases, Zhang et
al. [14, 15, 24] recently developed models which include si-
multaneous infection. These models are only suitable to com-
pletely curable diseases such as influenza. Alizon [5] studied
the effect of co-infection where parasites compete. Of recent,
some mathematical models for HIV/AIDS and HCV separately,
are formulated and analyzed to explore impacts of the two dis-
eases, see for example [25-28].

In Dhutta and Gupta [25], a mathematical model is pro-
posed for the dynamics of HIV/AIDS with incorporation of
weak CD4+ T cells. They computed the local stability of the
infection-free and infection equilibria for the model when the
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valuable reproduction number is less than and greater than one
respectively. Furthermore, using Lyapunov’s second method
and the geometric approach, they define novel conditions for
the global stability of the equilibria. Further, Maimuna [27]
formulated a mathematical model for the spread of HIV with
an Anti-Retroviral Therapy (ART) intervention. The author es-
tablished that dynamics of the model with no ART depends on
the basic reproduction number. However, sensitivity analysis
revealed that the basic reproduction number decrease with in-
creasing number of infected humans who follow the ART treat-
ment. Jia et al [26], constructed a dynamic model for HCV
transmission and prevalence based on the reported data from
China and determined the most influential parameters to eval-
uate the effectiveness of control measures. Finally, in [28], the
authors applied ideas from the ecology of infectious diseases
to model the transmission of HCV in a population of injection
drug users. The authors suggested that modelling HCV as an in-
directly transmitted infection facilitates a more nuanced under-
standing of disease dynamics. In addition, sensitivity analysis
of parameters on the value of R0 was carried out and parame-
ters related to an interaction with the environmental reservoir
are found to be more influential.

Time delay in epidemiology is mostly incorporated to repre-
sent developmental stages, incubation period or wining of im-
munity [29, 30]. It is an important component that cannot be
neglected as it affects the dynamics of models causing insta-
bilities of equilibria resulting in Hopf bifurcations [32, 31, 33].
In addition, an important threshold value (the basic reproduc-
tion number), as can be seen later in this article, is expressed
in terms of time delay [34, 30, 35]. Many delay models of
HCV/hepatitis B virus (HBV) have been presented in the litera-
ture to explore the effects of delay as incubation period. Baner-
jee et al. [36] presented an intracellular time delay model for
hepatitis C virus which has shown that the delay doesn’t affect
the stability of steady-state, however, destabilized the infected
equilibrium with resulting in Hopf bifurcation. Gourley et al.
[37] considered the dynamical properties of HBV - delayed
model with standard incidence formulation. They realized that
the infected steady-state, expressed in terms of delay, is glob-
ally stable regardless of the time delay length. In [33], Zhao and
Xu presented a delay HCV model using Beddigton-DeAngels
formulation and obtained global stabilities of equilibria when
the threshold parameters satisfy certain conditions.

In this study, we begin by developing a model using delay
differential equation for HIV and HCV co-infection which in-
cludes simultaneous transmission from person-to-person. Un-
like in [5, 14, 15, 24], we introduce delay in order to capture the
incubation periods of both HIV and HCV infections.

In this research, the model is presented in Section 2 while
the analysis is given in Section 3 . In Section 4, we present
illustrative graphs for the dynamical properties of the model.
Lastly, conclusion and summary of our findings are reported in
Section 5.

2. Model Formulation

The total human population at time t, N(t), is divided into
four different classes of healthy (susceptible, (S (t))), HIV-only
infected individuals (IH(t)), HCV-only infected individuals (IC(t)),
individuals simultaneously infected with both HIV and HCV
(IHC(t)), so that

N(t) = S (t) + IH(t) + IC(t) + IHC(t).

The susceptible population (S (t)) is increased by the recruit-
ment of people into the community at a constant rate Π (all
newly-recruited individuals are assumed to be susceptible to
both infections) and by recovery from HCV (at a rate ψ). The
population is decreased by infection with HIV only (at a rate
λH) or HCV only (at a rate λC) or simultaneous infection with
HIV and HCV (at a rate λHC) (see, for instance, [19, 17] and ref-
erences therein for the biology). However, the infections with
HIV and HCV do not occur as soon as the infectives get into
contact with the susceptible individuals. Rather, there are time
lapses or delays, representing the latent periods, in which the
infectives progress to fully infectious people. Thus we have
IH(t − τ1)e−µτ1 representing the HIV only infectives that can
only infect after the elapse of τ1, (the latent period for HIV)
and e−µτ1 , the survival probability over the latent period. Simi-
larly, IC(t − τ2)e−µτ2 represent the HCV only infectives that can
infect after the elapse of τ2, (the latent period for HCV), e−µτ2 is
the survival probability for natural death over the latent period.
Lastly, IHC(t − τ3)e−µτ3 stand for the HIV and HCV infectives
that can infect after the elapse of τ3, (the latent period for simul-
taneous infection of HIV and HCV), while e−µτ3 is the survival
probability over the latent period. Thus,

λH =
βH

[
IH(t − τ1)e−µτ1 + ηIHC(t − τ3)e−µτ3

]
N(t)

,

λC =
βC

[
IC(t − τ2)e−µτ2 + ηIHC(t − τ3)e−µτ3

]
N(t)

and

λHC =
βHC IHC(t − τ3)e−µτ3

N(t)
.

(1)

In (1), βH , βC and βHC represent the effective contact rates
for HIV, HCV and simultaneous HIV/HCV infections, respec-
tively. The parameter η > 1 accounts for the assumed increase
in infectiousness of dually-infected individuals due to high im-
munosuppression caused by the simultaneous infection of HIV
and HCV, compared to singly-infected with HIV or HCV. For
mathematical simplification we assume that τ1 = τ2 = τ3 = τ.

The susceptible population further decreased by natural death
(at a rate µ; natural death occurs in all compartments at the same
rate).

dS
dt

= Π + ψIC − (λH + λC + λHC) S (t) − µS (t). (2)

The population of individuals infected with HIV-only (IH)
is generated by HIV infection following the effective contact
(at the rate λH) and by dually-infected individuals (IHC) recov-
ered from HCV (at a rate κψ; where the modification parameter
0 < κ < 1 models the reduced likelihood of dually-infected
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person to recover from HCV, in comparison to those infected
with HCV only). It is decreased by HCV infection at rate λC ,
HIV-related death at rate δC and natural death.

dIH

dt
= λHS + κψIHC − θ1λC IC − (µ + δH)IH . (3)

The population of individuals infected with HCV-only (IC)
is generated by HCV infection (at the rate λC). It is decreased
by HIV infection at rate λH), recovery from HCV at rate ψ,
HCV-related death at rate δH and natural death.

dIC

dt
= λCS − θ2λH IC − (ψ + µ + δC)IC . (4)

The class of individuals simultaneously infected (IHC) is
generated by HIV and HCV simultaneous infections at rate λHC ,
by HIV-only infected individuals (IH(t)) who are HCV infected
at rate θ1λC and by HCV-only infected individuals (IC(t)) who
are HIV infectious at rate θ2λH , where the parameter θi ≥ 1 i =

1, 2 captures the fact that singly-infected individuals have weak
immune-system (due to illness) compared to wholly-susceptible
individuals. The population suffers death due to the co-infection
of both diseases (at a rate δHC).

dIHC

dt
= λHCS + θ1λC IH + θ2λH IC − (κψ + µ + δHC)IHC (5)

The following system of equations describes the model based
on the aforementioned assumptions and notations while the pa-
rameters are presented in Table 1:

dS
dt

= Π + ψIC(t) − (λH + λC + λHC) S (t) − µS (t),

dIH

dt
= λHS (t) + κψIHC(t) − θ1λC IH(t) − K1IH(t),

dIC

dt
= λCS (t) − θ2λH IC(t) − K2IC(t),

dIHC

dt
= λHCS (t) + θ1λC IH(t) + θ2λH IC(t) − K3IHC(t),

(6)

with initial data

S (t) = φ1(t) ≥ 0, IH(t) = φ2(t) ≥ 0, IC(t) = φ3(t) ≥ 0,
IHC(t) = φ4(t) ≥ 0, for t ∈ [−τ, 0],

(7)

where φ1(t), · · · , φ4(t) are continuous functions on the interval
[−τ, 0] and K1 = µ + δH , K2 = ψ + µ + δC , K3 = κψ + µ + δHC .

2.1. Basic properties

In this part, we present results for basic qualitative proper-
ties of the model as follows.

Theorem 1. The solution (S (t), IH(t), IC(t), IHC(t)) of the model
(6), with initial data (7), exists for all time, t > 0 and is unique.
Furthermore, the solution is nonnegative for all t > 0.

Proof. For existence and uniqueness of solution, we start as
follows: Let X(t) = (S (t), IH(t), IC(t), IHC(t)). The system (6),
can be represented as

dX
dt

= f (t, Xt),

where Xt(θ) = X(t + θ), f is Lipschitz and continuous in X. It
follows from Theorems 2.1, 2.3 in [38] that the model (6) has a
unique solution (S (t), IH(t), IC(t), IHC(t)) satisfying the initial
data (7).

The positivity of solution is proved by the method of con-
tradiction as shown below:

Suppose the conclusion is not true. Under the given ini-
tial function, there exists a time, t1 ∈ [0,+∞) where S (t) will
changes sign, at least once, so that S (t) > 0 for all t ∈ (0, t1),
S (t1) = 0 and S (t) < 0 for t > t1. Furthermore, IH(t) >
0, IC(t) > 0, IHC(t) > 0 for t ∈ (0, t1);

or a time t2 such that IH(t) > 0 for all t ∈ (0, t2), IH(t2) = 0
when S (t) > 0, IC(t) > 0, IHC(t) > 0 for t ∈ (0, t2);

or a time t3 such that IC(t) > 0 for all t ∈ (0, t3), IC(t3) = 0
when S (t) > 0, IH(t) > 0, IHC(t) > 0 for t ∈ (0, t3);

or a time t4 such that IHC(t) > 0 for all t ∈ (0, t4), IHC(t4) = 0
when S (t) > 0, IH(t) > 0, IC(t) > 0 for t ∈ (0, t4).

For the first case, consider the first equation in (6), thus

dS
dt

(t1) = Π + ψIC(t1) − (λH + λC + λHC) S (t1) − µS (t1),

= Π + ψIC(t1), hence

S (t1) = S (θ)
∫ t

0
exp (Π + ψIC(t1))du,

> 0.

This is a contradiction to the earlier assumption that S (t1) = 0.
Therefore, t1 doesn’t exists, hence S (t) > 0 for all t > 0.

Similarly for the second argument, consider the second equa-
tion in (6):

dIH(t2)
dt

= λHS (t2) + κψIHC(t2) − θ1λC IH(t2) − K1IH(t2),

= λHS (t2) + κψIHC(t2), hence

IH(t1) = IH(θ)
∫ t

0
exp (λHS (t2) + κψIHC(t2))du,

> 0.

This also contradicts the earlier assumption that IH(t2) = 0.
Therefore, there is no such time t2 exists. Hence IH(t) > 0 for
all t > 0.
Similar arguments can be applied to other two equations to
show that IC > 0 and IHC > 0 for all t > 0. �

Theorem 2. The biologically-feasible region Ω is positively-
invariant for the model (6), where

Ω =

{
(S , IH , IC , IHC) ∈ R4

+ : S + IH + IC + IHC ≤
Π

µ

}
.
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Table 1: Table 1: Description of model (6) parameters

Parameter Interpretation
Π Recruitment rate of susceptible humans by birth
ψ Recovery rate of HCV
λH HIV-only Infection rate
λC HCV-only Infection rate
λHC HIV and HCV simultaneous infection rate
τ1, τ2 Latent period for HIV, HCV respectively
βH Contact rate for HIV-only infection
βC Contact rate for HCV-only infection
βHC Contact rate for HIV and HCV simultaneous infection
η > 1 Assumed increase in infectiousness of dually infected to single infection
0 < κ < 1 Modification parameter for reduced dually infected to single infection
µ Natural death rate in all classes
δH , δC , δHC HIV, HCV, HIV/HCV induced death rates
θ1 ≥ 1, θ2 ≥ 1 Modification parameters for singly-infected to wholly susceptibles

Proof. Adding the equations in (6) gives

dN(t)
dt

= Π − µN(t) − [δH IH(t) + δC IC(t) + δHC IHC(t)], (8)

so that,

dN(t)
dt

≤ Π − µN(t), (9)

with positivity of IH , IC , IHC . It follows from (9), using Gron-
wall lemma [39], that

N(t) ≤ N(0)e−µ(t) +
Π

µ

[
1 − e−µ(t)

]
.

So that, if N(0) ≤ Π
µ

, then N(t) ≤ Π
µ

. Therefore, Ω is positively
invariant.

�

3. Existence and stability of equilibria

At equilibrium, equations in (6) are equated to zero. In the
absence of diseases, the DFE is obtained to be

E0 = (S ∗, I∗H , I
∗
C , I

∗
HC) =

(
Π

µ
, 0, 0, 0

)
. (10)

It should be noted that at equilibrium, IH(t−τ) = IH(t) = I∗H = 0,
IC(t − τ) = IC(t) = I∗C = 0, and IHC(t) = IHC(t − τ) = I∗HC = 0.

However, when there are diseases in the community, IH(t −
τ) = IH(t) = I∗∗H , IC(t − τ) = IC(t) = I∗∗C and IHC(t) = IHC(t −
τ) = I∗∗HC . Hence the following gives the implicit values for the
endemic equilibrium:

E∗∗ = (S ∗∗, I∗∗H , I
∗∗
C , I

∗∗
HC), (11)

where

S ∗∗ =
Π + ψI∗∗C

λ∗∗H + λ∗∗C + λ∗∗HC + µ
, I∗∗H =

λ∗∗H S ∗∗ + κψI∗∗HC

θ1λ
∗∗
C + K1

,

I∗∗C =
S ∗∗λ∗∗C

θ2λ
∗∗
H + K2

, I∗∗HC =
λ∗∗HC + θ1λ

∗∗
C I∗∗H + θ2λ

∗∗
H I∗∗C

K3
,

λ∗∗H =
βHe−µτ

[
I∗∗H + ηI∗∗HC

]
N∗∗

, λ∗∗C =
βCe−µτ

[
I∗∗C + ηI∗∗HC

]
N∗∗

,

and λ∗∗HC =
βHCe−µτI∗∗HC

N∗∗
.

(12)

The local asymptotic stability of a given equilibrium of the
model (6), is determined by linearizing the system about the
equilibrium point [40, 41], and showing that all the roots of
the transcendental polynomial have negative real parts. Thus
linearizing the system (6) about the following variables:
S (t), IH(t), IC(t), IHC(t), S (t − τ), IH(t − τ), IC(t − τ), IHC(t − τ)
yields


dŜ (t)

dt
dÎH (t)

dt
dÎC (t)

dt
dÎHC (t)

dt

 = J



Ŝ (t)
ÎH(t)
ÎC(t)

ÎHC(t)
Ŝ (t − τ)
ÎH(t − τ)
ÎC(t − τ)

ÎHC(t − τ)


, (13)

where Ŝ (t) = S (t) − S ∗, ÎH(t) = IH(t) − I∗H , ÎC(t) = IC(t) − I∗C ,
ÎHC(t) = IHC(t) − I∗HC ,

J =
[

J1 J2
]
,

and

J1 =


a1 a2 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

 ,
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J2 =


0 −

βHe−µτS
N −

βCe−µτS
N −

e−µτ(βHη+βCη+βHC )S
N

0 βHe−µτS
N −

θ1βCe−µτIH
N

e−µτ(βHηS−θ1βCηIH )
N

0 −
θ2βHe−µτIC

N
βCe−µτS

N
e−µτ(βCηS−θ2βHηIC )

N
0 θ2βHe−µτIC

N
θ1βCe−µτIH

N
e−µτ(βHCS +θ1βCηIH+θ2βHηIC )

N

 ,
with
a1 = a2 − (λH + λC + λHC + µ), a2 = (λH + λC + λHC) S

N , a3 =

−(βHη + βCη + βHC − λH − λC − λHC) S
N , a4 = −λH

S
N + λH +

θ1λC
IH
N , a5 = −λH

S
N − θ1λC + θ1λC

IH
N − K1, a6 = −λH

S
N +

θ1λC
IH
N , a7 = a6 + βHη

S
N − θ1βCη

IH
N + κψ, a8 = a9 + λC , a9 =

−λC
S
N +θ2λH

IC
N , a10 = a9+θ2λH , a11 = a9+βCη

S
N−θ2βHη

IC
N , a12 =

λHC
S
N +λHC−θ1λC

IH
N −θ2λH

IC
N , a13 = −λHC

S
N +θ1λC−θ1λC

IH
N −

θ2λH
IC
N , a14 = λHC

S
N + θ2λH − θ1λC

IH
N − θ2λH

IC
N and a15 =

−λHC
S
N − θ1λC

IH
N + θ1βCη

IH
N + θ2βHη

IC
N + βHC

S
N + θ2λH

IC
N − K3.

Assuming X̂(t) = Dezt, where X̂(t) = (Ŝ , ÎH , ÎC , ÎHC), is a
solution with D = (d1, ...d4), be constants and z is a complex
number. Equation (13) can be express as:[

J1 + e−zτJ2
]

Ĵ = 0,

where Ĵ = [d1ezt d2ezt d3ezt d4ezt]T and 0 is 4 × 1 zero matrix.
Therefore for nonzero solution, the transcendental equation at
any equilibrium is given by:

det(J1 + e−zτJ2) = 0. (14)

However, before we determine the stabilities of equilibria,
it is important to calculate the basic reproduction number of the
model, denoted by R0. It can be recall that, susceptible hu-
mans acquire HIV, HCV infections and HIV-HCV simultane-
ously following effective contact with infected individuals with
these diseases. It follows that, the number of HIV infectives
generated by an infected human (near the DFE) is given by
the product of the infection rate ( βH

N∗ ), the probability that an
infected human survives natural death (e−µτ) and the average
duration of stay in the infected HIV class ( 1

K1
). Hence, the aver-

age number of HIV infections generated by infected individual
is given by

RH =
βHe−µτS ∗

K1N∗
. (15)

Similarly, the number of HCV infections generated by an
infected individual with HCV (near the DFE), is given by the
product of the infection rate ( βC

N∗ ), the probability that an in-
fected human survived natural death (e−µτ) and the average du-
ration of stay in the infected HCV class ( 1

K2
). Therefore, the

average number of HCV infected generated by infectious indi-
vidual is given by

RC =
βCe−µτS ∗

K2N∗
. (16)

Furthermore, the number of HIV-HCV simultaneous infec-
tions generated by an infected individual with the two diseases
(near the DFE), is given by the product of the infection rate of
infected HIV-HCV ( βHC

N∗ ), survival probability (e−µτ) and the av-
erage duration of stay in the class IHC ( 1

K3
). Thus, the average

number of HIV-HCV infections generated by infected individ-
ual is given by

RHC =
βHCe−µτS ∗

K3N∗
. (17)

Finally, the maximum of the three sub thresholds in (15), (16)
and (17) gives the value of R0, i.e. the average number of new
infections generated by infected individuals (with HIV, HCV
and HIV-HCV) is given by

R0 = max
{
βHe−µτ

K1
,
βCe−µτ

K2
,
βHCe−µτ

K3

}
,

= max{RH ,RC ,RHC},

(18)

noting that at DFE, S ∗ = N∗ = Π
µ

.
It is worth stating here that, the formulation of R0 in (18)

is derived from the procedure in [12] used in a model that have
more than one strains/diseases, to be the maximum of various
sub thresholds for the infections. Moreover, similar approaches
are also applied in [46, 42].

3.1. Local asymptotic stability of DFE
At DFE, we claim the stability properties as follows:

Theorem 3. The DFE E0, is locally asymptotically stable (LAS)
in Ω whenever R0 < 1 for all τ ≥ 0 and unstable if R0 > 1.

Proof. At DFE, the transcendental equation (14) is reduced
to

G(z) = (z + µ)(z + K1 − βHe−τ(z+µ)) (19)
×(z + K2 − βCe−τ(z+µ)) (20)
×(z − βHCe−τ(z+µ) + K3) = 0. (21)

Expanding equation (19), we have

G(z) =z4 + P1z3 + P2z2 + P3z + P4

= e−zτ[Q1z3 + Q2z2 + Q3z + Q4],
(22)

where

P1 = µ + K1 + K2 + K3,

P2 = [µK1 + (µ + K1)K2 + µ + K1 + K2]K3(1 − RHC),
P3 = [(µ + K1)K2 + µK1 + µK1K2]K3(1 − RHC),
P4 = µK1K2K3(1 − RHC),
Q1 = (βH + βC + βHC)e−µτ,
Q2 = [µ(K2βH + βC) + K1βC(1 − RH)e−zτ + βH

+ βC](1 − RHC)K3e−µτ,

Q3 = [µK1βC(1 − RH) + (K2 + 1)βH

+ K2βH(1 − RC)e−zτ](1 − RHC)K3e−µτ,

Q4 = µe−µτ[K1βC + K2βH(1 − RC)e−zτ]K3(1 − RHC).

First we determine the stability of E0 when τ = 0. From (19),
when τ = 0, it is obvious that the eigenvalue −µ is negative,
while βH − K1, βC − K2 and βHC − K3 are negative whenever
RH < 1,RC < 1 and RHC < 1 or in general if R0 < 1. Hence,
E0 at τ = 0 is stable when R0 < 1.
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Further, we determine the stability of E0 when τ > 0. Here
we investigate whether there is a root z = iy of (19), y ∈ R+,
that may cross the imaginary axis and cause stability switches.
Substituting z = iy in (19) or equivalently in (22), we find y that
must satisfy

G1(y) =| P1(iy) |2 − | Q1(iy) |2, (23)

where P1(iy) = (y4 − P1iy3 − P2y2 + P3iy + P4), Q1(iy) =

(−Q1iy3 −Q2y2 + Q3iy + Q4). However, (22) is implicit in e−zτ,
therefore the process of separating real, imaginary parts and
squaring (23) may not lead to explicit expression in y. Without
loss of generality, one can see from (19) that

G(0) = µK1K2K3[(1 − RH)(1 − RC)(1 − RHC)] > 0

if R0 < 1 and G(y) = +∞ as y → ∞. Therefore, when τ > 0,
equation (19) has no positive root on (0,+∞), hence the DFE
is LAS for all τ ≥ 0 if R0 < 1 and unstable if R0 > 1. The
biological implication of this result is that the diseases can be
completely eliminated whenever the initial population is close
to the basin of attraction of the DFE. �

3.2. Global asymptotic stability of DFE

To ensure complete eradication of the diseases in the popu-
lation irrespective of the population size started with, we present
and prove the following result.

Theorem 4. The DFE E0, is globally asymptotically stable (GAS)
in Ω whenever R0 < 1 for all delay τ ≥ 0.

Proof. The global properties can be established using a Com-
parison Theorem [23] and the approach in [43]. The equations
of the three infected components in model (6) can be expressed
using matrix-vector form as

dIH (t)
dt

dIC (t)
dt

dIHC (t)
dt

 = (F −V1)

 IH(t − τ)
IC(t − τ)

IHC(t − τ)

 −V2

 IH(t)
IC(t)

IHC(t)



−

(
1 −

S
N

)  βHe−µτ 0 βHη
0 βCe−µτ βHη
0 0 βHC


 IH(t − τ)

IC(t − τ)
IHC(t − τ)

 ,
(24)

where F =

 βHe−µτ 0 0
0 βCe−µτ 0
0 0 βC

 ,
V1 =

 0 0 −κψ
0 0 0
0 −θ1λC −θ2λH

 and

V2 =

 K1 + θ1λC 0 0
0 K2 + θ2λH 0
0 0 K3


are the matrices for new infection terms and transitions re-

spectively.

Since S ≤ N at every time t in Ω and by letting V = V1 +

V2, it follows from (24) that
dIH (t)

dt
dIC (t)

dt
dIHC (t)

dt

 ≤ (F −V)

 IH(t)
IC(t)

IHC(t)

 . (25)

It can be shown that the spectral radius of FV−1 gives the value
of R0 in (18). Furthermore, since the eigenvalues of the matrix
(F − V) have negative real parts if R0 < 1 [43, 44], conse-
quently, the linearized differential system (25) is stable when-
ever R0 < 1. As a result,

lim
t→∞

(IH(t), IC(t), IHC(t))→ (0, 0, 0). (26)

Therefore, from the first equation in (6) and substituting IH(t) =

IC(t) = IHC(t) = 0 from (26), for any t, it follows that

dS
dt

= Π − µS (t), (27)

so that

S (t) =
Π

µ
. (28)

Thus,

lim
t→∞

(S (t), IH(t), IC(t), IHC(t)) =

(
Π

µ
, 0, 0, 0

)
. (29)

By LaSalles invariance principle [45] E0 is the largest in-
variance set in Ω, hence is GAS whenever R0 < 1. �

3.3. Stability analysis of endemic equilibrium

Here, due to the complexity of transcendental equation, we
give conditions for stability of any unique endemic equilibrium
(EE), whenever it exists.

From (12) the transcendental equation (14) is simplified to

G2(z)= det


z − a1 −a2 +

βH e−µτS
N −a2 +

βC e−µτS
N −a3

−a4 z − a5 −
βH e−µτS

N −a6
θ1βC e−µτ IH

N a7

−a8 −a9 +
θ2βH e−µτ IC

N z − a10
βC e−µτS

N a11

a12 −a13
θ2βH e−µτ IC

N −a14 −
θ1βC e−µτ IH

N z − a15

 = 0,

= P2(z) + Q2(z)e−zτ = 0, (30)

where P2(z) and Q2(z) are polynomials of degree 4 and 3
respectively, with real coefficients and hence have no common
imaginary roots whenever R0 > 1.

Furthermore, substituting z = iy, as purely imaginary root,
we define

G2(y) =| P2(iy) |2 − | Q2(iy) |2, (31)

which is a polynomial of degree 8 whose leading coefficient is
positive. Suppose (31) has at least zero positive root, then the
following stability result for E∗∗ can therefore be stated

Theorem 5. If the polynomial G2(y) has
(a) no positive root, then E∗∗ is locally asymptotically stable for
all delays τ ≥ 0 whenever R0 > 1.

6
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(b) at least one simple positive root, then as delay increases
there will be n ∈ Z+ number of stability switches for fixed
parameter values and the endemic equilibrium E∗∗ is locally
asymptotically stable for 0 ≤ τ < τ∗ if R0 > 1, here,

τ∗ =
cot−1

(
−
P2reQ2re+P2imQ2im
−P2reQ2im+P2imQ2re

)
y

and the subscripts represents the real and imaginary parts of
P2 and Q2.

3.3.1. Interior endemic equilibrium
Here, we consider one of the interior equilibria with simul-

taneous infection of HIV and HCV only. In the absence of HIV
and HCV only infections, equation (12) will be reduced to

E∗∗3 = (S ∗∗, 0, 0, S ∗∗(RHC − 1)), where

S ∗∗ =
ΠRHC

e−µτβHC(RHC − 1) + µRHC
, (32)

provided RHC ,
e−µτβHC
µ+e−µτβHC

. Similarly, the transcendental equa-
tion (30) is simplified to be

G2(z) = P2(z) − Q2(z)e−zτ, where

P2(z) = z2 − (p1 + p4)z + (p1 p4 − p2 p3);
Q2(z) = −p5z + p1 p5 − p3 p5,

(33)

with

p1 = −
µK2

3 (RHC − 1)2

e−µτβHC
− µ;

p2 = −
µK3(RHC − 1)

e−µτβHC
;

p3 =
µK2

3 (RHC − 1)2

e−µτβHC
;

p4 = −
µK3(RHC − 1)

e−µτβHC
− K3;

p5 = K3.

When τ = 0, (33) yields

G2(z) = z2 − (p1 + p4 + p5)z
+ (p1 p4 − p2 p3) + (p1 p5 + p3 p5),

(34)

so that after simplification, we have

− (p1 + p4 + p5) =
K3(RHC − 1)

βHC

× [1 + K3(RHC − 1)] + µ,

(p1 p4 − p2 p3) + (p1 p5 + p3 p5) = δHC K2
3 (RHC − 1)2

+ µK3(RHC − 1).

(35)

From (35), it can be seen that all the coefficients of G2(z) are
positive whenever RHC > 1. Therefore, G2(z) is stable (all the
roots have negative real parts).

Furthermore, if τ > 0, we let z = iy be the root of G2(z) in
(34) then from (31), separating real, imaginary parts and squar-

ing gives

F2(y) = y4 + (−2A22 + A2
11 − A2

33)y2 + A2
22 − A2

44 = 0, (36)

where A11 = p1 + p4, A22 = p1 p4 − p2 p3, A33 = p5 and
A44 = p1 p5 + p3 p5. Here,

− 2A22 + A2
11 − A2

33 =
K2

3 (RHC − 1)4

e−2µτβ2
HC

+
2µK3(RHC − 1)2

e−µτβHC

+
2K3

3 (RHC − 1)2

e−2µτβ2
HC

+
2µK3

3 (RHC − 1)
e−µτβHC

+
K2

3 [I∗∗2HC − 1]
S ∗∗2

+ µ2 + K3,

(37)

and

A2
22 − A2

44 = (A22 − A44)(A22 + A44),

=

[
δHC(RHC − 1)2

e−µτβHC
+ K3(RHC − 1) + µ + µK3

]
[

K3(RHC − 1)2

e−µτβHC
+
µK3(RHC − 1)

e−µτβHC
+ 2µK3

]
.

(38)

From (37) and (38), ifRHC > 1, so also I∗∗2HC > 1, thereforeF2(y)
in (36) will have no positive root y that can cross the imaginary
root as the delay is increased. Hence, the interior equilibrium
E∗∗3 is absolutely stable for all delay, τ ≥ 0. Therefore, we claim
the following result:

Theorem 6. The endemic equilibrium E∗∗3 , (32), is locally asymp-
totically stable for any delay, τ ≥ 0 when RHC > 1.

3.4. Analysis for impact of delay

The impact of the time delay is analyzed using threshold
approach to show whether increase (decrease) of the delay will
have effect on the infectivity of the two diseases in the com-
munity. We use the threshold quantity, R0, basic reproduction
number,

R0 = max{RH ,RC ,RHC}. (39)

as a function of the delay τ. Since R0 = 1 is a threshold value
for the infection in the population, we determine the critical
delay value τcrit above (below) which the diseases have effect
as follows:

βHβCβHCe−3µτ

K1K2K3
= 1,

e−3µτ =
K1K2K3

βHβCβHC
,

τ = τcrit =
ln

(
K1K2K3
βHβCβHC

)
−3µ

.

(40)
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Figure 1: Numerical simulations of model (6), with parameter values from Table 2 with (a) the GAS of DFE, with βH = 0.002 = βC , βHC = 0.0025, τ = 3. In (b)
and (c) βH = 0.002 = βC , βHC = 0.0025, τ = 1 and τ = 10 respectively (d) βH = 0.04 = βC , βHC = 0.045 and τ = 50.

Table 2: Baseline values for the parameters of model Eq. 6

Parameter Baseline values References
Π 300 day−1 Assumed
ψ 6.8 × 10−5 day−1 [46]
βH Variable Assumed
βC Variable Assumed
βHC Variable Assumed
η 2 Assumed
κ 0.013 Assumed
µ 1

70 day−1 [46]
δH 9.12 × 10−4 day−1 [47]
δC 9.5 × 10−5 day−1 [46]
δHC 9.32 × 10−4 day−1 Assumed
θ1, θ2 2, 2 Assumed

8
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Figure 2: Simulations of model (6), with parameter values as shown in Table
2, in (a) showing no oscillation with βH = 0.02 = βC , βHC = 0.025, τ = 30
(b) displaying the interior equilibrium, with βH = 0.0002 = βC , βHC = 0.025,
RHC = 1.62, while in (c) the effect of time delay on the infectivity of the viruses
with βH = 0.04 = βC , βHC = 0.045, using time delays τ = 1, 15, 25 and τ = 35.

The rate of change of R0 with respect to τ is given by

∂R0

∂τ
=

∂

∂τ
max (RH ,RC ,RHC) ,

=
∂

∂τ

(
βHβCβHCe−3µτ

K1K2K3

)
,

= −3µ
βHβcβHCe−3µτ

K1K2K3
.

(41)

Since the derivative in (41) is negative, it indicates that R0
decreases with increase of the time delay τ and vice varsa. This
implies that, increasing the delay beyond the threshold value,
with fix parameter values, will results in decreasing the number
of infected individuals with the two diseases and those that are
simultaneously infected. This result can be summarized as

Proposition 1. The increase in time delay in the model (1) will
reduces the infectivity of the two diseases whenever the delay is
greater than the threshold value τcrit.

4. Numerical simulations

Numerical experiments are conducted to illustrate the dy-
namics as described in theoretical results and display the impact
of delay in the model. Figure 1 (a) depicts the global asymp-
totic stability for the DFE using parameter values from Table 2,
except for βH = βC = 0.002, βHC = 0.0025, τ = 3 and different
initial conditions so that R0 = 0.16. It can be seen that the sus-
ceptible and total populations of infectives converges to Π

µ
and

zero asymptotically, respectively. In Figures 1 (b)–(d), the local
stability of endemic equilibrium is displayed using values from
Table 2 except for in (b) τ = 1, βH = βC = 0.02, βHC = 0.025,
(c) τ = 10 βH = βC = 0.002, βHC = 0.0025, and (d) τ = 30 ,
βH = βC = 0.04, βHC = 0.045, as proved in Theorem 5(a), so
that R0 = 1.60, R0 = 1.42 and R0 = 1.45 respectively. In Fig-
ure 2 (a), it is shown that the length of delay (τ = 30) doesn’t
cause any oscillation in the stability of the endemic equilibria
as observed in some delay models. Figure 2 (b), illustrates the
stability if one of the interior equilibrium, E∗∗3 using parameter
values in Table 2 while βH = βC = 0.0002, βHC = 0.025, so that
RHC = 1.62. In this case, one or simultaneous infection will oc-
cur. The effect of delay is illustrated in Figure 2 (c) to support
Proposition 1 in which increasing the delay, τ from 1, 15, 25 to
35, caused remarkable decrease in the total number of infected
individuals with HIV and HCV.

5. Concluding remarks

In this work, a delay model of simultaneous infection of
HIV and HCV is formulated and dynamically analyzed. The
novelty (results) of the research is summarized and discussed
below:

(i) Basic properties (existence, boundedness and positivity
of solution)of the model are stated and proved as Theo-
rems 1 and 2.

9
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(ii) The basic reproduction threshold is systematically ob-
tained as the maximum of subthreshold values of the in-
dividual viruses; a threshold parameter above which the
viruses will persist in the population.

(iii) A disease free equilibrium is found to be globally asymp-
totically stable when the basic reproduction threshold is
less than unity for any length of time delay. Under this
case, the diseases will die out in the population whenever
the basic reproduction number is brought and maintained
below one irrespective of the initial populations started
with. This is shown in Figure 1(a).

(iv) However, if the basic reproduction threshold is greater
than unity, endemic equilibrium exists which is shown to
be locally asymptotically stable for all values of the incu-
bation period (delay) as shown in Figures 1(b – d). This
implies that whenever the initial population is within the
basin of attraction of the endemic equilibrium and the ba-
sic reproduction number is greater than one, the diseases
will persist in the population no matter the length of de-
lay.

(v) Increasing the length of time delay is observed to be de-
creasing the number of cumulative infectious people when
the delay is above a critical value. It is worth remarking
here that although the time delay has no effect on the sta-
bility of equilibria however, it do affect the infectivity of
the viruses as shown in the formulation of basic repro-
duction number. The implication of this result is, if the
incubation period can be extended by say intervention,
the number of infected people will be reduced.

(vi) Numerical simulations, using data from the literature are
used to illustrate our results.
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