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Abstract

In data mining, and statistics, anomaly detection is the process of finding data patterns (outcomes, values, or observations) that deviate from
the rest of the other observations or outcomes. Anomaly detection is heavily used in solving real-world problems in many application domains,
like medicine, finance , cybersecurity, banking, networking, transportation, and military surveillance for enemy activities, but not limited to only
these fields. In this paper, we present an empirical study on unsupervised anomaly detection techniques such as Density-Based Spatial Clustering
of Applications with Noise (DBSCAN), (DBSCAN++) (with uniform initialization, k-center initialization, uniform with approximate neighbor
initialization, and k-center with approximate neighbor initialization), and k-means−− algorithms on six benchmark imbalanced data sets. Findings
from our in-depth empirical study show that k-means−− is more robust than DBSCAN, and DBSCAN++, in terms of the different evaluation
measures (F1-score, False alarm rate, Adjusted rand index, and Jaccard coefficient), and running time. We also observe that DBSCAN performs
very well on data sets with fewer number of data points. Moreover, the results indicate that the choice of clustering algorithm can significantly
impact the performance of anomaly detection and that the performance of different algorithms varies depending on the characteristics of the data.
Overall, this study provides insights into the strengths and limitations of different clustering algorithms for anomaly detection and can help guide
the selection of appropriate algorithms for specific applications.
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1. Introduction

Anomaly detection is the process of finding data patterns
(outcomes, values, or observations) that deviate from the rest of
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the other observations or outcomes. Anomaly detection is heav-
ily used in solving real-world problems in many application
domains like medicine, cybersecurity [1], fraud detection [2],
networking, transportation, and military surveillance for enemy
activities, but not limited to only these fields, as anomaly detec-
tion is classified under deep learning which is applicable in all
fields such as in mathematics and statistics [3]. These deviating
outcomes or observations are referred to as anomalies (outliers,
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deviants, discordant observations, exceptions, surprises, or ab-
normalities) in different application domains [4].

Anomaly detection algorithms can be categorized into two
types: supervised and unsupervised. Supervised anomaly de-
tection involves training a model on labeled data, where anoma-
lies are explicitly labeled or defined. On the other hand, un-
supervised anomaly detection involves identifying anomalies
without using explicit labels or prior knowledge about the data.
Unsupervised methods are more commonly used in practice, as
labeled data for training supervised models may be scarce or
difficult to obtain.

Various techniques can be used for anomaly detection, in-
cluding statistical methods, clustering, nearest-neighbor meth-
ods, and machine learning algorithms such as support vector
machines, decision trees, and neural networks [5]. With the in-
crease in the volume and complexity of data, traditional rule-
based approaches have proven to be insufficient in detecting
anomalies. As a result, clustering-based techniques have gained
popularity as reliable methods for identifying anomalies. In this
regard, density-based and representative-based clustering algo-
rithms have been widely used in anomaly detection due to their
ability to identify clusters of data points dissimilar to the ma-
jority of the data.

There have been many approaches to solving anomaly de-
tection problems, with the unsupervised algorithms being the
most widely usedÂ because the techniques involve training the
model with unlabeled data. Clustering is the process of group-
ing a set of observations or data points into multiple groups
so that observations within a group or cluster have high sim-
ilarity but dissimilar to observations from the other clusters.
Clustering-based techniques fall under a class of unsupervised
anomaly detection techniques that operate on the output of the
clustering algorithm and thus turn out to be much faster in gen-
eral. The clustering based techniques can be grouped into the
following categories: representative-based techniques, density-
based techniques and hierarchical-based techniques.

Throughout the research community, a lot of work has been
done to detect anomalies using clustering-based techniques,
see the work of [6-16]. In this paper, we present what is (to
the best of our knowledge) the first attempt of an empirical
study on anomaly detection using k-means−−, DBSCAN, and
DBSCAN++ using data sets from different domains with vary-
ing proportions of outliers. This paper aims to evaluate the per-
formance of representative-based and density-based clustering
algorithms detecting anomalies, their computational efficiency,
and the effect of varying algorithm parameters on their perfor-
mance. Our goal is to find out how these methods perform on
different data sets with regards to the following evaluation met-
rics: F1 score, False alarm rate, Jaccard coefficient, and Ad-
justed rand index including the run time of these algorithms on
the data sets. Finally, and most importantly, the above men-
tioned techniques all have the tendency of finding noise points
(anomalies or outliers) and assigning labels to them as noise
points.

Although the main goal is to evaluate the effective-
ness of density-based clustering algorithms like DBSCAN,
DBSCAN++ and representative-based clustering algorithm

like k-means−−. Our approach can also provide guidance on
how to evaluate and analyze these clustering techniques in solv-
ing anomaly detection problems. Also, this method can be used
to overcome one of the main challenges of anomaly detection
techniques, which is accurate representative labels for normal
and abnormal instances, which is a major concern. To over-
come this challenge in most anomaly detection problems, our
approach can be used as a pre-labeling technique and then ap-
ply supervised anomaly detection techniques to solve anomaly
detection problems. Overall, our empirical results demonstrate
the potential of density-based clustering and representative-
based clustering and provide valuable insights for future re-
search in this field.

The rest of this paper is structured as follows: In section
2, we briefly give a description of the algorithms used in this
paper. Section 3, analyses the empirical evaluation, where we
review data sets used, evaluation metrics description, variations
in evaluation metrics, results, and result discussion. Section 4
covers the conclusion and future directions.

2. Methods

This section presents the anomaly detection techniques used
in this paper. These anomaly detection techniques are: k-
means−−, and two versions of Density-Based Spatial Cluster-
ing of Application with Noise (DBSCAN and DBSCAN++).

2.1. k-means−−

k-means−− [17] is a representative-based clustering tech-
nique, which is an extension of the k-means algorithm. k-
means−− is a more computationally efficient version of the k-
means algorithm, which achieves this by updating the cluster
centroids more incrementally. In the k-means−− algorithm, the
centroid of each cluster is initialized as the mean of a randomly
selected subset of data points rather than as a randomly selected
data point, as in the original k-means algorithm. Then, for each
iteration of the algorithm, k-means−− updates the centroids by
considering only the data points that belong to the cluster be-
ing updated rather than all the data points in the data set. This
results in faster convergence and improved scalability, partic-
ularly for large data sets. The pseudo-code of the k-means−−
is shown in algorithm 1. We implemented the k-means−− in
Python using the pseudo-code in algorithm 1, since the imple-
mentation was not available in Sklearn.

2.2. Density-Based Spatial Clustering of Applications with
Noise (DBSCAN)

DBSCAN is a density-based clustering technique capable
of finding arbitrarily shaped clusters. DBSCAN proceeds by
computing the empirical densities for each sample point and
then designating points whose densities are above a thresh-
old as core points. Then, a neighborhood graph of the core
points is constructed, and the clusters are assigned based on the
connected components. The pseudo-code of DBSCAN [18] is
shown in algorithm 2. We used the Sklearn implementation of
DBSCAN in Python. Still, this implementation could not be
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Figure 1: k-Means−− Pseudo-code

faster with large data sets due to memory consumption, scal-
ability, parameter tuning, noise sensitivity, and difficulty han-
dling high-dimensional data since it uses the KDTree to build
the nearest neighbor tree.

2.3. DBSCAN ++

DBSCAN++ [19] is an extension to the DBSCAN, which
runs much faster, more efficient, and less sensitive to hyper-
parameter settings. We couldn’t find any Python implementa-
tion of the DBSCAN++, so we used the pseudo-code provided
[19] by using the KDTree scipy in the implementation. This
implementation didn’t allow us to run it on large data sets due
to parameter tuning, noise sensitivity, and difficulty handling
high-dimensional data because of the limitation of the KDTree
implementation. The pseudo-code is shown in algorithm 3.
There were two initialization methods mentioned in this paper.

1. Uniform initialization
2. k-center initialization

Uniform initialization was implemented by uniformly sampling
m number of points from the given data set. We only ran
KDTree queries for m sampled data points, after running the
queries we developed the core point set and then we created the
neighbourhood tree by adding edges to points in the radius of
the core points.

k-center initialization was more complicated than the uni-
form initialization, we had to implement part of the greedy k-
center clustering algorithm for this initialization. As mentioned
in the paper [19], k-center initialization should run faster than
DBSCAN algorithm on the same hyper-parameters, but this did
not happen in our implementation, k-center initialization took
considerable amount of time even though the time complexity
was O(mn). To improve the performance of this initialization,
we vectorized the computation and used a slightly better algo-
rithm mentioned in Geometric Approximation Algorithms [20].
We saw a massive improvement in initialization time but still,
it took longer than DBSCAN algorithm. This happened be-
cause in both DBSCAN and DBSCAN++, we had to build the

Figure 2: DBSCAN Pseudo-code

Figure 3: DBSCAN++ Pseudo-code

KDTree which takes the same time if the input data set is the
same. Whereas, in k-center initialization, we had to run the
initialization algorithm to pick the m points. Although this m
number of points are less than the total number of points, the
speed up gain from running m number of queries against run-
ning queries for all the points does not exceed the time taken to
run the k-center initialization. We suspect that if this was im-
plemented in C++, there might be a difference in result. Since
the paper did not mention about any implementation details we
cannot be certain about this.

2.4. DBSCAN and DBSCAN++ on Approximate Nearest
Neighbour (ANN)

Since we could not run DBSCAN or DBSCAN++ on large
data sets, we moved on to implementing the approximate near-
est neighbour on DBSCAN and DBSCAN++ algorithms. We
used a Python library Annoy [21], which wrapped a C++ imple-
mentation of approximate nearest neighbour tree using Python.
We saw a massive speed up in creating the nearest neighbour
tree after implementing this. This library did not allow us to
query the points given in a radius ball what it allowed us to do
was to get the approximate k-nearest neighbours, this posed a
challenge for us because we need to query the points given in a
ε − radius ball. So what we did was to query 2 ∗ minpts num-
ber of points for each core point selection query, and check if
there are more than minpts number of points that has less than
eps distance to the queried point. This allowed us to reduce the
uncertainty of not picking all the points in the ε − radius ball.
Since the minpts is a small value, going through 2∗minpts was
not affecting the performance of the algorithm.
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After completing the implementation of these algorithms,
we ran experiments on the given data sets. Since we are inter-
ested in detecting anomalies, we plotted histograms of ground
truth labels of each data sets. Then we decided what class la-
bels are normal instances (expected behavior or pattern of the
system or data being analyzed) and what class labels are noise
instances (data points or events that deviate significantly from
the expected or normal behavior). Some of the data sets already
had document explaining what class labels can be identified as
normal instances and what class labels are noise labels. Gen-
erally, if a class label had a less frequency, we picked them
as noise labels. After running the algorithms, we modified the
ground truth and cluster label arrays to only contain two class
labels. 0 if a data point is a normal instance and 1 if data point
is a noise instance. We did this because we are only interested
in detecting normal and abnormal instances, we no longer care
whether we have the right number of clusters as a result. Then
we ran different assessment metrics on both the ground truth
and the labels obtained from these algorithms. Explanation of
these results are mentioned in the empirical evaluation section.

Also, we made a small modification to DBSCAN algorithm
hoping to solve the problem of detecting small outlier clusters.
What we did was we added a threshold parameter to the DB-
SCAN algorithm where it will check the size of clusters before
assigning the cluster label, if the size of cluster is smaller than
the given threshold, it was marked as a noise cluster. We only
made this change to the DBSCAN on an Approximate Near-
est Neighbor (ANN) implementation and we tested this on the
shuttle data set. This has a very small change, but we got ex-
tremely good results for Shuttle data set. This part was done
as an extension to what we already did. We could not test this
algorithm for all the data sets. It was only tested on the Shuttle
data set because it contained small outlier clusters and it was
a large data set. We will explain the results in the discussion
section.

3. Empirical Evaluation

3.1. Data sets

We perform our experiments on six data sets from UCI ma-
chine learning repository [22]. The data sets description and
distribution of the classes is shown on the figures and table be-
low:

We had to change the data sets proposed due to the fact that
DBSCAN was unable to process large data sets.

3.2. EVALUATION METRICS

Four evaluation metrics were used to assess the validity of
the results of this experiments.

1. False alarm rate
2. F-Score (weighted)
3. Jaccard coefficient
4. Adjusted rand Index

Table 1: DBSCAN results on chosen data sets

Data set #points #dim #outliers outlier %
pima 768 8 268 35

cardio 1831 21 176 9.60
wine 129 13 10 7.70
glass 214 9 9 4.20

breastw 683 9 239 35
shuttle 43500 (36752) 9 2644 7.19

False alarm rate is the ratio of number of incorrectly la-
belled noise instances that were normal instances in ground
truth over total number of noise instances predicted.

The F- measure of a cluster is the harmonic mean of the
precision and recall values of a cluster. We took the weighted
F-measure values of each cluster as the final F − score. [23]

Fi =
2

1
preci

+ 1
recalli

=
2 ∗ preci ∗ recalli

preci + recalli

F =

k∑
i=1

wi ∗ Fi

where wi is the weight of the cluster
The Jaccard Coefficient measures the fraction of true posi-

tive point pairs, but after ignoring the true negatives. It is de-
fined as follows: [23]

Jaccard =
T P

T P + FN + FP

Before we use these metrics, we converted the ground
truth and cluster labels to two classes containing normal
and outlier classes. This helped us to focus more on noise
prediction results rather than looking at cluster predictions.
The adjusted rand index assessment is included but was not use
in interpreting the result.

3.3. Empirical Results presented in the form of tables

3.4. Discussion of results

The factor parameter in DBSCAN++ is the number of point
that were quarried by the algorithm. l and k parameters in the
k-means−− results indicates the outlier parameter and cluster
number parameter. FAR means False Alarm Rate, ARS means
Adjusted Rand Score and JS means Jaccard Score.

Each data set’s result will be described separately and will
make conclusions based on the entire results. For each data
set, we experimented with various parameters, and we in-
cluded a range of parameters and their results in the empiri-
cal result tables. The density-based algorithms (DBSCAN and
DBSCAN++) did not perform well on the Pima data set. We
only included the parameter and best possible result for the
Pima data set. In most cases, it either recognized all the points
as normal instances or outliers. We believe this was as a result
of the high percentage of outliers in the Pima data set, which
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Figure 4: Breast cancer and Cardiotography data sets class distribution

Figure 5: Pima and Wine data set class distribution

Figure 6: Glass Data Set Class distribution

is 35% as shown in table 1. We could not find the balance be-
tween the minpoints and epsilon values that can distinguish the
clusters and the noise points. This is because this data set has
different densities points at different levels. When we ran k-
means−− on Pima data set, we got slightly better results (table
4), and we had a smaller false alarm rate value of 0.4216 as
opposed to 0.651 obtained from DBSCAN algorithm. In the
case of DBSCAN or DBSCAN++ tests, more than half of the
detected noise points are false positive values indicating that
Pima data set does not consist of a density-based cluster struc-
ture. Low F-score of 0.185 in both DBSCAN and DBSCAN++

tests indicates that quality of instances detected as normal, and
outlier cluster are low. Jaccard coefficient of 0.349 indicates
that false negatives and false positive value pairs are high com-
pared to true positive pairs. When we look at the k-means−−
results of Pima data set, we have better Jaccard coefficient and
f1 score 0.4068 and 0.7057 respectively (table 4). Even though

k-means−− results are better than DBSCAN and DBSCAN++

results, the results are not accurate enough. Then we employed
statistical techniques such as dimensionality reduction (PCA)
on the Pima data set before using the above mentioned algo-
rithms, which resulted in better results. We first normalize the
data, and then applied PCA on the Pima data set. We then ran
DBSCAN and DBSCAN++ algorithms on the data set after se-
lecting the best 7 components from the results. For the results
refer the table A5. We had to increase the min points param-
eters to 270 − 290 range to get better results. This is because
the data set only contains one major cluster and all the other
points are considered outliers. There are 268 outliers in the
data set, thus we had to bring the minpoints to 270 range to
exclude outliers from the result. This resulted in better outputs.
We could achieve a false alarm rate of 0.45 at eps = 0.35 with
minpts = 270 and F-score of 0.69 on DBSCAN algorithm. We
could achieve similar results for DBSCAN++ on both initial-
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Table 2: DBSCAN results on chosen data sets

Data sets Parameters Evaluation Measures
min pts epsilon f1 score False alarm Adjusted Rand Index Jaccard

Pima 20 5 0.1805 0.651 0 0.349
Cardio 10 3 0.88 0.58 0.31 0.26

10 4 0.88 0.43 0.19 0.14
10 5 0.88 0.15 0.17 0.12

Wine 4 25 0.91 0.58 0.46 0.41
4 30 0.95 0.41 0.664 0.58
4 35 0.97 0.23 0.83 0.76
4 38 0.98 0.16 0.88 0.83
4 72 0.95 0.14 0.65 0.54

Glass 8 0.9 0.8736 0.8085 0.206 0.1915
8 1 0.8767 0.8043 0.213 0.1957
8 1.2 0.86 0.875 0.11 0.11
8 2 0.9 0.88 0.08 0.08

BreastW 10 2.9 0.9508 0.119 0.8098 0.8745
10 4 0.9636 0.072 0.8579 0.9027
10 5 0.82 0.05 0.429 0.54
10 5.5 0.74 0.03 0.26 0.36
20 5 0.9225 0.0483 0.7143 0.7912

Table 3: DBSCAN++ k-center results on data sets

Data sets Parameters Evaluation Measures
min pts factor epsilon f1 score False alarm Adjusted Rand Index Jaccard

Pima 10 0.2 0.9 0.1805 0.651 0 0.349
10 0.35 2 0.6797 0.3396 0.1177 0.4136
20 0.2 5 0.1805 0.651 0 0.349

Cardio 10 0.5 5 0.8835 0.1538 0.1788 0.1222
10 0.5 4 0.88 0.42 0.2 0.15
10 0.5 3 0.88 0.59 0.3 0.27

Wine 4 0.3 25 0.84 0.72 0.25 0.27
4 0.3 30 0.9 0.6 0.43 0.4
4 0.3 35 0.92 0.54 0.51 0.45
4 0.3 38 0.97 0.28 0.78 0.71
4 0.3 72 0.95 0.14 0.65 0.54
10 2 1.5 0.0112 0.9225 0 0.0775

Glass 8 0.5 0.4 0.41 0.94 -0.04 0.05
8 0.5 0.9 0.87 0.8 0.2 0.19
8 0.5 1 0.87 0.8 0.21 0.19
8 0.5 1.2 0.86 0.87 0.11 0.11
8 0.5 2 0.8885 0.8485 0.1499 0.1351

BreastW 10 0.5 1.9 0.8812 0.2578 0.5723 0.7422
10 0.5 2.9 0.9509 0.1218 0.8098 0.875
10 0.5 4 0.96 0.07 0.85 0.89
10 0.5 5 0.82 0.05 0.42 0.54
10 0.5 5.5 0.74 0.03 0.26 0.36
20 1 4 0.9607 0.0794 0.847 0.8958
20 1 5 0.9634 0.0542 0.8576 0.9008

izations at 0.5 factor values. Then we ran the k-means−− on
the data set (dimensionally reduced), we got better results com-
pared to DBSCAN results. Refer the table A4. It shows at
k = 1 and l = 268, we get the lowest false alarm rate of 0.45

and highest F1-score of 0.68 for this data set. However, on both
algorithms there are considerable amount of false positive noise
predictions. And the Jaccard coefficients of both algorithms for
this data set is low as well, which indicates that there are false

6



Fuhnwi et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1364 7

Table 4: k means −− results on data set

Data sets Parameters Evaluation Measures
k l iteration epsilon f1 score False alarm Adjusted Rand Index Jaccard

Pima 2 268 10 0.2 0.7057 0.4216 0.1614 0.4068

Cardio
2 176 10 0.05 0.9312 0.358 0.5536 0.4728
2 176 20 0.05 0.9345 0.3409 0.5734 0.4915
3 176 20 0.05 0.9421 0.3011 0.6201 0.5371

Wine 2 10 10 0.2 0.9845 0.1 0.8753 0.8182
2 10 10 0.05 0.9845 0.1 0.8753 0.8182

Glass 2 9 10 0.05 0.9252 0.8889 0.0658 0.0588
BreastW 2 239 10 0.2 0.9444 0.0795 0.7879 0.8527

2 239 10 0.05 0.9239 0.1088 0.716 0.8038
2 239 10 0.35 0.9444 0.0795 0.7879 0.8527
3 239 10 0.05 0.9209 0.113 0.706 0.797

Table 5: DBSCAN Result on ANN using Shuttle data set

Data set Parameters Evaluation Measures
minpts eps factor f-score False alarm rate ARS Jaccard score

Shuttle 10 4.5 1 0.88758301 0.775670841 0.146802475 0.130299252
10 4.8 1 0.89255751 0.757217848 0.149587292 0.126857143
10 5 1 0.89574317 0.740279938 0.150095945 0.123035363
10 5.3 1 0.90068313 0.695989651 0.162924769 0.126344086
10 5.5 1 0.90195679 0.679245283 0.162242457 0.123463687
10 5.8 1 0.90298582 0.659681475 0.158728371 0.118332848
10 6 1 0.90418584 0.628742515 0.156338474 0.11362248
10 6.8 1 0.90566123 0.566360053 0.153339959 0.107317073
10 7 1 0.90567793 0.550143266 0.149568631 0.103698811
10 9 1 0.90520426 0.504621072 0.135841986 0.091875214
10 10 1 0.90441125 0.507936508 0.126851763 0.085517241
10 28 1 0.89643437 0.655462185 0.041910848 0.029285714
10 28.5 1 0.89647958 0.65106383 0.042092565 0.029317125

Table 6: Result of Shuttle data set on k−means −−

Data set Parameters Evaluation Measures
k outliers iterations f1 score FAR ARS JS time

Shuttle 1 2500 50 0.96890 0.08634 0.72703 0.62157 55
1 2644 50 0.97034 0.09082 0.74045 0.63810 45
1 2700 50 0.97089 0.09704 0.74599 0.64520 35
2 2500 50 0.97169 0.07394 0.75167 0.65113 149
2 2644 50 0.97226 0.08608 0.75763 0.65910 128
2 2700 50 0.96234 0.25512 0.68565 0.58323 56

negative pairs in the result. Slightly higher F-scores indicates
that quality of the clustering is much better.

The second data set we experimented on was the Cardio
data set, which also performed well on k-means−− algorithm.
This data set contains about 9.60% outliers. On DBSCAN, Car-
dio data set gives about 0.8 − 0.9 F-score, which means that
the quality of clusters is high. Note that we used weighted F-
score. False alarm rate of both DBSCAN and DBSCAN++ al-
gorithms were around 0.15, indicating a low false positive noise
points in the predicted labels. Jaccard coefficient results of the
DBSCAN algorithm produced less-than-ideal results, with 0.12

where DBSCAN++ gave around 0.15. This happened because
of high false negative value pairs. We know that we have low
number of FP due to lower false alarm rate, so we can con-
clude that we have low Jaccard coefficient because of false neg-
ative pairs, which means DBSCAN could not identify when two
points are in different groups in the data set. It should be noted
that DBSCAN++ has a higher F-score and a lower false alarm
rate just like DBSCAN. Since we took the weighted F-score
and there are higher number of normal instances in the Cardio
data set, we can conclude that normal point prediction accuracy
is high. We can also conclude that true positives of predicting
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Table 7: Result of Shuttle data set using Modified DBSCAN on ANN

Data set Parameters Evaluation Measures
minpts eps factor threshold f1 score FAR ARS JS #noise pts

Shuttle 10 4.5 1 0.2 0.61831 0.87032 -0.00768 0.12968 27136
10 4.8 1 0.2 0.93744 0.50524 0.56876 0.49476 9603
10 5 1 0.2 0.96127 0.37524 0.70772 0.62476 8210
10 5.3 1 0.2 0.96998 0.31289 0.76610 0.68711 7797
10 5.5 1 0.2 0.97280 0.29058 0.78586 0.70942 7660
10 5.8 1 0.2 0.97900 0.23716 0.83098 0.76284 7392
10 6 1 0.2 0.98369 0.19243 0.86654 0.80757 6875
10 6.8 1 0.2 0.98868 0.14016 0.90574 0.85984 6648
10 7 1 0.2 0.98988 0.12682 0.91537 0.87318 6584
10 9 1 0.2 0.99274 0.09359 0.93872 0.90641 6444
10 10 1 0.2 0.99313 0.08834 0.94191 0.91103 6414
10 28 1 0.2 0.89643 0.65546 0.04191 0.02929 263
10 28.5 1 0.2 0.89648 0.65106 0.04209 0.02932 260

normal instances as normal instances is high with this result.
k-means−− result of the Cardio data set has best F-score of

0.94 and 0.30 false alarm rate (lowest of k-means−− tests for
cardio data set) and Jaccard coefficient of 0.5 (table 4). F-score
and Jaccard coefficients are better than the density-based re-
sults, although we had higher false alarm rate than the density
level results, which indicate that out of the noise points pre-
dicted, there were high number of false positives. However, the
Jaccard coefficient was high for this test, indicating that false
negatives pairs are low in the k-means−− result. As a result
of these high F-score values, we can conclude that if the qual-
ity of two clusters are high, then true positive numbers should
be high as well. Then this higher Jaccard coefficient should
have come from the low false negative pairs. This indicates that
k-means−− was good at identifying pairs of points that are in
different clusters but it was not good at identifying some normal
instances as normal instances.

Our third data set was the Wine data set. Both density-
based and representative-based algorithms performed well on
this data set. DBSCAN and DBSCAN++ algorithms gave best
F-scores around 0.98 and best false alarm rates around 0.14 and
best Jaccard coefficients of 0.83 (table 2, table 3 and table A1).
Note that the best Jaccard coefficient came from uniform ini-
tialization of DBSCAN++. The best value for the DBSCAN++

k-center was 0.71. k-means−− algorithm gave the best results
for this data set in terms of all the assessment metrics. F-score
of 0.98, false alarm rate of 0.14 and Jaccard coefficient of 0.81
(table 4).

Glass data set was our fourth data set. On both types of
algorithms (representative-based and the density-based), they
were able to identify the noise instances as noise instances but
there were lot of false positives. Both algorithms types gave
more than 0.8 F-score, indicating that the clustering is of high
quality. But both types of algorithms had very high false alarm
rates, which means algorithms classified normal instances as
noise instances. Both result types had low Jaccard coefficients
as well, which occurred due to high false positives and false
negatives. This occurred due to classifying pairs of normal in-

stances in two different clusters. This shows that both algo-
rithms could not identify the anomalies correctly.

The fifth data set is the BreastW data set, which has around
35% of outliers. Both types of algorithms performed very well
on this data set. Both had very low false alarm rates and high F-
scores, and Jaccard coefficients, which indicates that algorithms
were able to predict the anomalies accurately. BreastW data
set has a Gaussian-based and density-based cluster structure,
which helped the algorithms to identify the cluster structures
more accurately.

However, we could not run our DBSCAN or DBSCAN++

implementations on large data sets because of the KDTree lim-
itations. As a result, we used an approximate nearest neighbour
library to query the nearest neighbours. We tested this on Shut-
tle data set, which has 43500 data points. There are 7 ground
truth class labels in the data set. Class label 1 has the highest
frequency, all the other classes has lower frequencies compared
the class 1. We removed data with class label 4 and consid-
ered all other classes except class 1 as outliers. The important
thing about this data set is that its outliers are in small clus-
ters. For example, class 2, 3, 5, 6, 7 are outlier classes. If those
outlier classes have different densities, such as lower densities,
density-based algorithms cannot detect those outliers by tweak-
ing the minpoint and epsilon parameters. Please refer table 5.
With eps = 9, we had the lowest false alarm rate, and then
it increases. This is because outliers form small clusters and
density-based algorithms cannot find it by tweaking the param-
eters due to breaking of cluster structure. Out of DBSCAN and
DBSCAN++ algorithms, DBSCAN on ANN performed well,
this is because we are only querying a part of data points to find
the core points. Thus, some core points that are identified in
the DBSCAN are no longer identified as a core point, thus we
would get a higher false positive noise points, which is why we
get high false alarm rate for the uniform and k-center initializa-
tion (Refer tables A2 and A3). We also ran this on k-means−−
algorithm, and it gave us excellent results on this data set. Not
only it took less time, but the resultant clusters were of higher
quality. In table 6, we have very low false alarm rates and high
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F-score. We even changed the input k value to the algorithm
and checked the results, even if we input a higher cluster value,
we still get the correct numbers of outliers, with good results.
We even changed the range of outlier numbers input to the pa-
rameter and algorithm seem robust even if we slightly increase
or decrease the number of outliers.

Next, we modified the DBSCAN on ANN algorithm as
mentioned in 2.4 then we ran the algorithm on Shuttle data set.
We got extremely good results (refer table 7). We changed the
threshold to 0.2 because the Shuttle data set only has 1 class
and it takes about 80% of the data. We ran the experiments on
a wide range of eps values from 4.5 to 28.5. The results we ob-
tained were better. We got best F-score of 0.99 and False alarm
rate of 0.88, and Jaccard score of 0.91. This accuracy is better
than the k-means results. The best thing about this is that we
only need to know the percentage of outliers in the data set. We
do not need the number of clusters in the data to get a better
result. However, we ran this on normalized and dimensionality
reduced Pima data set, hoping to see better results, but we did
not obtain better results, but they were very close to DBSCAN
results. Thus, we did not include the results in this paper.

One of the interesting observation that was identified in the
results is that k-center initialization of DBSCAN takes more
time to run than the normal DBSCAN instance on the same pa-
rameters, even for a small factor value. This contradicts with
the results shown in [19], where they showed that k-center ini-
tialization runs faster than normal DBSCAN. However, we did
not see this in our results. It seems that speed up gained from
running fewer KDTree queries does not compensate the time
that it takes to initialize k-center points. We also implemented
a slightly better k-center initialization algorithm mentioned in
[20] and improved the calculations by vectorizing. Still, time
taken to run the DBSCAN++ on k-center is greater than DB-
SCAN on same parameters. However, DBSCAN++ on uniform
initialization ran faster than all the other algorithms.

4. Conclusions and Future Directions

From the results obtained from these experiments, we can
conclude that k-means−− is a more robust algorithm than DB-
SCAN or DBSCAN++ algorithms in terms of time and per-
formance, especially when data sets have small outlier clusters
with different densities. Density-based algorithms struggle to
find the outliers, especially if the small outlier clusters have
higher densities than the normal clusters, it becomes challeng-
ing to tweak the DBSCAN hyper-parameters. k-means−− al-
gorithm seems more robust in this case; however, we need to
know the number of clusters and outlier percentage beforehand
to get better results. Nonetheless, k-means−− has shown to be
robust to slight changes in input parameters. Refer tables A4
and 6. The modification of DBSCAN algorithm with approx-
imate nearest neighbour implementation worked very well in
terms of time. We could also improve the k-center initialization
a little bit more by paralleling the k-center initialization, which
can be a good future direction in terms of improving the run-
ning time. Although k-means−− is robust, we can create syn-
thetic data sets that would not work very well on k-means−− by

adding non-Gaussian-shaped clusters and adding noise points.
The problem with density-based algorithms to find noise points
is that it is hard for the density-based algorithms to identify
small outlier clusters, but we can change this by modifying the
DBSCAN algorithm. We need to add another parameter (say
“t”) that will act as a threshold for determining a small outlier
cluster. At the end of the DBSCAN algorithm, when we go
through the connected components, we need to check the num-
ber of nodes in these connected components, if the fraction of
number of nodes in these connected components is less than
this threshold, we can identify these nodes as a outlier cluster.
By making this modification, we can overcome this weakness
in density-based algorithms. We already made this change and
tested on a data set with oultlier clusters which resulted in ex-
tremely good results. However, we could not run this modi-
fied algorithm on all the data sets because of time limitations,
we believe testing this modified algorithm will be a good fu-
ture direction. The weakness of k-means−− is that we need to
have an understanding about the cluster structure to get accu-
rate result, but we believe by making this change to DBSCAN
we could have a robust algorithm than the k-means−−. An-
other proposed change will be to run in polynomial time given
that we only have to go through the connected components to
find the size of it; if we improve this graph data structure we
should be able to this in constant time. These are some good
future directions that we can use. We still believe density-based
algorithm should be more powerful than representative-based
methods, but we need to make some modifications to these al-
gorithms to make it better. And also find how these algorithms
can perform against unsupervised learning (like Isolation For-
est) [24] and semi-supervised learning (One-Class Support Vec-
tor) [25] based outlier detection methods as well. Also, we
should look at how k-nearest neighbour-based methods perform
against these algorithms. Another future work area would be to
find how we can use time series data on density-based algorithm
to find the outliers.
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Table A1: DBSCAN++ uniform results on the dataset

Dataset Parameters Evaluation Measures
min pts factor epsilon f1 score False alarm Adjusted Rand Index Jaccard

Pima 10 0.2 0.9 0.1805 0.651 0 0.349
10 0.35 2 0.6797 0.3396 0.1177 0.4136
20 0.2 5 0.1805 0.651 0 0.349

Cardio 10 0.5 3 0.88 0.6 0.3 0.27
10 0.5 4 0.88 0.46 0.2 0.15
10 0.5 5 0.88 0.17 0.18 0.12

Wine 4 0.3 25 0.78 0.78 0.14 0.21
4 0.3 30 0.9 0.6 0.43 0.4
4 0.3 35 0.89 0.61 0.41 0.38
4 0.3 38 0.97 0.23 0.83 0.76
4 0.3 72 0.98 0.16 0.88 0.83

Glass 8 0.5 0.4 0.55 0.93 -0.02 0.06
8 0.5 0.9 0.83 0.85 0.13 0.15
8 0.5 1.2 0.87 0.8 0.21 0.19
8 0.5 2 0.86 0.87 0.11 0.11

BreastW 10 0.5 2.9 0.94 0.12 0.79 0.84
10 0.5 4 0.96 0.07 0.84 0.89
10 0.5 5 0.84 0.06 0.49 0.6
10 0.5 5.5 0.77 0.05 0.33 0.44
20 1 4 0.9607 0.0794 0.847 0.8958
20 1 5 0.9634 0.0542 0.8576 0.9008

Table A2: Result of Shuttle data set on DBSCAN++ on ANN with uniform initialization

Dataset Parameters Evaluation Measures
minpts eps factor f-score FAR ARS JS #noise recnzd

Shuttle 10 4.5 0.1 0.7798 0.87893 0.05142 0.10694 13234
10 4.8 0.1 0.7947 0.87076 0.06308 0.11277 12169
10 5 0.1 0.7961 0.87803 0.05530 0.10488 11582
10 5.3 0.1 0.8028 0.88439 0.04908 0.09699 10638
10 5.5 0.1 0.8134 0.86978 0.06712 0.10918 10154
10 5.8 0.1 0.8186 0.87152 0.06558 0.10584 9673
10 6 0.1 0.8188 0.87662 0.05956 0.10065 9395
10 6.8 0.1 0.8180 0.89827 0.03413 0.08005 8597
10 7 0.1 0.8261 0.87291 0.06435 0.10194 8553
10 9 0.1 0.8272 0.89449 0.03868 0.08094 7713
10 10 0.1 0.8285 0.90223 0.02960 0.07354 7398
10 28 0.1 0.8226 0.92128 0.00768 0.05852 7255
10 28.5 0.1 0.8203 0.92319 0.00551 0.05739 7575
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Table A3: Result of Shuttle data set on DBSCAN++ on ANN with KCENTER initialization

Dataset Parameters Evaluation Measures
minpts eps factor f-score FAR RS JS #noise pts rcgzd

Shuttle 10 4.5 0.1 0.63363 0.92146 0.00109 0.07327 20717
10 4.8 0.1 0.66854 0.92519 0.00127 0.06839 18291
10 5 0.1 0.68213 0.93147 -0.00188 0.06170 16989
10 5.3 0.1 0.70901 0.93335 -0.00383 0.05880 14934
10 5.5 0.1 0.72200 0.93444 -0.00510 0.05716 13929
10 5.8 0.1 0.73162 0.93805 -0.00852 0.05329 13025
10 6 0.1 0.73937 0.94119 -0.01173 0.04999 12320
10 6.8 0.1 0.75174 0.95081 -0.02170 0.04069 11051
10 7 0.1 0.75317 0.95335 -0.02429 0.03839 10832
10 9 0.1 0.75998 0.96095 -0.03254 0.03151 10029
10 10 0.1 0.76010 0.96276 -0.03435 0.02998 9941
10 28 0.1 0.75842 0.98063 -0.05189 0.01525 9609
10 28.5 0.1 0.75853 0.98061 -0.05190 0.01526 9603

Table A4: Result of Pima data set on k-means−− after running PCA and selecting 7 Components

Dataset Parameters Evaluation Measures
k lterations l (outliers) f1 score FAR ARS JS type

Pima 1 50 250 0.6559 0.4880 0.0899 0.3282 k-means−−
1 50 268 0.6823 0.4552 0.1247 0.3744 k-means−−
1 50 275 0.6923 0.4436 0.1393 0.3923 k-means−−
2 50 250 0.6743 0.4600 0.1147 0.3525 k-means−−
2 50 268 0.6979 0.4328 0.1487 0.3958 k-means−−
2 50 275 0.6534 0.4982 0.0851 0.3407 k-means−−
3 50 250 0.7163 0.3960 0.1815 0.4114 k-means−−
3 50 268 0.6823 0.4552 0.1247 0.3744 k-means−−
3 50 275 0.6689 0.4764 0.1053 0.3609 k-means−−
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Table A5: Result of DBSCAN and DBSCAN++ algorithms on Pima dataset after running PCA with 7 Components

Dataset Parameters Evaluation Measures
minpts eps factor f-score FAR RS JS Type

Pima 270 0.5 1 0.5377 0.5806 0.0068 0.0455 DBSCAN
270 0.4 1 0.6566 0.4425 0.1001 0.2812 DBSCAN
270 0.35 1 0.6901 0.4554 0.1342 0.4064 DBSCAN
270 0.3 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
270 0.2 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
270 0.1 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
280 0.5 1 0.5430 0.5455 0.0110 0.0524 DBSCAN
280 0.4 1 0.6617 0.4350 0.1066 0.2899 DBSCAN
280 0.35 1 0.6973 0.4532 0.1441 0.4330 DBSCAN
280 0.3 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
280 0.2 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
280 0.1 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
290 0.5 1 0.5456 0.5294 0.0131 0.0559 DBSCAN
290 0.4 1 0.6684 0.4301 0.1145 0.3046 DBSCAN
290 0.35 1 0.6821 0.4767 0.1207 0.4469 DBSCAN
290 0.3 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
290 0.2 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
290 0.1 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
270 0.5 0.5 0.5433 0.5676 0.0095 0.0554 Initialization.UNIFORM
270 0.4 0.5 0.6613 0.4513 0.1030 0.3006 Initialization.UNIFORM
270 0.35 0.5 0.6937 0.4540 0.1391 0.4185 Initialization.UNIFORM
270 0.3 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
270 0.2 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
270 0.1 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
280 0.5 0.5 0.5692 0.4348 0.0323 0.0903 Initialization.UNIFORM
280 0.4 0.5 0.6692 0.4439 0.1126 0.3175 Initialization.UNIFORM
280 0.35 0.5 0.6859 0.4724 0.1262 0.4487 Initialization.UNIFORM
280 0.3 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
280 0.2 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
280 0.1 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
290 0.5 0.5 0.5451 0.5641 0.0104 0.0586 Initialization.UNIFORM
290 0.4 0.5 0.6770 0.4242 0.1250 0.3239 Initialization.UNIFORM
290 0.35 0.5 0.6833 0.4755 0.1226 0.4491 Initialization.UNIFORM
290 0.3 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
290 0.2 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
290 0.1 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
270 0.5 0.5 0.5458 0.5526 0.0116 0.0588 Initialization.KCENTRE
270 0.4 0.5 0.6613 0.4513 0.1030 0.3006 Initialization.KCENTRE
270 0.35 0.5 0.6821 0.4762 0.1207 0.4420 Initialization.KCENTRE
270 0.3 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
270 0.2 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
270 0.1 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
280 0.5 0.5 0.5468 0.5610 0.0113 0.0619 Initialization.KCENTRE
280 0.4 0.5 0.6618 0.4518 0.1034 0.3025 Initialization.KCENTRE
280 0.35 0.5 0.6183 0.5280 0.0469 0.4359 Initialization.KCENTRE
280 0.3 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
280 0.2 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
280 0.1 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
290 0.5 0.5 0.5468 0.5610 0.0113 0.0619 Initialization.KCENTRE
290 0.4 0.5 0.6612 0.4550 0.1021 0.3036 Initialization.KCENTRE
290 0.35 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
290 0.3 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
290 0.2 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
290 0.1 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
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