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Abstract

Quadrant Interlocking Factorization (QIF), an alternative to LU factorization, is suitable for factorizing invertible matrix A such that det(A) , 0.
The QIF , with its application in parallel computing, is the most efficient matrix factorization technique yet underutilized. The two forms of
QIF among others, which are not only similar in algorithm but also in computation, are WZ factorization and WH factorization yet differs in
applications and properties. This review discusses both the old form of QIF, called WZ factorization, and the latest form of QIF, called WH
factorization, with an example and open questions to further the studies between the two factorization techniques.
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1. Introduction

Over a century, factorization of a square matrix has been
the research interest of matrix theorists [1]. Many factorization
techniques were deployed such as LU , QR and Cholesky fac-
torization. LU factorization is a well-known method with high
accuracy deployed in enigma machine during World War I. LU
factorization was introduced to solve square system of linear
equations by inverting a matrix with underlying Gaussian elim-
ination procedure [2]. This feature combined with the low com-
putational complexity and partial pivoting techniques makes
LU-factorization extremely efficient. Without a proper order-
ing in the matrix, LU factorization may fail to occur. The flaw

∗Corresponding author tel. no: +60 163725820
Email address: dlaljumabashir@yahoo.com (Dlal Bashir)

can be removed by reordering the rows of B so that the first ele-
ment of the permuted matrix is nonzero [3]. Thus, a proper per-
mutation in rows or columns is sufficient for the LU factoriza-
tion to be numerically stable [4, 5]. LU factorization is known
to be implemented in LAPACK library to exploit the standard
software library architectures [6]. To improve the efficiency
of computation during factorization, an alternative technique to
LU factorization was developed, named Quadrant Interlocking
Factorization - QIF [7]. Factorization of matrix B is difficult to
compute and applying different optimization techniques couple
with parallelism of contemporary computers makes QIF fac-
torization extremely efficient and suitable for parallel comput-
ing. Among others factorization techniques such as LU , QR
and Cholesky decomposition, QIF proves to be the best fac-
torization algorithm in terms of efficiency, parallelization and
accuracy [8, 9].
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2. List of abbreviations and symbols

For the readers to understand this review paper, the symbols
and abbreviation used in the article are given in the sections as
follows:

2.1. List of abbreviations

QIF Quadrant Interlocking Factorization
LU Lower and Upper triangular matrices
Q Orthogonal matrix
LAPACK Linear Algebra Package
PIE Parallel Implicit Elimination
GE Gaussian elimination
OpenMP Open Multi-Processing
GPU Graphics processing unit
CUDA Compute Unified Device Architecture)
EDK HW/SW Embedded Development Kit hardware/software
P Permutation matrix
AMD Advanced Micro Devices
Intel Integrated electronics.
MATLAB Matrix laboratory
GGH Goldreich-Goldwasser-Halevi encryption scheme

2.2. List of symbols

R The set of real numbers
Det(B) Determinant of matrix B
≥ greater than or equal to
≤ less than or equal to
, Not equal to
BT Transpose of matrix B

n

∑
i=1

Xi The finite sum of spaces

n

∏
i=1

Xi The finite product of spaces

bBc Floor of B
dBe Ceiling of B

||B|| Norm of matrix B
H Hourglass matrix
HT (nz) Total number of nonzero entries in H
HT (z) Total number of zero entries in H
fm Filanz submatrix of H
lim
n→∞

f (n) Limit of a function as n tends to infinity

λ Lambda
G Graph
V Vertex
E Edge
EA(G) Energy of a graph
|B| Modulus of B
F2 Friendship graph
G Mixed hourglass graph
M(G ) Mixed hourglass-adjacency matrix
EM(G ) Mixed energy of a mixed hourglass graph
Ak Number of arcs in G .

3. Quadrant interlocking factorization

Quadrant interlocking factorization (QIF) or butterfly fac-
torization of nonsingular matrix B was coined by Evans and
Hatzopoulos [7]. In 1979, Evans and Hatzopoulos [10, 11] gave
details of the factorization as an alternative to LU factorization
and the avoidance of breakdown of QIF algorithm. The fac-
torization breaks up matrices to structural forms which are then
regrouped and solved as sub-blocks [12]. QIF is known for the
adaptability of its direct method to solve systems of linear equa-
tions. Thus, the factorization gives rise to the use of Parallel
implicit elimination (PIE) for the solution of linear system to
simultaneously compute two matrix elements (two columns at a
time) for parallel implementation, unlike Gaussian elimination
(GE) which computes one column at a time [13]. The stability
of QIF comes from the centro-nonsingular matrix (central sub-
matrices are nonsingular) which is far reliable than any other
type of factorization [8].

3.1. WZ factorization

W -matrix (bow-tie matrix) and Z-matrix exists together in
WZ factorization of nonsingular matrix B [14, 15]. Z-matrix
and W -matrix are well-known as interlocking quadrant factors
of B having butterfly shape of the form

W =

1 ◦
• 1 •
• ◦ 1 ◦ •
• ◦ ◦ 1 ◦ ◦ •
• ◦ • 1 • ◦ •
• • 1 • •
• 1 •
◦ 1


and Z =



• • • • • • • •
◦ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ •
◦ •
• ◦

• ◦ ◦ ◦
• ◦ ◦ ◦ ◦ ◦

• • • • • • • •


such that

B =WZ. (1)

Z-matrix and W -matrix of order n (n≥ 3) are generally defined
as [10, 16]

Z =


(0, ...,0︸   ︷︷   ︸

i−1

,zi,i, ...,zi,n−i+1,0, ...,0)T , i = 1, ...,b (n+1)
2 c;

(0, ...,0︸   ︷︷   ︸
n−i

,zi,n−i+1, ...,zi,i,0, ...,0)T , i = b (n+1)
2 c+1, ...,n

(2)
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W =



(1,0, ...,0︸   ︷︷   ︸
n−1

);

(wi,1, ...,wi,i−1,1,0, ...,0︸   ︷︷   ︸
n−2i+1

,wi,n−i+2, ...,wi,n), i = 2, ...,b (n+1)
2 c;

(wi,1, ...,wi,n−i,0, ...,0︸   ︷︷   ︸
2i−n−1

,1,wi,i+1, ...,wi,n), i = b (n+1)
2 c+1, ...,n−1;

(0, ...,0︸   ︷︷   ︸
n−1

,1).

(3)

In WZ factorization, there are
b n

2−1c

∑
k=1

(n−2k) of 2×2 linear systems to be solved which account for the elements in W -matrix and

Z-matrix [17]. The direct method to solve the linear systems of QIF under the nonsingularity constraint presumed for their deter-
minants solely depends on a conventional method called Cramer’s rule. The unique solution (x1,x2, ...,xn) provided by Cramer’s
rule [18] to the system

Bxi = c, (4)

is

xi =
det(Bi|c)

det(B)
, (5)

where, det(B) , 0, B = (bi, j) 1≤ i, j ≤ n , xi = (x1, ...,xn)
T , c = (c1, ...,cn)

T ; x,c ∈ Rn, B ∈ Rn×n. Bi|c is the matrix obtained
from B by substituting the vector column of c to the ith column of B, for i = 1,2, ...,n.

3.1.1. WZ factorization algorithm
For the WZ factorization, matrix B is nonsingular. However, if central matrix of B is singular then interchange columns or

rows of the matrix by suitable permutation to avoid breakdown of the factorization method, else the factorization breakdown. The
establishment of elements in W -matrix (with 1’s in its main diagonal and 0’s in the antidiagonal), column ith and (n− 1)th are
obtained by solving simultaneous equation via Cramer’s rule which requires matrix B to be successfully updated and this update
changes matrix B to Z-matrix [19, 20]. The matrix update of WZ factorization indicates the most time consuming part of the
factorization. The steps to obtain Z-matrix is as follows:
Step 1: Let B(0) = Z(0)for initial update and obtain the first and last rows of Z-matrix as b(0)1,1 = z(0)1,1, b(0)1,i = z(0)1,i , b(0)1,n = z(0)1,n, b(0)n,1 =

z(0)n,1, b(0)n,i = z(0)n,i , b(0)n,n = z(0)n,n, where i = 2, ...,n− 1. Now, we compute w(1)
i,1 and w(1)

i,n from (n− 2) sets of 2× 2 linear system in
Equation (6) of matrix B using Cramer’s rulez(0)1,1w(1)

i,1 + z(0)n,1w(1)
i,n =−z(0)i,1

z(0)1,nw(1)
i,1 + z(0)n,nw(1)

i,n =−z(0)i,n .
(6)

The values of w(1)
i,1 and w(1)

i,n are put in matrix form as:

W (1) =



1 0 · · · 0 0

w(1)
2,1 1

. . .
... w(1)

2,n
... 0

. . . 0
...

w(1)
n−1,1

...
. . . 1 w(1)

n−1,n
0 0 · · · 0 1


.

Step 2: We update matrix B (let B(1) = Z(1) for the first update) and compute:

Z(1) =W (1)Z0. (7)
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We, therefore, proceed analogously for the inner square matrices of Z(1) of size (n−2) and so on.
Step 3: Next, we compute w(k)

i,k and w(k)
i,n−k+1 from Equation (8) by solving its 2× 2 linear equations using Cramer’s rule, where

k = 1,2, ..., n
2 −1; i = k+1, ...,n− k.z(k−1)

k,k w(k)
i,k + z(k−1)

n−k+1,kw(k)
i,n−k+1 =−z(k−1)

i,k

z(k−1)
k,n−k+1w(k)

ik + z(k−1)
n−k+1,n−k+1w(k)

i,n−k+1 =−z(k−1)
i,n−k+1.

(8)

Then, we put the values of w(k)
i,k and w(k)

i,n−k+1 in a matrix form as:

W (k) =



1

w(k)
k+1,k

. . . w(k)
k+1,n−k+1

...
. . .

...

w(k)
n−1,k

. . . w(k)
n−k,n−k+1

1


.

Step 4: We further compute for kth such successful steps as:

Z(k) =W (k)Z(k−1). (9)

To arrive at the Z-matrix, we let Z(k) = Z. Thus,

Z =



z(0)1,1 z(0)1,2 · · · · · · · · · z(0)1,n−1 z(0)1,n

0
. . .

... · · ·
...

... 0
0 0 z(k−1)

k,k z(k−1)
k,n+1−k 0 0

... · · ·
...

. . .
... · · ·

...

0 0 z(k−1)
n+1−k,k z(k−1)

n+1−k,n+1−k 0 0

0
...

... · · ·
...

. . . 0
z(0)n,1 z(0)n,2 · · · · · · · · · z(0)n,n−1 z(0)n,n


.

A complete one-stage in WZ factorization is when Z(k−1) is computed. However, the factorization requires b (n−1)
2 c stages to

compute all the elements of the matrix W and Z [10]. After the algorithm of WZ factorization is established, the following theorems
were put forward:

Theorem 3.1. Factorization Theorem [8]. Let B∈ Rn×n be a nonsingular matrix that has a unique QIF factorization, then B =WZ
if and only if the submatrices of B are invertible.

Theorem 3.2. [8]. If B ∈ Rn×n is nonsingular matrix, then there exist a row permutation matrix P for QIF to be carried out with
pivoting such that PB =WZ.

Corollary 3.3. [8]. Every symmetric positive definite and strictly diagonally dominant matrix has a QIF.

Theorem 3.4. [21]. Let B be nonsingular tri-diagonal diagonally dominant, then its factored Z-matrix from QIF factorization is
also tri-diagonal diagonally dominant.

Due to its uniqueness, WZ factorization exists for every nonsingular matrix often with pivoting [22, 8]. Pivoting results in
swapping rows or columns in a matrix or by multiplying the matrix with permutation matrix which improves the numerical stability
of WZ factorization [1]. WZ factorization will not fail without pivoting if the matrix is real symmetric, positive definite or diagonally
dominant, see [23, 8, 24]. The matrix norm of WZ factorization is the Frobenius norm given as [25]

‖B−WZ‖F =

√√√√√
 n

∑
i=1

n

∑
j=1
|bi, j−wi, jzi, j|

. (10)

The numerical accuracy
(
−log10

‖B−WZ‖
n·‖B‖

)
of WZ factorization based on the relative error depends on the matrix norms [16]. Thus,

the efficiency of WZ factorization depends on an efficacious use of the memory echelon (processors array). If there is no sufficient
fast memory, then the processor will create waiting time for the data and thereby reducing its efficiency [26].
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3.1.2. Importance of WZ factorization
WZ factorization has been applied in modeling of Markov

chains aside its parallelization usage [27]. WZ factorization
offers parallelization in solving both sparse and dense linear
system to enhance performance using OpenMP, GPU, CUDA
or EDK HW/SW codesign architecture [28, 29, 12]. Then,
Yalamov [24] presented that WZ factorization is faster on com-
puter with a parallel architecture than any other matrix factor-
ization methods. The factorization has been applied in sci-
entific computing - especially in science and engineering, see
[30, 31, 27, 32, 33]. The block WZ factorization is discussed
in [34, 15, 23, 26] where the Z-matrix is divided into r2 block
each of the size s× s and n = r× s.

Theorem 3.5. [26] The block WZ factorization exists if the
matrix B has a strict dominant diagonal.

Z-matrix of even order (also applicable to odd order) can be
partitioned to form structured Zsystem of 2× 2 triangular block
matrices which is defined as

Zsystem =



[
Z1,1 Z1,2

Z2,1 Z2,2

]
if n is even; Z1,1 x1 Z1,2

0 x 0
Z2,1 x2 z2,2

 if n is odd.
(11)

Each block contains n
2 ×

n
2 block size if n is even dimension

while additional column vector, x̃, position at n+1
2 th column of

the matrix if n is odd dimension [26]. This column vector, x̃,
can be further partitioned into x1, x and x2. Then, the Schur
complement of a matrix block in Equation (11) is defined as
follows

Zsystem/Z1,1 = Z2,2−Z2,1Z−1
1,1Z1,2. (12)

Theorem 3.6. [26] If the Zsystem and the matrix Z1,1 are invert-

ible then the matrix
(

Z2,2−Z2,1Z−1
1,1Z1,2

)
is a lower triangular

invertible matrix.

3.1.3. WZ factorization versus LU factorization
WZ factorization proves to be better on Intel processors

than on AMD processors [16]. Even though WZ factorization
and LU factorization have similar computational complexity,
the WZ factorization still shown to be better than LU factor-
ization (except block LU factorization) irrespective of the ver-
sion of MATLAB or the number of processors used [35, 16].
However, for a uniprocessor, WZ factorization does not exhibit
any advantage over LU factorization since every step performed
is in serial [12]. While LU factorization performs elimination
in serial with n− 1 steps, WZ factorization executes compo-
nents in parallel with n

2 steps if n is even or n−1
2 steps if n is

odd. WZ factorization simultaneously computes two matrix el-
ements (two columns at a time), unlike LU factorization which
computes one column at a time [13, 12, 36]. Unlike WZ factor-
ization, LU factorization is not unique but block LU factoriza-
tion with higher diagonal blocks gives similar analytic result as

WZ factorization [37]. For larger matrices, the stimulation time
on the multiprocessor show that the WZ factorization is faster
than LU factorization appears to be 20% for all values of pro-
cessor [38, 39].
Aside not being better than WZ factorization on parallel com-
puter or mesh multiprocessors, LU factorization does not ac-
count for the property of centrosymmetric matrix in its fac-
tors [40]. For sparse matrices, LU and WZ factorization gen-
erate approximately similar number of non-zero elements [41].
Though, LU factorization relies on leading principal submatri-
ces
([

bi j
]k

i,k=1 , l = 1, ...,n
)

whereas WZ factorization relies on

nonsingular central submatrices
([

b jk
]n+1−l

j,k=l , l = 1, ...,
[

n+1
2

])
[15]. Based on the form of matrices, incomplete WZ precondi-
tioning gives better results than the incomplete LU factorization
[26]. Although some parts of the equation in LU factorization
that consist many loops can be parallelized, the WZ factoriza-
tion is uniquely known for its ability to offer parallelization.
Even if WZ factorization and LU factorization are both imple-
mented on OpenMP, the WZ factorization performs better in ex-
ecution time than LU factorization when the number of thread
increases [42, 43].

3.2. WH factorization

Demeure [44] first posited the term hourglass matrix in de-
scribing a matrix derived from factorizing a square matrix via
quadrant interlocking factorization or bowtie-hourglass factor-
ization. It was further elucidated that hourglass matrix is syn-
onymous to Z-matrix which can be partitioned into blocks struc-
tured Z-system [15, 28]. Unfortunately, there are changes in
structure of Z-matrix from WZ factorization which depend on
the type of matrix (Toeplitz, Hankel, Hermitian, centrosym-
metric, diagonally dominant or tridiagonal matrix) being fac-
torized. Nevertheless, Z-matrix may not always imply hour-
glass matrix nor their applications are always indistinguishable.
Consequently, the notion of sameness between hourglass matrix
and Z-matrix was gradually dropped over time without a cogent
reason. Recently, Babarinsa and Kamarulhaili [45] gave metic-
ulous details of hourglass matrix, denoted as (H-matrix), and its
quadrant interlocking factorization by restricting the computed
entries of the factorization to be nonzero in accordance with the
shape of hourglass device.

Definition 3.1. [45] Let H be an hourglass matrix of order
n (n≥ 3), then hourglass matrix is defined as

H =


hi, j 1≤ i≤ b (n+1)

2 c, i≤ j ≤ n+1− i;
hi, j d (n+2)

2 e ≤ i≤ n, n+1− i≤ j ≤ i;
0 otherwise,

(13)

where hi, j ∈ R are strictly nonzero elements.

In other words, hourglass matrix is a nonsingular matrix of
order n (n≥ 3) with nonzero entries from the ith to the (n− i+

5
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1) element of the ith and (n− i+ 1) row of the matrix, other-
wise 0’s, for i = 1,2, ...,b n+1

2 c. To buttress the shape of hour-
glass matrix, Figure 1 illustrates the structural comparison be-
tween the hourglass device and hourglass matrix with nonzero
elements denoted with black dots, otherwise 0’s.

Figure 1. Structural comparison between hourglass device and hourglass ma-
trix.

The factorization algorithm to obtain hourglass matrix is
known as WH factorization. Like the factorization of Z-matrix,
the factorization of hourglass matrix requires W -matrix (see the
form of W -matrix in equation 3) to be computed during the fac-
torization process. During WH factorization of nonsingular ma-
trix B, H-matrix exists together with W -matrix, such that

B =WH. (14)

The matrix norm, numerical accuracy and efficiency of WH
factorization algorithm is similar to WZ factorization. The fac-
torization of hourglass matrix and Z-matrix are quite similar
yet the factorization for hourglass matrix restricts the computed
entries to be nonzero at every stage during the factorization.
However, the QIF of hourglass matrix specifies the number of
times row-interchange can be done at each stage of the factor-
ization if the computed entries yield zero, else the factorization
breakdown.

3.2.1. WH factorization algorithm
The sequential steps for the factorization are as follows [45]:
Step 1: Let B = H(0) for initial update and check if the first

row
(

h(0)1, j

)
and last row

(
h(0)n, j

)
of H(0) contains zero. If h(0)1, j = 0

or h(0)n, j = 0, then use suitable row-interchange in H(0), where

j = 1,2, ...,n. Then, we compute w(1)
i,1 and w(1)

i,n in Equation (15)
from matrix H(0) by solving 2× 2 system of linear equations
via Equation 5h(0)1,1w(1)

i,1 +h(0)n,1w(1)
i,n =−h(0)i,1 ;

h(0)1,nw(1)
i,1 +h(0)n,nw(1)

i,n =−h(0)i,n ,
(15)

Whenever h(0)n,nh(0)1,1− h(0)1,nh(0)n,1 = 0 use suitable row-interchange

to avoid factorization breakdown. Then the values of w(1)
i,1 and

w(1)
i,n can be written in W -matrix as:

W (1) =



1 0 · · · 0 0

w(1)
2,1 1 · · ·

... w(1)
2,n

... 0
. . . 0

...

w(1)
n−1,1

... · · · 1 w(1)
n−1,n

0 0 · · · 0 1


.

Step 2: We, therefore, update matrix H(0) to H(1) for the
first update by evaluating its entries as

h(1)i, j = h(0)i, j +w(1)
i,1 h(0)1, j +w(1)

i,n h(0)n, j , (16)

If one of the computed entry h(1)2, j = 0 or h(1)n−1, j = 0 in Equa-

tion (16), then apply row-interchange in H(1) at h(1)i, j for i =
2, ...,n− 1 and j = 1, ...,n in no more than (n− 4) times, else
the factorization breakdown.

Step 3: Now, we compute w(k)
i,k and w(k)

i,n−k+1 from matrix
H(k−1) by solving 2×2 linear systems in Equation (17) to gen-
eralize for every update of H(k) and proceed similarly for the
inner square matrices of size (n−2k) and so on. That is,h(k−1)

k,k w(k)
i,k +h(k−1)

n−k+1,kw(k)
i,n−k+1 =−h(k−1)

i,k ;

h(k−1)
k,n−k+1w(k)

i,k +h(k−1)
n−k+1,n−k+1w(k)

i,n−k+1 =−h(k−1)
i,n−k+1,

(17)

where k = 1,2, ...,b n−1
2 c; i = k+1, ...,n− k. Whenever

h(k−1)
n−k+1,n−k+1h(k−1)

k,k −h(k−1)
n−k+1,kh(k−1)

k,n−k+1 = 0 use suitable
row-interchange to avoid factorization breakdown. Then, we
put the values w(k)

i,k and w(k)
i,n−k+1 in a W -matrix of the form

W (k) =

1 0
. . .

...

1 0

w(k)
k+1,k

. . .
... w(k)

k+1,n−k+1
...

. . .
...

w(k)
n−1,k

...
. . . w(k)

n−k,n−k+1
0 1

...
. . .

0 1



.

Step 4: We finally compute for kth steps of h(k)i, j as:

h(k)i, j = h(k−1)
i, j +w(k)

i,k h(k−1)
k, j +w(k)

i,n−k+1h(k−1)
n−k+1, j, (18)

where j = k + 1, ...,n− k. From Equation (18), if one of the
computed entries is zero, then apply possible row-interchange
in no more than (n− 2k) times in H(k−1) and re-factorize, else
the factorization breakdown to produce Hk (H-matrix). After
the successful kth steps we get hourglass matrix (H(k) = H) of
the form:

6
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H =



h(0)1,1 h(0)1,2 h(0)1,3 · · · · · · · · · · · · · · · h(0)1,n−2 h(0)1,n−1 h(0)1,n

0 h(1)2,2 h(1)2,3 · · · · · · · · · · · · · · · h(1)2,n−2 h(1)2,n−1 0

0 0 h(2)3,3 · · · · · · · · · · · · · · · h(2)3,n−2 0 0
... 0 0

. . .
...

...
...

... 0 0
...

...
...

... h(k−1)
k,k · · · h(k−1)

k,n−k+1

...
...

...

0 0 0 0
...

... 0 0 0 0
...

...
... h(k−1)

n−k+1,k · · · h(k−1)
n−k+1,n−k+1

...
...

...
... 0 0

...
...

...
...

. . . 0 0
...

0 0 h(2)n−2,3 · · · · · · · · · · · · · · · h(2)n−2,n−2 0 0

0 h(1)n−1,2 h(1)n−1,3 · · · · · · · · · · · · · · · h(1)n−1,n−2 h(1)n−1,n−1 0

h(0)n,1 h(0)n,2 h(0)n,3 · · · · · · · · · · · · · · · h(0)n,n−2 h(0)n,n−1 h(0)n,n



.

If there exists row-interchange at any stage k that yields permutation matrix P, then

H =
(

W (k−1)P(k−1)W (k−2)P(k−2)...W (2)P(2)W (1)P(1)
)−1

B. (19)

Recall that k = 1,2, ...,b n−1
2 c and that there are b n−1

2 c stages in the factorization. From every successful loops i, j = k+1,k+
2, ...,n− k for each stage, there are (n− 2k) simultaneous equations each to be solved in (n− 2k) times during the factorization
using Cramer’s rule. To avoid breakdown at its filanz submatrices (see Definition 3.3), there must be row-interchange at every stage
of the factorization process. This ensures that the 2×2 submatrix has the least condition number adopting any matrix norm. The
overall time of WH factorization algorithm may increase if there is row-interchange at every stage of the factorization process due
to the moving and sorting of data in and out of the processor.

3.2.2. On hourglass matrix
Proposition 3.7. [45] Let H, HT (nz) and HT (z) be an hourglass matrix of order n (n≥ 3), the total number of nonzero entries, and
the total number of zero entries in hourglass matrix respectively. Then,

HT (nz) =
n2 +2n−

∣∣(n+1) mod 2−1
∣∣

2
(20)

and

HT (z) =
n2−2n+

∣∣(n+1) mod 2−1
∣∣

2
. (21)

Definition 3.2. [45] Filanz submatrix, denoted as f
1≤i≤d n−1

2 e
m , is a 2× 2 non-singular matrix obtained by taking the first and the

last nonzero elements of the ith and (n+1− i)th row of H-matrix given as

f
1≤i≤d n−1

2 e
m =

 h(i−1)
i,i h(i−1)

i,n+1−i

h(i−1)
n+1−i,i h(i−1)

n+1−i,n+1−i


1≤i≤d n−1

2 e

(22)

Definition 3.3. [45] Epicenter element, denoted as h n+1
2 , n+1

2
is the nonzero element located at the intersection of ( n+1

2 ) row and

( n+1
2 ) column of hourglass matrix of odd order.

Proposition 3.8. [45] Let det(H) be the determinant of hourglass matrix of order (n≥ 3) Then,

det (H) =



d n−1
2 e

∏
i=1

∣∣∣∣∣∣ h(i−1)
i,i h(i−1)

i,n+1−i

h(i−1)
n+1−i,i h(i−1)

n+1−i,n+1−i

∣∣∣∣∣∣ if n is even;

h( n+1
2 , n+1

2

) d n−1
2 e

∏
i=1

∣∣∣∣∣∣ h(i−1)
i,i h(i−1)

i,n+1−i

h(i−1)
n+1−i,i h(i−1)

n+1−i,n+1−i

∣∣∣∣∣∣ if n is odd.

(23)

The determinant of matrix B can be computed as

det(B) = det
(

W (k−1) ·P(k−1) · · · · ·W (2) ·P(2) ·W (1) ·P(1)·
)−1

H. (24)
7
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where

det
(

W (k−1) · · · · ·W (2) ·W (1)
)−1

= 1

and
det
(

P(k−1) · · · · ·P(2) ·P(1)
)−1

= (−1)pn .

But

(−1)pn =

{
1 if even number of rows are interchanged,
−1 if odd number of rows are interchanged.

Therefore,

det(B) = (−1)pndet (H) (25)

where pn is the total number of permutation matrix (successful row interchange) occurs in the factorization.
Partitioning of hourglass matrix of order n (n > 3) into 2× 2 block triangular matrices with each block containing b n

2c×b
n
2c

matrices is called Hsystem. That is

Hsystem =



[
H1,1 H1,2

H2,1 H2,2

]
if n is even; H1,1 x1 H1,2

0 x 0
H2,1 x2 H2,2

 if n is odd.
(26)

Where

H1,2 =

{
hi j, 1≤ i≤ d n−1

2 e, b
n+3

2 c ≤ j ≤ n+1− i;
0, otherwise.

H2,2 =

{
hi j, b n+3

2 c ≤ i≤ n, n+1− i≤ j ≤ d n−1
2 e;

0, otherwise.

H1,1 =

{
hi j, 1≤ i≤ d n−1

2 e, i≤ j ≤ d n−1
2 e;

0, otherwise.
H2,1 =

{
hi j, b n+3

2 c ≤ i≤ n, b n+3
2 c ≤ j ≤ i;

0, otherwise.

x1 =
{

hi j, 1≤ i≤ n−1
2 , j = n+1

2 .

x2 =
{

hi j,
n+3

2 ≤ i≤ n, j = n+1
2 .

x =
{

hi j, i = n+1
2 , j = i .

Theorem 3.9. [46] Schur complement exists in Hsystem only if H-matrix is nonsingular.

3.3. Comparison between WZ factorization (or Z-matrix) and WH factorization (or H-matrix)
The WZ factorization is possible provided the submatrices of the nonsingular matrix are invertible, while WH factorization does

not only depend on the invertibility of the submatrices but also that the elements in the first row and in the last row of its submatrix
are nonzero. If assume the entries hi, j is analogous to zi, j, then Z-matrix will imply hourglass matrix provided that the computed
z(k−1)

i, j and z(k−1)
n, j are strictly nonzero, for k = 1,2, ...,b n−1

2 c. However, the entries of Z-matrix are unbound to be nonzero. Then it is
obvious that it will no longer be an hourglass matrix if one of its strictly nonzero elements is replaced with zero. In general, every
H-matrix is a Z-matrix but the converse is not true, depicted in Figure 2.

H-matrix

Z-matrix

Figure 2. H-matrix as a subset of Z-matrix.

8
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The WZ factorization exists for every nonsingular matrix
often with pivoting while WH factorization may fail to exist
even if the matrix is nonsingular. Unlike the factorization of Z-
matrix, the factorization of an hourglass matrix from a nonsin-
gular matrix may not necessarily be from a symmetric positive
definite or diagonally dominant matrix but definitely not from
a tridiagonal matrix. WZ factorization may work with large di-
mension sparse matrices whereas WH factorization will not. In
Hsystem, each block has specific number of zero and nonzero
entries, unlike Zsystem.

3.3.1. Unique properties of hourglass matrix
The entries in H-matrix are linearly independent which make

the matrix nonsingular. The transpose of hourglass matrix does
not retain the shape of the matrix but rather form a bowtie ma-
trix or butterfly matrix. Inverse and nth root of hourglass matrix
is again hourglass matrix. The minimum order of hourglass ma-
trix is 3 and the matrix cannot be a symmetric. Regardless of
order of hourglass matrix, the total number of zero entries is
even. Besides, hourglass matrix has minimum matrix density

of 0.5 as lim
n→∞

n2+2n−|(n+1) mod 2−1|
2

n2 .

3.3.2. Application of WH factorization and hourglass matrix
WH factorization has great tendency in usage than WZ fac-

torization. First, though with little evidence it has been pro-
posed that the linearly independent columns of hourglass ma-
trix forming the basis vectors of a lattice will make it suitable
for lattice-base cryptography, especially in GGH - Goldreich-
Goldwasser-Halevi encryption scheme, see [47, 46]. The usage
of hourglass matrix is expected to be able to reduce the size of
bases. This reduction will allow the GGH Scheme to be imple-
mented in higher lattice dimension while still being able to be
efficient and practical, and the generation of hourglass matrix
can be executed in polynomial time. Lastly, unlike Z-matrix,
hourglass matrix has be represented as weighted mixed graph
called mixed hourglass graph [48].

We know that a simple graph G = (V,E) is an ordered pair
consisting of a set of vertices V = {v1,v2, ...,vn} and a set of
undirected edges E = {e1,e2, ...,en}, no loops nor multiple edges
permitted [49, 50]. A mixed graph G = (V,E,A) is an ordered
triple consisting of a set of vertices V = v1,v2, ...,vn, a set of
undirected edges E = {e1,e2, ...,en}, and a set of directed arcs
A [51]. Now, an hourglass graph (butterfly graph) is a planar
undirected graph formed by at least two triangles intersecting
in a single vertex, especially from 5-vertex graph of two k3’s or
from friendship graph F2, see for examples [52, 53, 54]. How-
ever, a mixed hourglass graph is a mixed complete graph coined
from the name of its mixed adjacency matrix which is obtained
from hourglass matrix [55].

Definition 3.4. [48] A mixed hourglass graph G = (V,E,A) is
an ordered triple consisting of a set of vertices V = {v1,v2, ...,vn},
a set of undirected edges E = {e1,e2, ...,en}, and a set of di-
rected arcs A.

Definition 3.5. [55] A mixed hourglass-adjacency matrix M(G )
of a mixed hourglass graph G is the n×n(n≥ 3) matrix M(G )n×n =
(hi, j)n×n defined by

M(G ) =


1 if viv j is an edge ;
−1 if vi,v j is an arc;
0 otherwise.

(27)

Lemma 3.10. [55] For every mixed hourglass graph G of or-
der n, the number of undirected edges m is

m =
n−β

2
, (28)

where β =
∣∣(n+1) mod 2−1

∣∣.
Theorem 3.11. [55] Let EM(G ) be the mixed energy of a mixed
hourglass graph G of order n and λi(G ) = {λ1,λ2, ...,λn} be
the mixed eigenvalues of a mixed hourglass-adjacency matrix
M(G ). Then

EM(G ) =
n

∑
i=1
|λi(G )|= n−β , (29)

where β =
∣∣(n+1) mod 2−1

∣∣.
3.4. Numerical example of WZ and WH factorization

Given a dense nonsingular square matrix B of order 6, apply
both WZ and WH factorization algorithm on the matrix.

B =



2 0 2 4 3 −1
5 10 −7 8 11 4
0 −12 9 6 18 1
−13 12 8 −20 14 17

3 1 1 −1 1 4
10 6 9 −13 10 14


.

3.5. WZ factorization of matrix B

Step 1: Let b(0)i, j = z(0)i, j , for i, j = 1, ...,6. We now compute
the set of 2×2 system of linear equations fromz(k−1)

k,k w(k)
i,k + z(k−1)

n−k+1,kw(k)
i,n−k+1 =−z(k−1)

i,k

z(k−1)
k,n−k+1w(k)

i,k + z(k−1)
n−k+1,n−k+1w(k)

i,n−k+1 =−z(k−1)
i,n−k+1.

For k = 1, ...,b n−1
2 c= 2.

If k = 1 then we havez(0)1,1w(1)
i,1 + z(0)n,1w(1)

i,n =−z(0)i,1

z(0)1,nw(1)
i,1 + z(0)n,nw(1)

i,n =−z(0)i,n .

Whenever i = 2, thenz(0)1,1w(1)
2,1 + z(0)6,1w(1)

2,6 =−z(0)2,1

z(0)1,6w(1)
2,1 + z(0)6,6w(1)

2,6 =−z(0)2,6

⇒2w(1)
2,1 +10w(1)

2,6 = −5

−w(1)
2,1 +14w(1)

2,6 = −4
⇒

w(1)
2,1 = − 15

19

w(1)
2,6 = − 13

38
9
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Whenever i = 3, then

z(0)1,1w(1)
3,1 + z(0)6,1w(1)

3,6 =−z(0)3,1

z(0)1,6w(1)
3,1 + z(0)6,6w(1)

3,6 =−z(0)3,6

⇒2w(1)
3,1 +10w(1)

3,6 = 0

−w(1)
3,1 +14w(1)

3,6 = −1
⇒

w(1)
3,1 =

5
19

w(1)
3,6 = − 1

19

Whenever i = 4, then

z(0)1,1w(1)
4,1 + z(0)6,1w(1)

4,6 =−z(0)4,1

z(0)1,6w(1)
4,1 + z(0)6,6w(1)

4,6 =−z(0)4,6

⇒2w(1)
4,1 +10w(1)

4,6 = 13

−w(1)
4,1 +14w(1)

4,6 =−17
⇒

w(1)
4,1 =

176
19

w(1)
4,6 = − 21

38

Whenever i = 5, then

z(0)1,1w(1)
5,1 + z(0)6,1w(1)

5,6 =−z(0)5,1

z(0)1,6w(1)
5,1 + z(0)6,6w(1)

5,6 =−z(0)5,6.
⇒2w(1)

5,1 +10w(1)
5,6 = −3

−w(1)
5,1 +14w(1)

5,6 = −4.
⇒

w(1)
5,1 = − 1

19

w(1)
5,6 = − 11

38

Therefore, we write the values of w(1)
i,1 and w(1)

i,n in a matrix form
as

W (1) =



1 0 0 0 0 0
− 15

19 1 0 0 0 − 13
38

5
19 0 1 0 0 − 1

19
176
19 0 0 1 0 − 21

38
− 1

19 0 0 0 1 − 11
38

0 0 0 0 0 1


Step 2: We update z0

i, j to z1
i, j by computing the entries as

z(k)i, j = z(k−1)
i, j +w(k)

i,k z(k−1)
k, j +w(k)

i,n−k+1z(k−1)
n−k+1, j⇒ z(1)i, j =

z(0)i, j +w(1)
i,1 z(0)1, j +w(1)

i,6 z(0)6, j .

When i = 2 and j = 2,3,4,5, so

z(1)2,2 = z(0)2,2 +w(1)
2,1z(0)1,2 +w(1)

2,6z(0)6,2 =

10+
(
− 15

19

)
(0)+

(
− 13

38

)
(6) = 151

19

z(1)2,3 = z(0)2,3 +w(1)
2,1z(0)1,3 +w(2)

2,6z(0)6,3 =

−7+
(
− 15

19

)
(2)+

(
− 13

38

)
(9) =− 443

38

z(1)2,4 = z(0)2,4 +w(1)
2,1z(0)1,4 +w(4)

2,6z(0)6,4 =

8+
(
− 15

19

)
(4)+

(
− 13

38

)
(−13) = 353

38

z(1)2,5 = z(0)2,5 +w(1)
2,1z(0)1,5 +w(3)

2,6z(0)6,5 =

11+
(
− 15

19

)
(3)+

(
− 13

38

)
(10) = 99

19

When i = 3 and j = 2,3,4,5, then

z(1)2,2 = z(0)3,2 +w(1)
3,1z(0)1,2 +w(1)

3,6z(0)6,2 =

−12− ( 5
19 )(0)+

(
− 1

19

)
(6) =− 234

19

z(1)3,3 = z(0)3,3+w(1)
3,1z(0)1,3+w(1)

3,6z(0)6,3 = 9−( 5
19 )(2)+

(
− 1

19

)
(9)= 172

19

z(1)3,4 = z(0)3,4 +w(1)
3,1z(0)1,4 +w(1)

3,6z(0)6,4 =

6− ( 5
19 )(4)+

(
− 1

19

)
(−13) = 147

19

z(1)3,5 = z(0)3,5 +w(1)
3,1z(0)1,5 +w(1)

3,6z(0)6,5 =

18− ( 5
19 )(3)+

(
− 1

19

)
(10) = 347

19

When i = 4 and j = 2,3,4,5, we have

z(1)4,2 = z(0)4,2 +w(1)
4,1z(0)1,2 +w(1)

4,6z(0)6,2 =

12+
(

176
19

)
(0)+

(
− 21

38

)
(6) = 165

19

z(1)4,3 = z(0)4,3 +w(1)
4,1z(0)1,3 +w(1)

4,6z(0)6,3 = 8+
(

176
19

)
(2)+

(
− 21

38

)
(9) =

819
38

z(1)4,4 = z(0)4,4 +w(1)
4,1z(0)1,4 +w(1)

4,6z(0)6,4 =

−20+
(

176
19

)
(4)+

(
− 21

38

)
(−13) = 921

38

z(1)4,5 = z(0)4,5 +w(1)
4,1z(0)1,5 +w(1)

4,6z(0)6,5 =

14+
(

176
19

)
(3)+

(
− 21

38

)
(10) = 689

19

When i = 5 and j = 2,3,4,5, then

z(1)5,2 = z(0)5,2 +w(1)
5,1z(0)1,2 +w(1)

5,6z(0)6,2 =

1+
(
− 1

19

)
(0)+

(
− 11

38

)
(6) =− 14

19

z(1)5,3 = z(0)5,3 +w(1)
5,1z(0)1,3 +w(1)

5,6z(0)6,3 =

1+
(
− 1

19

)
(2)+

(
− 11

38

)
(9) =− 65

38

z(1)5,4 = z(0)5,4 +w(1)
5,1z(0)1,4 +w(1)

5,6z(0)6,4 =

−1+
(
− 1

19

)
(4)+

(
− 11

38

)
(−13) = 97

38

z(1)5,5 = z(0)5,5 +w(1)
5,1z(0)1,5 +w(1)

5,6z(0)6,5 =

1+
(
− 1

19

)
(3)+

(
− 11

38

)
(10) =− 39

19

Thus,

Z(1) =



2 0 2 4 3 −1
0 151

19
−443

38
353
38

99
19 0

0 −234
19

172
19

147
19

347
19 0

0 165
19

819
38

921
38

689
19 0

0 −14
19

−65
38

97
38

−39
19 0

10 6 9 −13 10 14


.

10
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Step 3: Now, we can compute the next set of 2× 2 systems of
linear equation from the entries in z1

i, j.
Let k = 2, thenz(1)2,2w(2)

i,2 + z(1)n−1,2w(2)
i,n−1 =−z(1)i,2

z(1)2,n−1w(2)
i,2 + z(1)n−1,n−1w(2)

i,n−1 =−z(1)i,n−1.

Whenever i = 3, thenz(1)2,2w(2)
3,2 + z(1)5,2w(2)

3,5 =−z(1)3,2

z(1)2,5w(2)
3,2 + z(1)5,5w(2)

3,5 =−z(1)3,5

⇒ 151
19 w(2)

3,2 +(− 14
19 )w

(2)
3,5 =

234
19

99
19 w(2)

3,2 +(− 39
19 )w

(2)
3,5 = − 347

19

⇒

w(2)
3,2 =

13985
4503

w(2)
3,5 =

75563
4503

Whenever i = 4, thenz(1)2,2w(2)
4,2 + z(1)5,2w(2)

4,5 =−z(1)4,2

z(1)2,5w(2)
4,2 + z(1)5,5w(2)

4,5 =−z(1)4,5

⇒ 151
19 w(2)

4,2 +(− 14
19 )w

(2)
4,5 = − 165

19
99
19 w(2)

4,2 +(− 39
19 )w

(2)
4,5 = − 689

19

⇒

w(2)
4,2 =

3211
4503

w(2)
4,5 =

87704
4503

Thus,

W (2) =



1 0 0 0 0 0
0 1 0 0 0 0
0 13984

4503 1 0 75563
4503 0

0 3211
4503 0 1 87704

4503 0
0 0 0 0 1 0
0 0 0 0 0 1


Step 4: We then proceed to update z1

i, j to z2
i, j by computing the

entries as

z(k)i, j = z(k−1)
i, j +w(k)

i,k z(k−1)
k, j +w(k)

i,n−k+1z(k−1)
n−k+1, j⇒ z(2)i, j =

z(1)i, j +w(2)
i,2 z(1)2, j +w(2)

i,5 z(1)5, j .

When i = 3 and j = 3,4, so

z(2)3,3 = z(1)3,3 +w(2)
3,2z(1)2,3 +w(2)

3,5z(1)5,3 =
172
19 +( 13984

4503 )(−443
38 )+( 75563

4503 )(−65
38 ) =− 9557475

171114

z(2)3,4 = z(1)3,4 +w(2)
3,2z(1)2,4 +w(2)

3,5z(1)5,4 =
147
19 +( 13984

4503 )( 353
38 )+( 75563

4503 )( 97
38 ) =

13589845
171114

When i = 4 and j = 3,4, so

z(2)4,3 = z(1)4,3 +w(2)
4,2z(1)2,3 +w(2)

4,5z(1)5,3 =
819
38 +( 3211

4503 )(
−443

38 )+( 87704
1171 )(−65

38 ) =− 3435276
171114

z(2)4,4 = z(1)4,4 +w(2)
4,2z(1)2,4 +w(2)

4,5z(1)5,4 =
921
38 +( 3211

4503 )(
353
38 )+( 87704

4503 )( 97
38 ) =

13788034
171114

Z =



2 0 2 4 3 −1
0 151

19 − 413
38

503
38

99
19 0

0 0 − 9557475
171114

13589845
171114 0 0

0 0 − 3435276
171114

13788034
171114 0 0

0 − 14
19 − 65

38
97
38 − 39

19 0
10 6 9 −13 10 14


.

Thus,

B =
(

W (2) ·W (1)
)−1
·Z

WH factorization of matrix B
Step 1: We check the first and last row of matrix B before the
initial update.

b(0)1,1 = h(0)1,1 = 2, b(0)1,2 = h(0)1,2 = 0, b(0)1,3 = h(0)1,3 = 2, b(0)1,4 = h(0)1,4 =

4, b(0)1,5 = h(0)1,5 = 3, b(0)1,6 = h(0)1,6 =−1, b(0)6,1 = h(0)6,1 = 10, b(0)6,2 =

h(0)6,2 = 6, b(0)6,3 = h(0)6,3 = 9, b(0)6,4 = h(0)6,4 =−13, b(0)6,5 = h(0)6,5 =

10, b(0)6,6 = h(0)6,6 = 14.

Since h(0)1,2 = 0, then we interchange the first row with any other
row except the last row. In this case we interchange first row
with the fifth row such that the first and last row of the matrix
has no zero entry as

H(0) =



3 1 1 −1 1 4
5 10 −7 8 11 4
0 −12 9 6 18 1
−13 12 8 −20 14 17

2 0 2 4 3 −1
10 6 9 −13 10 14


.

with H(0) having permutation matrix

P(1) =



0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1


.

We begin to compute the set of 2×2 system of linear equations
fromh(k−1)

k,k w(k)
i,k +h(k−1)

n−k+1,kw(k)
i,n−k+1 =−h(k−1)

i,k

h(k−1)
k,n−k+1w(k)

i,k +h(k−1)
n−k+1,n−k+1w(k)

i,n−k+1 =−h(k−1)
i,n−k+1.

For k = 1, ...,b n−1
2 c= 2. Now, let k = 1 then we haveh(0)1,1w(1)

i,1 +h(0)n,1w(1)
i,n =−h(0)i,1

h(0)1,nw(1)
i,1 +h(0)n,nw(1)

i,n =−h(0)i,n .

Whenever i = 2, then

11
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2,1 +h(0)6,1w(1)

2,6 =−h(0)2,1

h(0)1,6w(1)
2,1 +h(0)6,6w(1)

2,6 =−h(0)2,6

⇒3w(1)
2,1 +10w(1)

2,6 = −5

4w(1)
2,1 +14w(1)

2,6 = −4
⇒

w(1)
2,1 = −15

w(1)
2,6 = 4

Whenever i = 3, then

h(0)1,1w(1)
3,1 +h(0)6,1w(1)

3,6 =−h(0)3,1

h(0)1,6w(1)
3,1 +h(0)6,6w(1)

3,6 =−h(0)3,6

⇒3w(1)
3,1 +10w(1)

3,6 = 0

4w(1)
3,1 +14w(1)

3,6 = −1
⇒

w(1)
3,1 = 5

w(1)
3,6 = − 3

2

Whenever i = 4, then

h(0)1,1w(1)
4,1 +h(0)6,1w(1)

4,6 =−h(0)4,1

h(0)1,6w(1)
4,1 +h(0)6,6w(1)

4,6 =−h(0)4,6

⇒3w(1)
4,1 +10w(1)

4,6 = 13

4w(1)
4,1 +14w(1)

4,6 =−17
⇒

w(1)
4,1 = 176

w(1)
4,6 = − 103

2

Whenever i = 5, then

h(0)1,1w(1)
5,1 +h(0)6,1w(1)

5,6 =−h(0)5,1

h(0)1,6w(1)
5,1 +h(0)6,6w(1)

5,6 =−h(0)5,6.
⇒3w(1)

5,1 +10w(1)
5,6 = −2

4w(1)
5,1 +14w(1)

5,6 = 1.
⇒

w(1)
5,1 = −19

w(1)
5,6 =

11
2

Therefore, we write the values of w(1)
i,1 and w(1)

i,n in a matrix
form as

W (1) =



1 0 0 0 0 0
−15 1 0 0 0 4

5 0 1 0 0 − 3
2

176 0 0 1 0 − 103
2

−19 0 0 0 1 11
2

0 0 0 0 0 1


Step 2: We update h0

i, j to h1
i, j by computing its entries as

h(k)i, j = h(k−1)
i, j +w(k)

i,k h(k−1)
k, j +w(k)

i,n−k+1h(k−1)
n−k+1, j⇒ h(1)i, j =

h(0)i, j +w(1)
i,1 h(0)1, j +w(1)

i,6 h(0)6, j .

When i = 2 and j = 2,3,4,5, so

h(1)2,2 = h(0)2,2+w(1)
2,1h(0)1,2+w(1)

2,6h(0)6,2 = 10+(−15)(1)+(4)(6) = 19

h(1)2,3 = h(0)2,3+w(1)
2,1h(0)1,3+w(1)

2,6h(0)6,3 =−7+(−15)(1)+(4)(9)= 14

h(1)2,4 = h(0)2,4 +w(1)
2,1h(0)1,4 +w(1)

2,6h(0)6,4 =

8+(−15)(−1)+(4)(−13) = 29

h(1)2,5 = h(0)2,5 +w(1)
2,1h(0)1,5 +w(1)

2,6h(0)6,5 = 11+(−15)(1)+(4)(10) =
36

When i = 3 and j = 2,3,4,5, then

h(1)2,2 = h(0)3,2 +w(1)
3,1h(0)1,2 +w(1)

3,6h(0)6,2 =−12+(5)(1)+(− 3
2 )(6) =

−16

h(1)3,3 = h(0)3,3 +w(1)
3,1h(0)1,3 +w(1)

3,6h(0)6,3 = 9+(5)(1)+(− 3
2 )(9) =

1
2

h(1)3,4 = h(0)3,4 +w(1)
3,1h(0)1,4 +w(1)

3,6h(0)6,4 =

6+(5)(−1)+(− 3
2 )(−13) = 41

2

h(1)3,5 = h(0)3,5 +w(1)
3,1h(0)1,5 +w(1)

3,6h(0)6,5 = 18+(5)(1)+(− 3
2 )(10) = 8

When i = 4 and j = 2,3,4,5, we have

h(1)4,2 = h(0)4,2 +w(1)
4,1h(0)1,2 +w(1)

4,6h(0)6,2 =

12+(176)(1)+(− 103
2 )(6) =−121

h(1)4,3 = h(0)4,3 +w(1)
4,1h(0)1,3 +w(1)

4,6h(0)6,3 = 8+(176)(1)+(− 103
2 )(9) =

− 559
2

h(1)4,4 = h(0)4,4 +w(1)
4,1h(0)1,4 +w(1)

4,6h(0)6,4 =

−20+(176)(−1)+(− 103
2 )(−13) = 1027

2

h(1)4,5 = h(0)4,5 +w(1)
4,1h(0)1,5 +w(1)

4,6h(0)6,5 =

14+(176)(1)+(− 103
2 )(10) =−325

When i = 5 and j = 2,3,4,5, then

h(1)5,2 = h(0)5,2 +w(1)
5,1h(0)1,2 +w(1)

5,6h(0)6,2 = 0+(19)(1)+( 11
2 )(6) = 52

h(1)5,3 = h(0)5,3 +w(1)
5,1h(0)1,3 +w(1)

5,6h(0)6,3 = 2+(19)(1)+( 11
2 )(9) = 141

2

h(1)5,4 = h(0)5,4 +w(1)
5,1h(0)1,4 +w(1)

5,6h(0)6,4 =

4+(19)(−1)+( 11
2 )(−13) =− 173

2

h(1)5,5 = h(0)5,5 +w(1)
5,1h(0)1,5 +w(1)

5,6h(0)6,5 = 3+(19)(1)+( 11
2 )(10) = 77

In H(1) the entries h(1)2, j and h(1)5, j are nonzero (i.e. h(1)2,2 = 19, h(1)2,3 =

14, h(1)2,4 =−29, h(1)2,5 = 36, h(1)5,2 = 52, h(1)5,3 =
141

2 , h(1)5,4 =−
173

2 , h(1)5,5 =
77) for j = 2,3,4,5. Otherwise apply suitable row interchange
in H(0) and re-factorize, else the factorization breakdown.
Step 3: Now, we can compute the next set of 2× 2 systems of
linear equation from the entries in h1

i, j.
Let k = 2, thenh(1)2,2w(2)

i,2 +h(1)n−1,2w(2)
i,n−1 =−h(1)i,2

h(1)2,n−1w(2)
i,2 +h(1)n−1,n−1w(2)

i,n−1 =−h(1)i,n−1.

Whenever i = 3, then

12
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3,2 +h(1)5,2w(2)

3,5 =−h(1)3,2

h(1)2,5w(2)
3,2 +h(1)5,5w(2)

3,5 =−h(1)3,5

⇒19w(2)
3,2 +52w(2)

3,5 = 16

36w(2)
3,2 +77w(2)

3,5 = 3−8
⇒

w(2)
3,2 = − 1648

409

w(2)
3,5 =

728
409

Whenever i = 4, thenh(1)2,2w(2)
4,2 +h(1)5,2w(2)

4,5 =−h(1)4,2

h(1)2,5w(2)
4,2 +h(1)5,5w(2)

4,5 =−h(1)4,5

⇒19w(2)
4,2 +52w(2)

4,5 = 121

36w(2)
4,2 +77w(2)

4,5 = 325
⇒

w(2)
4,2 =

7583
409

w(2)
4,5 = − 1819

409

Thus,

W ∗(2) =



1 0 0 0 0 0
0 1 0 0 0 0
0 − 1648

409 1 0 728409 0
0 7583

409 0 1 − 1819
409 0

0 0 0 0 1 0
0 0 0 0 0 1


Step 4: We then proceed to update the matrix H(1) to H(2) by
computing its entries as

h(k)i, j = h(k−1)
i, j +w(k)

i,k h(k−1)
k, j +w(k)

i,n−k+1h(k−1)
n−k+1, j⇒ h(2)i, j =

h(1)i, j +w(2)
i,2 h(1)2, j +w(2)

i,5 h(1)5, j .

When i = 3 and j = 3,4, so

h(2)3,3 = h(1)3,3 +w(2)
3,2h(1)2,3 +w(2)

3,5h(1)5,3 =
1
2 +(− 1648

409 )(14)+( 728
409 )(

141
2 ) = 56913

818

h(2)3,4 = h(1)3,4 +w(2)
3,2h(1)2,4 +w(2)

3,5h(1)5,4 =
41
2 +(− 1648

409 )(−29)+( 728
409 )(−

173
2 ) =− 13591

818

When i = 4 and j = 3,4, so

h(2)4,3 = h(1)4,3 +w(2)
4,2h(1)2,3 +w(2)

4,5h(1)5,3 =

− 559
2 +( 7583

409 )(14)+(−−1819
409 )( 141

2 ) =− 272786
818

h(2)4,4 = h(1)4,4 +w(2)
4,2h(1)2,4 +w(2)

4,5h(1)5,4 =
1027

2 +( 7583
409 )(−29)+(−−1819

409 )(− 173
2 ) = 294916

818

H =



3 1 1 −1 1 4
0 19 14 −29 36 0
0 0 56913

818 − 13591
818 0 0

0 0 − 272786
818

294916
818 0 0

0 52 141
2 − 173

2 77 0
10 6 9 −13 10 14


.

The factorization stops since the entries h(2)3, j and h(2)4, j are nonzero,
for j = 3,4.
To get the matrix B, we express B as

B =
(

W (2) ·W (1) ·P(1)
)−1
·H

4. Investigation for further studies on WZ and WH factor-
ization

There are bridging gaps to be uncovered not only between
WZ factorization and WH factorization but also within Z-matrix
and hourglass matrix. Further research could be carried on the
following:

1. If there exists WH factorization for a nonsingular matrix
B, then there exists WZ factorization.

2. WZ factorization does not necessarily imply WH factor-
ization.

3. Zsystem is a matrix group of degree 2 over R but Hsystem is
not.

4. If both Hsystem and H1,1 are invertible then
(

H2,2−H2,1H−1
1,1 H1,2

)
is a lower triangular invertible matrix.

5. If there exists WH factorization for a nonsingular matrix
B, then the factorization is unique.

6. Let EM(G ) be the energy of mixed hourglass graph G and
Ak be the number of arcs in G . Then, does there exist a
mixed hourglass graph G of order n (n > 4) satisfying the
following?

Ak = EM(G ).
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