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Abstract

This research derives the shifted Jacobi operational matrix (JOM) with respect to fractional derivatives, implemented with the spectral tau method
for the numerical solution of the Atangana-Baleanu Caputo (ABC) derivative. The major aspect of this method is that it considerably simplifies
problems by reducing them to ones that can be solved by solving a set of algebraic equations. The main advantage of this method is its high
robustness and accuracy gained by a small number of Jacobi functions. The suggested approaches are applied in solving non-linear and linear
ABC problems according to initial conditions, and the efficiency and applicability of the proposed method are proved by several test examples.
A lot of focus is placed on contrasting the numerical outcomes discovered by the new algorithm together with those discovered by previously
well-known methods.
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1. Introduction

Over the past three decades, the most focus was placed on
fractional calculus study, together with its countless implemen-
tations in the fields of engineering and physics. Fractional dif-
ferential equations (FDEs) can effectively represent the imple-
mentations of fractional calculus employed in a variety of fields,
which includes signal processing, optics, statistics and proba-
bility, electrochemistry of corrosion, control theory of dynam-
ical systems, electrical networks, as well as chemical physics.
There have been a number of important early papers on frac-
tional derivatives and FDEs, as may be seen in [1, 2]. These

∗Corresponding author tel. no: +23480xxxx572
Email address: norazak@upm.edu.my (N. Senu )

publications offer a systematic explanation of fractional calcu-
lus, including its uniqueness and existence, and are regarded as
the introduction with respect to the FDEs and fractional deriva-
tive theory. Numerous other scholars have recently focused on
the findings of the initial value problem (IVP) and boundary
value problem (BVP) solutions for FDEs, which can be further
read in [3-5]. It is crucial to determine approximate or exact
solutions to FDEs. We have trouble locating their analytical
solutions for any but a small subset of these equations. Many
different types of differential equations in a variety of fields in
science, engineering physical and natural applications can be
solved, which are extremely effective [6-11]. Other than that,
many authors have been inspired to adopt these approaches for
various equations because of their high accuracy and simplic-
ity of usage. The collocation, Galerkin, as well as tau methods
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are particular spectral methods that are more suitable and fre-
quently employed.

When Saadatmandi and Dehghan [12] used spectral meth-
ods in solving multi-term linear as well as non-linear FDEs nu-
merically, they instigated the shifted Legendre operational ma-
trix with respect to fractional derivatives. To find approximate
solutions for multi-term linear and non-linear FDEs, Doha et
al. [13] developed a novel formula that explicitly expresses any
fractional-order derivatives of shifted Chebyshev polynomials
of any degree with respect to the shifted Chebyshev polynomi-
als themselves. They combined this formula with tau and col-
location spectral methods. Recently, Bhrawy et al. [14] treated
multi-term linear FDEs having variable coefficients employ-
ing a quadrature-shifted Legendre tau technique. The shifted
Chebyshev operational matrix was recently presented by Doha
et al. [15] and used in conjunction with spectral methods to
solve multi-term linear and non-linear FDEs according to IVPs
and BVPs conditions.

Additionally, in [16, 17], the authors introduced the spectral
tau method for the numerical solution of a few FDEs, while in
[18], Pedas and Tamme created the spline collocation methods
for solving FDEs. In recent years, Esmaeili and Shamsi [19] in-
stigated a direct solution method for solving a particular family
of fractional IVPs employing a pseudospectral method. More-
over, Esmaeili et al. [20] introduced a computational method
with regard to the Müntz polynomials and collocation method
for the FDEs solution. Furthermore, the algorithms utilized
in the current work are associated with those applied by Saa-
datmandi and Dehghan [12], Doha et al. [13-15], as well as
Bhrawy et al. [14] to create accurate algorithms for a variety of
uses. The classical Jacobi polynomials, represented by
Ju,v

i (x)(i ≥ 0, u, v > −1) [21] are crucial to the study and use
of spectral methods and have been widely employed in math-
ematical analysis and real-world applications. The benefit of
using general Jacobi polynomials is that they may be used to
calculate solutions using the Jacobi parameters a and b (refer
to [22]). Therefore, to generalize, it is beneficial to perform a
systematic study with regards to Jacobi polynomials (u, v > −1)
having general indexes. This may then be immediately imple-
mented in other contexts rather than generating approximation
findings for each specific indices pair. This is the reason we in-
troduce the Jacobi polynomials family having indexes u, v > −1
in this work.

To solve numerically linear fractional and variable or-
der problems with initial conditions, this work introduces the
shifted Jacobi operational matrix (JOM) of fractional deriva-
tive. This method relies on the Jacobi tau method. Additionally,
we present an appropriate technique for approximating the non-
linear fractional and variable order IVPs on the interval [0, L]
using the spectral shifted Jacobi collocation approach relying
on JOM in order to determine the solution y(t). At (N − m + 1)
points, the non-linear fractional and variable orders collocate.
These equations produce (N +1) non-linear algebraic equations
that may be resolved employing Newton’s iterative method af-
ter being combined with m initial conditions. Finally, test prob-
lems are used to show how accurate the suggested algorithms
are. We point out that Saadatmandi and Dehghan [12] and Doha

et al. [15] introduced the two shifted Legendre and Chebyshev
operational matrices, correspondingly, and that several more
extremely interesting situations may be produced directly as
special cases emerging from the shifted JOM [23]. As a re-
sult, we were inspired to pursue the shifted Jacobi polynomials
because it is the most generalized of the orthogonal polynomi-
als.

This paper is structured accordingly: First, we commence
by going over several fundamental information about Jacobi
polynomials and fractional calculus theory that is necessary for
supporting our findings in Section 2. The JOM for Atangana-
Baleanu Caputo (ABC) is obtained in Section 3. The spectral
tau, JOM of ABC derivative, as well as collocation methods
are all applied in Section 4 to solve general linear and non-
linear ABC. The variable-order ABC-derivative JOM is found
in section 5. The suggested methods are used in several cases
in Section 6. In addition, Section 7 provides a conclusion.

2. Basic concepts and notations

This section defines the Caputo derivative, CF-derivative, as
well as Atangana-Baleanu Caputo (ABC)-derivative in which
fractional order and variable order are concisely highlighted.

2.1. Fractional derivatives
Caputo fractional-order differential equation is expressed

by [1] as:

CDαy(t) =
1

Γ(1 − α)

∫ t

0

y′(s)ds
(t − s)α

, (1)

where 0 < α < 1. The most popular fractional derivative is the
Caputo derivative, which is frequently used in engineering and
science domains.

Definition 2.1.1. To 0 < α < 1, y(t) ∈ H1(ı, ),  > ı, the
fractional-order of the CF-derivative is defined by [29]:

CFDαy(t) =
M(α)
1 − α

∫ t

0
y′(s)e

−α(t−s)
1−α ds, (2)

in which M(α) denotes a normalization function.

Definition 2.1.2. For 0 < α < 1, y(t) ∈ H1(ı, ),  > ı, the
fractional-order of the ABC-derivative is represented by [30]:

ABCDαy(t) =
M(α)
1 − α

∫ t

0
y
′

(s)Eα

[
−α(t − s)α

1 − α

]
ds, (3)

in which 0 < α < 1, M(α) resembles a normalization function,
while Eα denotes Mittag-Leffler function.

To broaden the ABC-derivative for the case of n < α < n+1
having y(s)(a) = 0 f or s = 1, 2, ..., n, we have

ABCDαy(t) = ABCDα(Dny(t))

=
M(α)
1 − α

∫ χ

0
y(n+1)(s)Eα

[
−α(t − s)α

1 − α

]
ds,

y(n+1)(s) = D(n+1)y(s) = Ddαey(s),

(4)

in which dαe represents ceil α.
2
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Definition 2.1.3. The fractional integral of the ABC-derivative
may be expressed by [30]:

AB
0 Iαt {y(t)} =

1 − α
M(α)

y(t)+
α

M(α)Γ(α)

∫ t

0
y(s)(t−s)α−1ds.(5)

Definition 2.1.4. The ABC-derivative having variable-order
α(t), 0 < α(t) < 1 of function y(t) may be expressed by [31]:

ABCDα(t)y(t) =

M(α(t))
1 − α(t)

∫ t

0
y
′

(s)Eα(t)

[
−α(t)

1 − α(t)
(t − s)α(t)

]
ds,

(6)

where Eα(t) is the Mittag Leffer function.

Theorem 2.1. Suppose β > 0. Then, the variable-order
ABC-derivative may be expressed as [31]:

ABCDα(t)tβ =
M(α(t))
1 − α(t)

Γ(β+1)tβEα(t),β+1

[
−α(t)

1 − α(t)
tα(t)

]
.(7)

2.2. Some properties of SJPs
The following recurrence formula can be used to create the

famous Jacobi polynomials, which are specified in the interval
[−1, 1]:

J(u,v)
i (t) =

(u + v + 2i − 1)[u2 − v2 + t(u + v + 2i)(u + v + 2i − 2)]
2i(u + v + i)(u + v + 2i − 2)

J(u,v)
i−1 (t) −

(u + i − 1)(v + i − 1)(u + v + 2i)
i(u + v + 2i)(u + v + 2i − 2)

J(u,v)
i−2 ,

for i = 2, 3, ...,
where

J(u,v)
0 (t) = 1 and J(u,v)

1 (t) =
u + v + 2

2
t +

u − v
2

.

We now define the shifted Jacobi polynomials by in-
stigating the change of variable t = 2t

L − 1 to apply
these polynomials with respect to the interval t ∈ [0, L].
Let the shifted Jacobi polynomials J(u,v)

i ( 2t
L − 1) be ex-

pressed by J(u,v)
L,i (t). Then, J(u,v)

L,i (t) can be generated from:

J(u,v)
L,i (t) =

(u + v + 2i − 1)[u2 − v2 + ( 2t
L − 1)(u + v + 2i)(u + v + 2i − 2)

2i(u + v + i)(u + v + 2i − 2)
J(u,v)

L,i−1(t)

−
(u + i − 1)(v + i − 1)(u + v + 2i)

i(u + v + i)(u + v + 2i − 2)
J(u,v)

L,i−2(t), i = 2, 3, ...,
(8)

where J(u,v)
L,0 (t) = 1 and J(u,v)

L,1 (t) = u+v+2
2 ( 2t

L − 1) + u−v
2 .

The analytic form with regards to the shifted Jacobi poly-
nomials J(u,v)

L,i (t) of degree i may be expressed as

J(u,v)
L,i (t) =

i∑
k=0

(−1)i−k Γ(i + v + 1)Γ(i + k + u + v + 1)
Γ(k + v + 1)Γ(i + u + v + 1)(i − k)!k!Lk tk,

(9)

where

J(u,v)
L,i (0) = (−1)i Γ(i+v+1)

Γ(v+1)i! , J(u,v)
L,i (L) =

Γ(i+u+1)
Γ(u+1)i! .

Of these polynomials, the most commonly utilized are
the shifted Chebyshev polynomials with respect to the first
kind TL,i(t), the shifted Legendre polynomials PL,i(t), as well
as the shifted Chebyshev polynomials with respect to the
second kind UL,i(t). Moreover, for the non-symmetric shifted
Jacobi polynomials, two essential special cases with regards
to shifted Chebyshev polynomials of third and fourth kinds
VL,i(t) and WL,i(t) are also taken into account. The following
relations connect these orthogonal polynomials with respect to
the shifted Jacobi polynomials.

TL,i(t) =
i!Γ(0.5)
Γ(i+0.5) J(−0.5,−0.5)

L,i (t), PL,i(t) = J(0,0)
L,i (t),

UL,i(t) =
(i+1)!Γ(0.5)

Γ(i+1.5) J0.5,0.5
L,i (t),

VL,i(t) =
(2i)!!

(2i−1)!! J(0.5,−0.5)
L,i (t), WL,i(t) =

(2i)!!
(2i−1)!! J(−0.5,0.5)

L,i (t).

The orthogonality condition with respect to the shifted
Jacobi polynomials is expressed as

∫ L

0
J(u,v)

L, j (t)J(u,v)
L,k (t)W (u,v)

L (t)dt = hk, (10)

where W (u,v)
L (t) = tv(L − t)u and

hk =

 Lu+v+1Γ(k+u+1)Γ(k+v+1)
(2k+u+v+1)k!Γ(k+u+v+1) , i = j,
0, i , j.

Let y(t) refers to a polynomial with degree n. Now, we may
write these in terms of shifted Jacobi polynomials given by

y(t) =

N∑
j=0

c jJ
(u,v)
L, j (t) = cT , (11)

in which the coefficients c j are provided as follows

c j =
1
h j

∫ L

0
W (u,v)

L (t)y(t)J(u,v)
L, j (t)dt, j = 0, 1, .... (12)

Suppose the shifted Jacobi coefficient vector C, as well as the
shifted Jacobi vector φ(t), is expressed as

CT = [c0, c1, ..., cN], (13)
3
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and

φ(t) = [J(u,v)
L,0 (t), J(u,v)

L,1 (t), ..., J(u,v)
L,N (t)]T , (14)

accordingly. Therefore, the first-order derivative with respect to
the vector φ(t) may be written as

dφ(t)
dt

= D(1)φ(t), (15)

in which D(1) denotes the (N + 1) × (N + 1) operational matrix
of derivative written as

D(1) = (di j) =

C1(i, j), i > j,
0 otherwise,

in which

C1(i, j) =
Lu + v(i + u + v + 1)(i + u + v + 2) j( j + u + 2)i− j−1Γ( j + u + v + 1)

(i − j − 1)!Γ(2 j + u + v + 1)
×

3F2


−i + 1 + j, i + j + u + v + 2, j + u + 1

; 1
j + u + 2, 2 j + u + v + 2


(The proof can be found in [24], and the general definitions of a generalized hypergeometric series, as well as special 3F2, may be
found in [25], accordingly on pp. 41 and 103–104). For instance, for even N, we obtain

D(1) =



0 0 0 . . . 0 0
C1(1, 0) 0 0 . . . 0 0
C1(2, 0) C1(2, 1) 0 . . . 0 0
C1(3, 0) C1(3, 1) C1(3, 2) . . . 0 0

...
...

... . . .
...

...

C1(N, 0) C1(N, 1) C1(N, 2) . . . C1(N,N − 1) 0.


(16)

3. Generalized SJPs operational matrix to fractional calculus

This section’s major goal is to expand the Jacobi operational matrix (JOM) of derivatives for Atangana-Baleanu Caputo (ABC)
[32, 33].

Theorem 3.1. Suppose Ψ(t) vector be SJPs defined in Eq.(11) such that α > 0. Then

ABCDαΨ(t) ' ABCD(α)Ψ(t), (17)

in which Dα denotes the operational matrix (m + 1) × (m + 1) that may be expressed as:

Let φ(t) vector be SJPs defined in Eq.(14). Here, suppose α > 0, then the ϑ in OM Eq.(18) is obtained using SJPs as follows

ϑi, j,k =
M(α)

(1 − α)

j∑
ł=0

(−1)i+ j−k+łΓ(i + v + 1)Γ(i + k + u + v + 1)Γ( j + v + 1)Γ( j + ł + u + v + 1)
h jΓ(k + v + 1)Γ(i + u + v + 1)(i − k)!LkΓ( j + v + 1)Γ( j + u + v + 1)( j − ł)!ł!Lł a j,ł. (19)

Proof.

ABCDαtv =
M(α)
1 − α

∫ t

0
Y (n+1)(s)Eα

[
−α(t − s)α

1 − α

]
ds, v > 1, v > dαe

=
M(α)
1 − α

∫ t

0

Γ(v + 1)
Γ(v − n)

S v−n−1Eα

[
−α(t − s)α

1 − α

]
ds

I f 0 < α < 1, bαc = n = 0, ψ(t) is solve f or
∫ t

0
S v−1Eα

[
−α(t − s)α

1 − α

]
ds

ABCDαJu,v
L,i (t) =

i∑
k=dαe

(−1)i− jΓ(i + v + 1)Γ(i + k + u + v + 1)
Γ(k + v + 1)Γ(i + u + v + 1)(i − k)!k!Lk

ABCDαtk

=

i∑
k=dαe

M(α)
1 − α

ψ(t)
(−1)i−kΓ(i + v + 1)Γ(i + k + u + v + 1)

Γ(k + v + 1)Γ(i + u + v + 1)(i − k)!LkΓ(k)4
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where ψ(t) =

µ∑
j=0

ak, jJ
u,v
L, j(t)

ak, j =
1
h j

j∑
ł=0

Γ( j + v + 1)Γ( j + ł + u + v + 1)
Γ( j + v + 1)Γ( j + u + v + 1)( j − ł)!ł!Lł

∫ 1

0
ψ(t)W (u,v)

L tłdt

ABCDαJu,v
L,i (t) =

i∑
k=dαe

µ∑
j=0

(−1)i−kΓ(i + v + 1)Γ(i + k + u + v + 1)
Γ(k + v + 1)Γ(i + u + v + 1)(i − k)!k!Lk ak, jJ

u,v
L, j(t)

=

m∑
j=0

(
i∑

k=dαe

ϑi, j,k)Ju,v
L, j(t).

Corollary 1. In the case of u = v = 0, it is apparent that the
JOM of derivatives for integer calculus aligns with Legendre
operational matrix of derivatives with respect to integer calculus
as gained by Saadatmandi and Dehghan (refer [12] Eq. (11)).

Corollary 2. In the case of u = v = −0.5, it is evident that the
JOM of derivatives for integer calculus aligns with Chebyshev’s
operational matrix of derivatives with respect to integer calculus
as gained by Doha et al. (refer [15] Eq. (3.2)).

4. Applications of the operational matrix of fractional
derivative

This section solves an FDE in order to demonstrate the great
significance of an operational matrix based on SLPs of frac-
tional derivatives. We follow the same steps when using SJPs.

4.1. Linear FDEs

Consider the linear FDEs
ABCDαy(t) = b1Dβky(t) + ... + bkDβ1y(t) + bk+1y(t)

+ bk+2q(t), for k = 1, 2, ....
(20)

The initial conditions are

y(v)
0 = dv, v = 0, ..., n, (21)

in which bk denotes real constant coefficients with n < α ≤ n+1,
0 < β1 < β2 < ... < βk < α, in which ABCDβ refers to the ABC-
derivative of order β.
To solve Eq.(20), we present an approximation of the function

q(t) '
m∑

i=0

qiJ
(u,v)
L,i (t) = QT Ψ(t), (22)

ABCDαy(t) ' CT ABCD(α)Ψ(t), (23)

where Q = [q0, ..., qm]T is a known vector. Employing
Eqs.(22),(23) and (13), the residual Rm(t) for Eq.(20) can be
written as

Rm(t) '
(
CT ABCD(α) − bk+1CT − bk+2QT

)
Ψ(t). (24)

We now establish m − n linear equations as in a typical tau
method by applying

〈Rm(t), p j(t)〉 =

∫ 1

0
Rm(t)pi(t)dt = 0,

i = 0, 1, ...,m − n − 1. (25)

Moreover, by substituting Eq.(13) and Eq.(14) with Eq.(21), we
get

y0 = CT Ψ(0) = d0,

y(1)
0 = CT D(1)Ψ(0) = d1,

...

y(n)
0 = CT D(n)Ψ(0) = dn.

(26)

Eqs. (25) and (26) generate (m−n) linear equations, which may
be solved using arbitrary coefficients with respect to the vector
C.

4.2. Nonlinear FDEs
Consider the non-linear FDEs

ABCDαy(t) = F(t, y(t),Dβ1 y(t), ...Dβk y(t)). (27)

The initial conditions are

y(v)
0 = dv, v = 0, ..., n, (28)

in which n < α ≤ n + 1, 0 < β1 < β2 < ... < βr < α, as well as
ABCDα resembles the ABC-derivative of order α.
We put in mind that F can be non-linear in general.

CT ABCD(α)Ψ(t) '

F(t,CT Ψ(t),CT D(β1)Ψ(t), ...,CT D(βk)Ψ(t)).
(29)

Furthermore, upon substituting Eq.(13) and Eq.(14) with
Eq.(28), we now have

Y0 = CT Ψ(0) = d0,

Y (v)
0 = CT D(v)Ψ(0) = dv, v = 1, 2, ..., n.

(30)

To discover the solution y(t), we collocate Eq.(29) by employ-
ing first (m− n) points shifted Legendre roots of P̄m+1(t). These
equations along with Eq.(30) establish (m + 1) non-linear equa-
tions, which can be resolved by employing Newton’s iterative
method.

5
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5. JOM of variable-order ABC-derivative

This section is devoted to tackling the problem using the
SJPs OM of variable order.

λ(t) = [1, t, t2, ..., tn]T . (31)

Thus, the vector Ψ(t) can be expressed as:

Ψ(t) = A(u,v)λ(t), (32)

in which A(u,v) is (n + 1) × (n + 1) denotes a square matrix that
specified by:

(ai, j)0≤i, j≤n =

 (−1)n−iΓ(n+β+1)Γ(n+i+α+β+1)
Γ(i+β+1)Γ(n+α+β+1)Γ(n−i+1)Γ(i+1)li , i ≥ j,

0, otherwise.
(33)

Hence, by employing Eq.(32), we now have

λ(t) = A−1Ψ(t). (34)

Using the OM for variable-order fractional differential operator
Dα(t)Ψ(t), and Eq.(32), we now have

Dα(t)Ψ(t) = Dα(t)(Aλ(t)) = ADα(t)[1, t, t2, ..., tι]T . (35)

Here, the Atangana-Baleanu Caputo (ABC) derivative with re-
spect to the variable order provided in Eq.(4) may be employed.
Then, we may obtain Eq.(35) as given below:

Dα(t)Ψ(t) = [0,
Γ(2)

Γ(1 − α(t))
t
∞∑

k=0

( −α(t)
1−α(t) t

α(t))k

Γ(kα(t) + 2)
,

Γ(3)
Γ(1 − α(t))

t2
∞∑

k=0

( −α(t)
1−α(t) t

α(t))k

Γ(kα(t) + 3)
,

...,
Γ(ι + 1)

Γ(1 − α(t))
tι
∞∑

k=0

( −α(t)
1−α(t) t

α(t))k

Γ(kα(t) + ι + 1)
]T ,

Dα(t)Ψ(t) = AB(t)λ(t), (36)

in which

B(t) =



0 0 0 . . . 0

0 Γ(2)
Γ(1−α(t))

∑∞
k=0

( −α(t)
1−α(t) tα(t))k

Γ(kα(t)+2) 0 . . . 0

0 0 Γ(3)
Γ(1−α(t))

∑∞
k=0

( −α(t)
1−α(t) tα(t))k

Γ(kα(t)+3) . . . 0
...

...
...

...
...

0 0 0 . . . Γ(ι+1)
Γ(1−α(t))

∑∞
k=0

( −α(t)
1−α(t) tα(t))k

Γ(kα(t)+ι+1)


(37)

Substituting Eq.(34) into Eq.(36), we get

Dα(t)Ψ(t) = AB(t)A−1Ψ(t), (38)

in which AB(t)A−1 denotes the OM of the variable-order ABC-
derivative Dα(t)Ψ(t). Here, the approximate solution may be
given as

Dα(t)y(t) ' Dα(t)(CT Ψ(t)) = CT Dα(t)Ψ(t) = CT AB(t)A−1Ψ(t),(39)

CT AB(t)A−1Ψ(t) = F[t,CT Ψ(t),CT AD(1)A−1Ψ(t),

...,CT AD(n)A−1Ψ(t)],
0 ≤ t ≤ 1.

(40)

Here, we employ the collocation points, tu = 2u+1
2n+2 , u =

0, 1, ..., n, in converting the system of equations given in Eq.(40)
into an algebraic equations system as follows:

CT AB(tu)A−1Ψ(tu) = F[tu,CT Ψ(tu),CT AD(1)A−1Ψ(tu),

...,CT AD(n)A−1Ψ(tu)],

CT Ψ(0) = y0

(41)

Ultimately, the arbitrary vector C in Eq.(9) may be gained by
solving the algebraic equations system provided in Eq.(41).
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approximate
exact
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approximate
exact
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0

0.05

y(
t)
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approximate
exact

Figure 1: Comparison between exact and approximate solution for (a)α = 0.95,
(b)α = 0.9 and (c)α = 0.85 for Example 6.2.

Example 5.1. Suppose the following[36]

ABCDαy(t) = y2(t) − 2(t + 1)−2,
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α Method t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9
0.85 LOM 2.19158e-3 2.89152e-3 4.26507e-3 4.40040e-4 3.13683e-3

PRCO 2.36581e-3 4.24947e-3 6.00249e-3 7.71664e-3 9.42102e-3
MTSLP 1.08027e-2 5.75464e-3 3.35770e-3 1.33299e-3 5.46216e-4
JOM(0,0.5) 3.00081e-3 5.85134e-4 2.97585e-3 2.07844e-3 1.57973e-4
JOM(0.5,0) 3.28839e-3 1.50328e-3 5.29734e-3 2.26751e-3 1.67970e-3

0.9 LOM 1.26158e-3 2.08766e-3 2.57667e-3 5.91395e-4 1.94142e-3
PRCO 1.18803e-3 2.39605e-3 3.56382e-3 4.72981e-3 5.90684e-3
MTSLP 1.10428e-2 7.41747e-3 5.88865e-3 5.57577e-3 3.34146e-3
JOM(0,0.5) 2.51233e-3 1.28073e-4 2.28507e-3 1.93179e-3 7.25019e-4
JOM(0.5,0) 2.01129e-3 1.21534e-3 3.35330e-3 1.02220e-3 1.41226e-3

0.95 LOM 4.88352e-4 1.16544e-3 1.10247e-3 5.09878e-4 8.67245e-4
PRCO 4.09639e-4 9.83473e-4 1.55920e-3 2.14596e-3 2.74713e-3
MTSLP 9.83430e-3 8.58128e-3 7.92322e-3 7.35794e-3 6.82360e-3
JOM(0,0.5) 1.77326e-3 6.45112e-4 1.54473e-3 1.53799e-3 1.01582e-3
JOM(0.5,0) 8.75527e-4 7.70414e-4 1.55386e-3 1.52607e-4 9.24438e-4

Table 1: The absolute error obtained by employing various values of α for Example 6.2.

α Method t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9
0.85 LOM 8.14287e-4 1.92419e-3 1.00572e-2 4.67247e-2 1.15441e-1

PRCO 1.02731e-3 7.40800e-3 1.19908e-2 5.84856e-2 1.50751e-1
MTSLP 4e-3 2.74688e-3 1.97787e-3 1.91297e-2 7.45086e-2
JOM(0,0.5) 8.01348e-4 1.93026e-3 1.00587e-2 4.67324e-2 1.15433e-1
JOM(0.5,0) 8.16107e-4 1.91932e-3 1.00499e-2 4.67267e-2 1.15445e-1

0.9 LOM 6.70490e-4 1.42673e-3 8.20714e-3 3.66835e-2 8.89397e-2
PRCO 8.64541e-4 1.70507e-3 9.89488e-3 4.55878e-2 1.14652e-1
MTSLP 4e-3 2.06924e-3 2.35421e-3 1.18382e-2 3.19227e-1
JOM(0,0.5) 6.62878e-4 1.42923e-3 8.20792e-3 3.66879e-2 8.89366e-2
JOM(0.5,0) 6.71528e-4 1.42406e-3 8.20355e-3 3.66839e-2 8.89426e-2

0.95 LOM 4.13897e-4 7.86685e-4 5.01340e-3 2.15783e-2 5.13325e-2
PRCO 5.90418e-4 8.64405e-4 6.50201e-3 2.77896e-2 2.90733e-1
MTSLP 4e-3 6.57765e-3 3.02391e-3 1.94353e-3 1.90389e-2
JOM(0,0.5) 4.11399e-4 7.86925e-4 5.01366e-3 2.15797e-2 5.13320e-2
JOM(0.5,0) 2.94860e-4 3.13253e-4 3.61277e-3 1.25339e-2 2.53848e-2

Table 2: The absolute error obtained employing various values of α for Example 6.3.

For y0 = −2 and the exact solution y(t) = −2
(t+1) in case of α = t0,

Figure 3 displays the approximate values of α = 0.85, 0.9, 0.95
and m = 6. A good approximation that is comparable to the
exact answer can be obtained via an operation matrix based on
SJPs.

6. Numerical examples

The numerical examples of linear and non-linear fractional-
order and variable-order scenarios will acquire some solutions
in this section. Our computational findings will measure the
difference between the exact and approximate solutions using
absolute error. The MATLAB R2020b software is used to code

and perform all of the numerical programs, whereas the CPU is
for the next.

• JOM Jacobi Operational matrix method derived in this
study.

• CPSKOM Chebyshev polynomials with respect to the
second kind Operational matrix method derived in this
study.

• LOM Legendre Operational matrix method [26].

• PRCO Predictor-Corrector method provided in [27].

• MTSLP Mixture two-step Lagrange polynomial as well

7
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α Method t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9
0.85 LOM -1.74986 -1.50024 -1.35680 -1.23342 -1.13618

PRCO -1.60319 -1.52292 -1.41361 -1.32635 -1.25359
MTSLP -1.67179 -1.45348 -1.31389 -1.22725 -1.17437
JOM(0,0.5) -1.76123 -1.50623 -1.35787 -1.23557 -1.13710
JOM(0.5,0) -1.74359 -1.49912 -1.35666 -1.23182 -1.13669

0.9 LOM -1.78420 -1.52494 -1.36023 -1.22657 -1.11789
PRCO -1.65250 -1.54279 -1.42052 -1.32416 -1.24500
MTSLP -1.78773 -1.58943 -1.45396 -1.35011 -1.26552
JOM(0,0.5) -1.79249 -1.53108 -1.36213 -1.22826 -1.11925
JOM(0.5,0) -1.77931 -1.52306 -1.36002 -1.22533 -1.11773

0.95 LOM -1.82307 -1.54990 -1.35819 -1.21279 -1.09254
PRCO -1.71332 -1.56366 -1.42509 -1.31793 -1.23183
MTSLP -1.89701 -1.64139 -1.47105 -1.34753 -1.25202
JOM(0,0.5) -1.82560 -1.55437 -1.36040 -1.21334 -1.09386
JOM(0.5,0) -1.82039 -1.54740 -1.35792 -1.21227 -1.09156

1 Exact -1.81818 -1.53846 -1.33333 -1.17647 -1.05263

Table 3: The approximate solutions obtained employing various values of α for Example 6.4.

α Method t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9
0.85 LOM 0.13534 0.20345 0.24998 0.28275 0.31040

PRCO 0.19782 0.22782 0.27041 0.30270 0.32864
MTSLP 0.164103 0.22650 0.25520 0.28130 0.30738
JOM(0,0.5) 0.12887 0.20271 0.24847 0.28210 0.30963
JOM(0.5,0) 0.13737 0.20354 0.25049 0.28286 0.31040

0.9 LOM 0.11432 0.19514 0.24890 0.28804 0.31966
PRCO 0.16976 0.21614 0.26616 0.30394 0.33403
MTSLP 0.10613 0.18237 0.23502 0.27718 0.31138
JOM(0,0.5) 0.10899 0.19386 0.24741 0.28717 0.31881
JOM(0.5,0) 0.11608 0.19533 0.24944 0.28817 0.31989

0.95 LOM 0.08994 0.18737 0.24973 0.29612 0.33192
PRCO 0.13780 0.20414 0.26292 0.30695 0.34158
MTSLP 0.051491 0.15966 0.23010 0.28087 0.32011
JOM(0,0.5) 0.08644 0.18564 0.24848 0.29510 0.33113
JOM(0.5,0) 0.09129 0.18767 0.25026 0.29628 0.33233

1 Exact 0.08375 0.19264 0.26323 0.31422 0.35351

Table 4: The approximate solutions obtained using different values of α for Example 6.5.

as the fundamental theorem with respect to fractional cal-
culus stated in [28].

Example 6.1. We now consider the Bagley–Torvik equation
governing the motion of a rigid plate immersed in the Newto-
nian fluid given as follows

ABCD1.5y(t) + D2y(t) + y(t) = t + 1.

Here, y0 = t0, y
′

0 = t0 and y(t) = t + 1 denotes the exact
solution.

Using SLPs, the approximate solution for m = 3 is

y(t) = [1.5 0.5 0 0]Ψ(t) = t + 1, which equals to
the exact solution.
Using SJPs(0.5,0), the approximate solution for m = 3 is
y(t) = [1.4 0.4 0 0]φ(t) = t + 1, which equals to the exact
solution.
For SJPs(0,0.5), the approximate solution for m = 3 is
y(t) = [1.6 0.4 0 0]φ(t) = t + 1, which equals to the exact
solution.

8
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t Error Error Error Error Error Error
LOM PRCO MTSLP CPSKOM JOM(0,0.5) JOM(0.5,0)

0.1 7.71674e-12 1.09802e-4 1.1e-2 2.09480e-9 8.56178e-11 2.50289e-11
0.2 7.77495e-12 4.53577e-4 2.24064e-2 3.26627e-9 8.53458e-11 3.76301e-11
0.3 8.81307e-12 1.09934e-3 3.46062e-2 3.66969e-9 8.97760e-11 3.88097e-11
0.4 2.77689e-11 2.12757e-3 4.60297e-2 3.46035e-9 2.89525e-10 3.28610e-11
0.5 3.48143e-11 3.61364e-3 5.77915e-2 2.79354e-9 3.63677e-10 2.40773e-11
0.6 1.56708e-11 5.63079e-3 6.74063e-2 1.82454e-9 1.62011e-10 1.67516e-11
0.7 4.39398e-11 8.25300e-3 7.82267e-2 7.08644e-10 4.65697e-10 1.51773e-11
0.8 1.58296e-10 1.15567e-2 8.50985e-2 3.98864e-10 1.66967e-9 2.36475e-11
0.9 3.41676e-10 1.56209e-2 9.75044e-2 1.34269e-9 3.60013e-9 4.64555e-11

Table 5: The absolute error for Example 6.6 for m = 4

t Error Error Error Error Error Erorr
LOM PRCO MTSLP CPSKOM JOM(0,0.5) JOM(0.5,0)

0.1 1.75338e-4 6.54123e-4 e-2 1.75338e-4 1.75338e-4 1.75338e-4
0.2 3.38732e-3 3.95957e-3 2.70108e-2 3.38732e-3 3.38732e-3 3.38732e-3
0.3 9.96953e-3 9.35838e-3 3.72260e-2 9.96953e-3 9.96953e-3 9.96953e-3
0.4 1.88528e-2 1.27167e-2 4.22493e-2 1.88528e-2 1.88528e-2 1.88528e-2
0.5 2.93188e-2 8.50431e-3 4.70844e-2 2.93188e-2 2.93188e-2 2.93188e-2
0.6 4.06491e-2 8.72007e-3 5.81601e-2 4.06490e-2 4.06490e-2 4.06490e-2
0.7 5.21251e-2 4.36191e-2 8.11371e-2 5.21250e-2 5.21250e-2 5.21250e-2
0.8 6.30285e-2 1.00115e-1 1.20052e-1 6.30284e-2 6.30284e-2 6.30284e-2
0.9 7.26408e-2 1.82050e-1 1.77509e-1 7.26406e-2 7.26406e-2 7.26406e-2

Table 6: The absolute error for Example 6.7 for m = 4
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Figure 2: Comparison between approximate solutions for α = 0.85, α = 0.9
and α = 0.95 with the exact solution for Example 6.3.

Example 6.2. Suppose we have the following model[34]:

ABCDαy(t) = −K(1 − y(t)), 0 < α < 1, and y0 = 0.1
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Figure 3: Comparison of approximate solutions for α = 0.85, α = 0.9 and
α = 0.95 with the exact solution in case α = t0 for Example 6.4.

The exact solution is as follows:

y(t) =
−K(1 − α)

M(α) − K(1 − α)
Eα

( Kα
M(α) − K(1 − α)

tα
)

+

[
1 − Eα

( Kα
M(α) − K(1 − α)

tα
)]

+

M(α)y(0)
M(α) − K(1 − α)

Eα
( Kα

M(α) − K(1 − α)
tα
)
.
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Figure 4: Comparison between approximate solutions for α = 0.85, α = 0.9
α = 0.95 with exact solution in case of α = t0 for Example 6.5
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Figure 5: The approximate solution and exact solution for Example 6.6 for
m = 4

Table 1 and Figure 1 compare the absolute error for the two
methods for K is constant K = 0.1, α = 0.85, 0.9, 0.95, and m =

4 respectively. An enhanced approximate solution comparable
to the exact solution can be obtained using an operation matrix
based on SJPs.

Example 6.3. Suppose we have the following[35]

ABCDαy(t) = −y(t) + t4 − 0.5t3 −
3

Γ(4 − α)
t3−α +

24
Γ(5 − α)

t4−α,

for y0 = 0, while the exact solution is expressed by y(t) =

t4 − 0.5t3.
Table 2 and Figure 2 compare the absolute error for the two
approaches for α = 0.85, 0.9, 0.95, and m = 6. A good approx-
imate solution that is comparable to the exact answer can be
obtained using an operation matrix based on SJPs.

Example 6.4. Suppose we have the following[37]
ABCDαy(t) = (1 − y(t))4,
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Figure 6: The approximate solution and exact solution for Example 6.7 for
m = 4

The exact solution in case of α = t0 is expressed by y(t) =
1+3t−(1+6t+9t2)1/3

1+3t and y0 = 0. The problem is solved with m = 8,
and the numerical results are shown in Figure 4.

Example 6.5. Consider the following linear variable-order
FDEs[38]:

ABCDα(t)y(t) + ety(t) =

et(t2 + t3 + 1) +
M(α(t))
1 − α(t)

2t2Eα(t),3(−
α(t)

1 − α(t)
tα(t))

+
M(α(t))
1 − α(t)

6t3Eα(t),4(−
α(t)

1 − α(t)
tα(t)),

where α(t) = 0.5t + 0.1, y0 = t0 and the exact solution is pro-
vided by y(t) = t2 + t3 + 1.
The absolute error for m = 4 is shown in Table 3. An enhanced
approximate solution that is comparable to the exact answer can
be obtained using an operation matrix based on SJPs.

Example 6.6. We now consider the following non-linear
variable-order FDEs given by[39]:

ABCDα(t)y(t) + y2(t) = t2 + t4 +
2t2−sin(t)

Γ(3 − sin(t))
.

where α(t) = 0.5t + 0.6, y0 = 0 and the exact solution is ex-
pressed by y(t) = t2.
The absolute error for m = 4 is shown in Figure 5. Operation
matrix relying on SJPs may give an enhanced approximate so-
lution that is comparable with the exact solution.

7. Conclusion

We came up with a general formulation for the fractional
and variable order Jacobi operational matrix (JOM), which
is utilized to approximate Atangana-Baleanu Caputo (ABC)
derivatives in numerical solutions. The shifting Jacobi tau and

10
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collocation approaches served as the foundation for our strat-
egy. Since the ABC fractional derivative enables the inclusion
of traditional initial conditions in the formulation of the issue,
the fractional derivatives are described in the ABC sense. Here,
the findings presented in the preceding section show how ac-
curate these algorithms are. Additionally, only a few shifted
Jacobi polynomials are required to produce a good outcome.
We can recommend some future studies for this paper: solve
system of fractional and variable order differential equations by
use Jacobi and more orthogonal polynomials.
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