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Abstract

New challenges like the outbreak of new diseases, government policies, war and insurgency etc. present distortion, delay and denial of persons’
access to ART, thereby fuelling the spread and increasing the burden of HIV/AIDS. A mathematical model is presented to study the transmission
dynamics and control of HIV infection. The qualitative and quantitative analyses of the model are carried out. It is shown that the disease-free
equilibrium of the model is globally asymptotically stable whenever the basic reproduction number is less than unity. It is also shown that a unique
endemic equilibrium exists whenever the basic reproduction number exceeds unity and that the model exhibits a forward bifurcation. Furthermore,
the Lyapunov function is used to show that the endemic equilibrium is globally asymptotically stable for a special case of the model whenever the
associated basic reproduction number is greater than unity. The model is calibrated to the data on HIV/AIDS prevalence in Nigeria from 1990 to
2019 and it represents reality. The numerical simulations on the global stability of disease-free equilibrium and endemic equilibrium justify the
analytic results. The fraction of the detected individuals who are receiving treatment and stay in the treatment class plays a significant role as it
influences the population of the latently-infected individuals and AIDS class as the treatment prevents the individuals from progressing into the
AIDS class.
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1. Introduction

Efficient and effective testing is a gateway to HIV treatment
and it is an important element of efforts to stop the AIDS epi-
demic [1]. A positive diagnosis allows an HIV-infected per-
son to receive antiretroviral therapy (ART) [2]. The ART sup-
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Ajao )

presses the replication of the virus and this prevents transmis-
sion to one’s sexual partner. Thus, early access to antiretroviral
therapy (ART) and support for continued treatment is important
not only to improve the health status of HIV-infected individu-
als but also to prevent the transmission of HIV [3].

In 2021, 28.7 million people were receiving ART globally,
and the global ART coverage was 75%. At the end of 2021,
only 52% of children aged 0 to 14 years had received ART
and World Health Organization recommends that more efforts
should be put in place to scale up treatment, most especially for
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children and adolescents [3].
In the WHO African region, where two-thirds of the disease

burden exist, access to treatment is an issue for people living
with HIV due to many factors. In South Africa, discrimination
and stigmatization still remain major obstacles to HIV response
efforts which also affect children. According to a UN report,
African children are neglected when it comes to HIV treat-
ment [4]. UNAIDS reported that despite the global scientific
advances in providing better treatment for children and adults,
children with HIV in Indonesia have difficulties accessing an-
tiretroviral therapy. The deeply rooted societal and gender in-
equalities create barriers to women, children, and adolescents
accessing quality prevention and care services and thereby mak-
ing the situation worse [5]. The report of [6] explained how
government policy creates a barrier to HIV treatment. Several
factors have been identified as barriers to HIV treatment (see
[7-10]).

The modelling of the transmission of infectious diseases is
now influencing the theory and practice of disease management
and control. Mathematical modelling now plays a significant
role in policy decision-making regarding the epidemiology of
diseases in many countries [12]. Several models have been de-
veloped to study the dynamics of HIV transmission (see [13-
16]). Apentang et al [17] studied the impact of the implemen-
tation of HIV prevention policies therapy and control strategies
among HIV/AIDS new cases in Malaysia. The study revealed
that the use of condoms and uncontaminated needle-syringes
are important intervention control strategies. Yang et al. [18]
studied the global dynamics of an HIV model, which incorpo-
rates senior male clients and their results showed that diagno-
sis, treatment and education have a positive impact on control-
ling HIV transmission, while senior male clients increase the
number of new cases of HIV and prolong the time of the out-
break. Dubey et al. [19] modelled the role of acquired immune
response and antiretroviral therapy in the dynamics of HIV in-
fection. Ghosh et al. [20] worked on an HIV/AIDS model of an
SI-type with the inclusion of media and self-imposed psycho-
logical fear and their results revealed that awareness is more
effective in eradicating HIV infection.

The existing models in the literature failed to consider the
partitioning of detected individuals who are receiving treatment
and those who do not access treatment. Hence, we proposed
a mathematical model to study the transmission dynamics of
HIV in Nigeria. We assume that a fraction of individuals that
are detected moves to the treatment class while the remaining
fraction moves to the AIDS class.

The paper is structured as follows: section 2 contains the
method used in the study, Section 3 has the numerical simula-
tions and discussion of results, while the conclusion follows in
section 4.

2. Method

2.1. Model Formulation

Here, we give the description of how the HIV model is de-
signed and formulated. The overall population of humans at

the time (t) is denoted by N(t) and is partitioned into six dis-
tinct classes namely: the susceptible population S (t), the HIV-
latently infected L, the HIV-infected undetected class HU , the
HIV-infected detected class HD, the treatment class HW , and the
AIDS class A. Thus

N(t) = S (t) + L(t) + HU(t) + HD(t) + HW (t) + A(t) (1)

The susceptible individuals are assumed to be recruited into the
population at the rate π and get infected after effective contact
with HIV-infected people in the latent, undetected, detected,
treatment and AIDS classes at the rate λ, which is given by

λ =
β(L + η1HU + η2HD + η3HW + η4A)

N
(2)

where β is the contact rate, η1, η2, η4 ≥ 1 and η3 ≤ 1 are the
modification parameters which compare the level of transmissi-
bility of the disease in HU ,HD, A, and HW classes with respect
to people in L class.

It is assumed that a fraction ε of newly infected individuals
progresses to the latently-infected class and the remaining frac-
tion with compromised immunity moves to the HIV-undetected
class. A fraction ω of people in the latent class who are de-
tected progresses to the detected class while the other fraction
1 − ω proceeds to the undetected class. The population of the
HIV-detected class increases as a result of the detection of the
undetected individuals at the rate γ and diminishes as a result of
fraction α of detected individuals who are receiving treatment
that progresses to treatment class and the remaining fraction
1 − α that progresses to AIDS class. We assume that those that
are receiving treatment move to the latent class at the rate φ.
The AIDS class reduces as a result of death due to the disease
at the rate δ. Each population size reduces as a result of nat-
ural death which occurs in all classes. The flow chart of the
model showing the interaction among the classes is depicted in
figure 1. Thus, with the assumptions above, we present a deter-
ministic model of HIV infection as follows:

dS
dt

= π − λS − µS

dL
dt

= ελS + φHW − (κ + µ)L

dHU

dt
= (1 − ε)λS + (1 − ω)κL − (γ + µ)HU (3)

dHD

dt
= ωκL + γHU − (τ + µ)HD

dHW

dt
= ατHD − (φ + µ)HW

dA
dt

= (1 − α)τHD − (µ + δ)A

where

λ =
β(L + η1HU + η2HD + η3HW + η4A)

N
(4)

N = S + L + HU + HD + HW + A (5)

For convenience, we re-write the above equation (3) as thus:

dS
dt

= π − λS − µS
2
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Figure 1. Schematic diagram of the model

dL
dt

= ελS + φHW − T1L

dHU

dt
= (1 − ε)λS + WL − T2HU (6)

dHD

dt
= XL + γHU − T3HD

dHW

dt
= YHD − T4HW

dA
dt

= ZHD − T5A

where

T1 = κ + µ T2 = γ + µ T3 = τ + µ T4 =φ + µ

T5 = µ + δ W =(1 − ω)κ X =ωκ Y =ατ

Z = (1 − α)τ

2.2. Model analysis
2.2.1. Basic properties

This section explores the basic dynamical features of the
model (3). We claim the following:

Lemma 2.1. The closed set

D =

{
(S , L,HU ,HD,HW , A) ∈ R6

+ : N ≤
π

µ

}
is positively invariant with non-negative initial values in R6

+.

Proof. Summing up all the compartments of (3) with δ = 0 we
have

dN
dt

= π − µN

It follows that
dN
dt
≤ π − µN

Then
N(t) ≤ N(0)e−µt +

π

µ
(1 − e−µt)

If N(0) ≤
π

µ
, then N(t) ≤

π

µ
. Hence, all solutions of the model

having their starting values in D stay there for t > 0. This means
that D is positively invariant and in this region, the model is
considered to be epidemiologically meaningful and mathemat-
ically well-posed. Hence, we can study the dynamics of the
basic model (3) in D.

2.2.2. Stability of the disease-free equilibrium
The disease-free equilibrium of the model (6) denoted by

E1 is given by

E1 = (S 0, L0,HU0,HD0,HW0, A0) =

(
π

µ
, 0, 0, 0, 0, 0

)
(7)

By adopting the approach of the Next Generation Matrix
method as given by [25], the matrices F (new infection terms)
and V (Transition terms) are as given below:

F =


εβ εβη1 εβη2 εβη3 εβη4
(1 − ε)β (1 − ε)βη1 (1 − ε)βη2 (1 − ε)βη3 (1 − ε)βη4
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (8)

and

V =


T1 0 0 −φ 0
−W T2 0 0 0
−X −γ T3 0 0
0 0 −Y T4 0
0 0 −Z 0 T5

 (9)

Then R0 = ρ(FV−1), is given by

R0 =

β


(1 − ε)[T1T3T4T5η1 − XYT5φη1 + T1T4T5γη2
+T1T5Yγη3 + T1T4Zγη4 + YT5γφ]
+ε(XT2 + γW)[T4T5η2 + YT5η3 + ZT4η4]
+εT3T4T5(T2 + Wη1)


T5(T1T2T3T4 − XYT2φ −WYγφ)

(10)

where ρ is the spectral radius of the dominant eigenvalue
of the matrix FV−1. Hence, using the Theorem 2 of [25], the
following result is established:

Lemma 2.2. The disease-free equilibrium of model (6) is lo-
cally asymptotically stable whenever the basic reproduction
number R0 < 1 and otherwise if R0 > 1

The threshold R0 represents the basic reproduction number
of the disease, which is the average number of secondary infec-
tions emanating from a single infection source in a population
consisting of only the susceptible people [26]. The implication
of lemma 2.2 is that a small introduction of infected individuals
into the community/population will not produce a substantial
outbreak of the disease when the basic reproduction number is
less than unity and therefore the disease vanishes. In the next
theorem, we show that the disease can be eradicated irrespective
of the initial sizes of the sub-populations when R0 < 1 through
the exploration of the global stability of the disease-free equi-
librium.

Theorem 2.3. The disease-free equilibrium (7) of the HIV
model is globally asymptotically stable whenever R0 < 1

3
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Table 1. Description of the parameters used in the model (3)
Parameter Description Value Source
π Recruitment rate 618893 [21]
β Contact rate 0.0785 Estimated
µ Natural death rate 0.022 [22]
α Fraction of detected

individuals that are treated 0.29 Assumed
φ Progression rate from

treatment class to latent class 0.201 Assumed
γ Detection rate of undetected individuals 0.392 Estimated
ε Fraction of newly infected people

with uncompromised immunity 0.9 Assumed
κ Progression rate of

people in the latent class 0.01 [15]
η1, η2, η3, η4 Modification parameters 1.17,1.2,0.04,0.18 Assumed
δ Death due to the disease 0.33 [23]
τ Treatment rate 0.89 [24]
ω Fraction of latent

individuals that are detected 0.1 Assumed

Proof. Using the Lyapunov function defined by

F = E1L + E2HU + E3HD + E4HW + E5A (11)

By differentiating (11), we have

F′ = E1L′ + E2H′U + E3H′D + E4H′W + E5A′ (12)

where

E1 = (1 − ε)β(Xη1 − γ) − N(T2X + γW)
E2 = εβ(γ − Xη1) − γT1N

E3 = εβS (Wη1 + T2) + T1[(1 − ε)η1βS + T2N]

E4 =

(
φ[(1 − ε)βS (Xη1 − γ) − N(T2X + γW)]
−βS η1[ε(T2X + γW) + γ(1 − ε)]

)
T4

E5 =

εβS [(T2X + γW)(T4η2 + Yη3) + T4T3(Wη1 + T2)]
+(1 − ε)βS [T1T4(η2γ + T3η1) − Yφ(Xη1 − γ)
+Yη3γ] + N[Yφ(T2X + γW) − T1T2T3T4]


ZT4

Then by substituting (6) into (12), it becomes

F′ = E1(ελS − T1L + φHW ) + E2((1 − ε)λS + WL (13)
− T2HU) + E3(XL + γHU − T3HD) + E4(YHD − T4HW )
+ E5(ZHD − T5A)

Simplifying (13) further leads to

F′ =


−NT5(YφT2X + YφγW − T1T2T3T4)
−εβS (T2X + γW)[ZT4η4 + T5T4η2 + T5Yη3]
−(1 − ε)βS [T5T1T4η4γ + T5T3η1
−YT5φ(Xη1 − γ) + T5Yη3γ + ZT4γT1η4]
−εβS T5T4T3(Wη1 + T2)

 A

ZT4

F′ =
T5N[Yφ(T2X + γW) − T1T2T3T4]

ZT4

( S
N

R0 − 1
)

A

F′ ≤
(

T5N[Yφ(T2X + γW) − T1T2T3T4]
ZT4

)
(R0 − 1)A

Since S ≤ N in D, Therefore,F′ ≤ 0 if R0 ≤ 1 with F′ = 0
if and only if A = 0, L = 0,HU = 0,HD = 0,HW = 0. Also,
the largest invariant set in (S , L,HU ,HD,HW , A) ∈ D : F′ = 0
is the singleton E1. By LaSalle Invariance Principle [27], ev-
ery solution having its starting values in D, approaches E1 as
t → ∞, and therefore, the disease-free equilibrium is globally
asymptotically stable whenever R0 < 1.

The theorem implies that the disease can be eliminated irre-
spective of the initial sizes of the subpopulations of the model
whenever the basic reproduction number does not exceed unity.

2.2.3. Existence of endemic equilibrium
The existence of endemic equilibrium is being investigated

here and the condition for the persistence of the disease is being
explored.

Let E2
∗ = (S ∗∗, L∗∗,H∗∗U ,H

∗∗
D ,H

∗∗
W , A

∗∗) represents the en-
demic equilibrium state. Also, let the force of infection at en-
demic equilibrium be represented by

λ∗∗ =
β(L∗∗ + η1H∗∗U + η2H∗∗D + η3H∗∗W + η4A∗∗)

N∗∗
(14)

Then solving the model equations in terms of the λ (force of
infection) at the steady state, we will get the following:

S ∗∗ =
π

λ∗∗ + µ
(15)

L∗∗ =
[εT2T3T4 + φYγ(1 − ε)]λ∗∗S ∗∗

T2(T1T3T4 − φYX) − φYγW
= Q1λ

∗∗S ∗∗ (16)

4
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H∗∗U =
[(1 − ε)(T1T3T4 − φYX) + εWT3T4]λ∗∗S ∗∗

T2(T1T3T4 − φYX) − φYγW
= Q2λ

∗∗S ∗∗

(17)

H∗∗D =
T4[T1γ(1 − ε) + ε(XT2 + Wγ)]λ∗∗S ∗∗

T2(T1T3T4 − φYX) − φYγW
= Q3λ

∗∗S ∗∗ (18)

H∗∗W =
Y[T1γ(1 − ε) + ε(XT2 + Wγ)]λ∗∗S ∗∗

T2(T1T3T4 − φYX) − φYγW
= Q4λ

∗∗S ∗∗ (19)

A∗∗ =
ZT4[T1γ(1 − ε) + ε(XT2 + Wγ)]λ∗∗S ∗∗

T5[T2(T1T3T4 − φYX) − φYγW]
= Q5λ

∗∗S ∗∗

(20)

By the substitution of (16), (17), (18), (19), and (20) into
(14), we have

λ∗∗ =
β(Q1 + η1Q2 + η2Q3 + η3Q4 + η4Q5)λ∗∗S ∗∗

S ∗∗ + Q2λ∗∗S ∗∗ + Q3λ∗∗S ∗∗ + Q4λ∗∗S ∗∗ + Q5λ∗∗S ∗∗
(21)

λ∗∗ =
β(Q1 + η1Q2 + η2Q3 + η3Q4 + η4Q5)λ∗∗S ∗∗

S ∗∗(1 + Vλ∗∗)
(22)

where

V = Q1 + Q2 + Q3 + Q4 + Q5

Q1 =
[εT2T3T4 + φYγ(1 − ε)]

T2(T1T3T4 − φYX) − φYγW

Q2 =
[(1 − ε)(T1T3T4 − φYX) + εWT3T4]

T2(T1T3T4 − φYX) − φYγW

Q3 =
T4[T1γ(1 − ε) + ε(XT2 + Wγ)]
T2(T1T3T4 − φYX) − φYγW

Q4 =
Y[T1γ(1 − ε) + ε(XT2 + Wγ)]
T2(T1T3T4 − φYX) − φYγW

Q5 =
ZT4[T1γ(1 − ε) + ε(XT2 + Wγ)]
T5[T2(T1T3T4 − φYX) − φYγW]

Hence, λ∗∗ =
R0 − 1

V
> 0 when R0 > 1

∴ λ∗∗ has a positive unique solution when R0 > 1. Hence, the
following result is obtained:

Lemma 2.4. There exists a unique endemic equilibrium of the
HIV model equation (6) whenever the basic reproduction num-
ber R0 > 1.

The above result indicates the existence of forward bifurca-
tion which is verified in the next analysis.

2.2.4. Bifurcation analysis
The bifurcation is a phenomenon that describes the changes

in the behaviour of a dynamical system as a result of changes
in the parameter values or initial conditions of the model. This
helps to determine if the disease can be cleared off when the
basic reproduction number is less than unity. We will adopt
the Center Manifold Theory [28] as described by [29][see Ap-
pendix B] to establish the kind of bifurcation that the model
exhibits. The Center Manifold Theory is used to determine the
stability of equilibrium and plays a vital role in bifurcation the-
ory because of the changes in behaviour of the system that take
place on the center manifold.

If β is chosen as the bifurcation parameter for model (6),
then at R0 = 1, we have that

β = β∗ =
T5(T1T2T3T4 − XYT2φ −WYγφ)

(1 − ε)[T1T3T4T5η1 − XYT5φη1 + T1T4T5γη2

+T1T5Yγη3 + T1T4Zγη4 + YT5γφ]
+ε(XT2 + γW)[T4T5η2 + YT5η3 + ZT4η4]
+εT3T4T5(T2 + Wη1)


(23)

If the variables of (6) are changed as follows: S = x1, L =

x2,HU = x3,HD = x4,HW = x5, A = x6 and we use the vector
notation x = (x1, x2, x3, x4, x5, x6)T , then (6) can be re-written
in the form dx

dt = F(x) where F = ( f1, f2, f3, f4, f5, f6)T such
that (6) becomes

dx1

dt
= π − λx1 − µx1 = f1

dx2

dt
= ελx1 + φx5 − T1x2 = f2

dx3

dt
= (1 − ε)λx1 + Wx2 − T2x3 = f3 (24)

dx4

dt
= Xx2 + γx3 − T3x4 = f4

dx5

dt
= Y x4 − T4x5 = f5

dx6

dt
= Zx4 − T5x6 = f6

(25)

The Jacobian (24) at disease-free equilibrium E1 is given by

J(E1) =



−µ −β∗ −β∗η1 −β∗η2 −β∗η3 −β∗η4
0 εβ∗ − T1 εβ∗η1 εβ∗η2 εβ∗η3 + φ εβ∗η4
0 (1 − ε)β∗ + W (1 − ε)β∗η1 − T2 (1 − ε)β∗η2 (1 − ε)β∗η3 (1 − ε)β∗η4
0 X γ −T3 0 0
0 0 0 Y −T4 0
0 0 0 Z 0 −T5


(26)

The matrix (26) has a simple zero eigenvalue at β = β∗ and
hence Center Manifold Theory [28] as described by [29] can
be used to analyse the dynamics of the system. The Jaco-
bian matrix (26) has a right eigenvector denoted by W =

(w1,w2,w3,w4,w5,w6)T and a left eigenvector
V = (v1, v2, v3, v4, v5, v6)T corresponding to the zero eigenvalue.
Then

w1 =

β∗
(
T3T4T5[w2 + η1w3] + (Xw2 + γw3)
×[T4T5η2 + T5Yη3 + T4Zη4]

)
T3T4T5µ

,

w2 = w2 > 0, w3 = w3 > 0

w4 =
Xw2 + γw3

T3
, w5 =

Y[Xw2 + γw3]
T3T4

,

w6 =
Z[Xw2 + γw3]

T3T5

and

v1 = 0, v2 = v2 > 0, v3 = v3 > 0,

5
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Figure 2. Fitting of HIV model (3) to the data of prevalence cases of HIV/AIDS
infection in Nigeria between 1990 and 2019 [30].
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Figure 3. Plot of the different classes of the model when R0 < 1 (R0 = 0.4)
with β = 0.0085 and other values used are in table 1

v4 =

(
(T4T5η2 + YT5η3 + T4Zη4)[εβ∗v2 + (1 − ε)β∗v3]
+φYT5v2

)
T3T4T5

,

v5 =
β∗η3(εv2 + (1 − ε)v3) + φv2

T4
, v6 =

β∗η4(εv2 + (1 − ε)v3)
T5

Computation of a and b
By finding the associated non-zero partial derivatives of

F(x) at disease-free equilibrium, the associated bifurcation
coefficients a and b as given by the Center Manifold The-
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Figure 4. Plot of the different classes of the model when R0 > 1 (R0 = 3.3)
using the values of the parameters in table 1
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Figure 5. Plot of the total number of the infected classes (L+HU +HD +HW +A)
at different initial conditions when R0 = 0.4, with β = 0.0085 and other values
of the parameters used are given in Table 1

ory [28][see Appendix B], are defined by

a =

n∑
k,i, j=1

vkwiw j
∂2 fk
∂xi∂x j

(0, 0)

b =

n∑
k,i=1

vkwi
∂2 fk
∂xi∂β∗

(0, 0)

Then, we obtain

a =
−2 β∗ µ

π

(v2ε + v3(1 − ε) )
× (w2 + w3 + w4 + w5 + w6)
× (η1w3 + η2w4 + η3w5 + η4w6 + w2)


(27)

and
b = (v2ε + v3(1 − ε))[w2 + w3η1 + w4η2 + w5η3 + w6η4]

(28)
6
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Figure 6. Plot of the total number of the infected classes (L+HU +HD +HW +A)
at different initial conditions when R0 = 3.3, with ε = 1, ω = 0 and other values
of the parameters used are given in Table 1
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Figure 7. Graph of the population of the latent class against time when the
fraction of the detected population receiving treatment is varied

From (28), b is positive as usual and a is negative from (27).
Since a < 0 (negative), then the HIV infection model exhibits
a forward bifurcation. This implies that the epidemiological
condition R0 < 1 is necessary and sufficient for the elimination
of HIV infection.

2.2.5. Global stability of the endemic equilibrium
We consider the global stability of endemic equilibrium of

the HIV infection model for a situation when ε = 1 and the frac-
tion of the latently infected people that are detected equals zero
(ω = 0) and also we let β∗ =

β
N . Then, with these assumptions

the model‘s basic reproduction number when ε = 1 and ω = 0
is given by

Ror =

β∗ π

(
Yγ κ T5η3 + Zγ κ T4η4 + γ κ T4T5η2
+κ T3T4T5η1 + T4T3T2T5

)
T5µ (T4T3T2T1 − Yγ κ φ)

0 5 10 15 20 25 30
0

2

4

6

8

10

12
x 10

4

Time (Years)

A
ID

S
C
la
ss

 

 

α=0.1
α=0.25
α=0.4
α=0.55
α=0.7

Figure 8. Graph of the population of the AIDS class against time when the
fraction of the detected population receiving treatment is varied

Also, the model with ε = 1 and ω = 0 possesses a unique
endemic equilibrium point represented by E∗2r , which is given
by

E2r
∗
|ε=1,ω=0 = (S ∗∗, L∗∗,H∗∗U ,H

∗∗
D ,H

∗∗
W , A

∗∗)

and that

S ∗∗ > 0, L∗∗ > 0,H∗∗U > 0,H∗∗D > 0,H∗∗W > 0 and A∗∗ > 0

when Ror > 1

Theorem 2.5. The endemic equilibrium of the reduced model
having ε = 1 and ω = 0 is globally asymptotically stable when-
ever Ror > 1.

Proof. Using the Goh-Volterra type of Lyapunov function, we
have

M = S − S ∗∗ − S ∗∗ln
S

S ∗∗
+ L − L∗∗ − L∗∗ln

L
L∗∗

+ C
(
HU − H∗∗U − H∗∗U ln

HU

H∗∗U

)
+ D

(
HD − H∗∗D − H∗∗D ln

HD

H∗∗D

)
+ E

(
HW − H∗∗W − H∗∗W ln

HW

H∗∗W

)
+ F

(
A − A∗∗ − A∗∗ln

A
A∗∗

)
(29)

where

C =
β∗S ∗∗[T3T4T5η1 + γ(T4T5η2 + YT5η3 + ZT4η4)] + γYφT5

T2T3T4T5
(30)

D =
β∗S ∗∗[T4T5η2 + YT5η3 + ZT4η4] + YφT5

T3T4T5
(31)

E =
β∗η3S ∗∗ + φ

T4
(32)

F =
β∗η4S ∗∗

T5
(33)

7



Ajao et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1389 8

Taking the derivative of (29), we have

Ṁ = Ṡ − S ∗∗
Ṡ
S

+ L̇ − L∗∗
L̇
L

+(
β∗S ∗∗[T3T4T5η1 + γ(T4T5η2 + YT5η3 + ZT4η4)]
+γYφT5

)
T2T3T4T5

×

(
ḢU − H∗∗U

ḢU

HU

)
+
β∗S ∗∗[T4T5η2 + YT5η3 + ZT4η4] + YφT5

T3T4T5

×

(
ḢD − HD

∗∗ ḢD

HD

)
+
β∗η3S ∗∗ + φ

T4

(
ḢW − H∗∗W

ḢW

HW

)
+
β∗η4S ∗∗

T5

(
Ȧ − A∗∗

Ȧ
A

)

Ṁ = 2β∗S ∗∗(L∗∗ + η1H∗∗U + η2H∗∗D + η3H∗∗W + A∗∗) + 2µS ∗∗

− µS −
β∗S ∗∗

2

S
(L∗∗ + η1H∗∗U + η2H∗∗D + η3H∗∗W + A∗∗)

−
µS ∗∗

S
−
β∗S L∗∗

L
(L + η1HU + η2HD + η3HW + A) + φH∗∗W

−
HW L∗∗

L
−

LH∗∗U
L∗∗HU

(
β∗S ∗∗[η1H∗∗U + η2H∗∗D
+η3H∗∗W + A∗∗] + φH∗∗W

)
+

(
β∗S ∗∗[η1H∗∗U + η2H∗∗D + η3H∗∗W + A∗∗] + φH∗∗W

)
−

HU H∗∗D
H∗∗U HD

(
β∗S ∗∗[η2H∗∗D + η3H∗∗W + A∗∗] + φH∗∗W

)
+(

β∗S ∗∗[η2H∗∗D + η3H∗∗W + A∗∗] + φH∗∗W
)

−
(β∗η3S ∗∗ + φ)HDH∗∗

2

W

H∗∗D HW
β∗η3S ∗∗H∗∗W

+ φH∗∗W −
β∗η4S ∗∗HDA∗∗

2

FH∗∗D
+ β∗η4S ∗∗A∗∗

Then

Ṁ =β∗S ∗∗L∗∗
(
2 −

S ∗∗

S
−

S
S ∗∗

)
+ µS ∗∗

(
2 −

S
S ∗∗
−

S ∗∗

S

)
+ β∗S ∗∗η1H∗∗U

(
3 −

S ∗∗

S
−

HU L∗∗S
H∗∗U LS ∗∗

−
LH∗∗U

L∗∗HU

)
+ β∗S ∗∗η2H∗∗D

(
4 −

S ∗∗

S
−

HDL∗∗S
H∗∗D LS ∗∗

−
LH∗∗U

L∗∗HU
−

HU H∗∗D
H∗∗U HD

)

+β∗S ∗∗η3H∗∗W


5 −

S ∗∗

S
−

HW L∗∗S
H∗∗W LS ∗∗

−
LH∗∗U

L∗∗HU
−

HU H∗∗D
H∗∗U HD

−
HDH∗∗W
H∗∗D HW


+β∗S ∗∗η4A∗∗


5 −

S ∗∗

S
−

AL∗∗S
A∗∗LS ∗∗

−
LH∗∗U

L∗∗HU
−

HU H∗∗D
H∗∗U HD

−
HDA∗∗

H∗∗D A


+φH∗∗W

(
4 −

HW L∗∗

H∗∗W L
−

LH∗∗U
L∗∗HU

−
HU H∗∗D
H∗∗U HD

−
HDH∗∗W
H∗∗D HW

)

The arithmetic mean surpasses the geometric mean, then we
have the following inequalities

2 −
S

S ∗∗
−

S ∗∗

S
≤ 0, 2 −

S ∗∗

S
−

S
S ∗∗
≤ 0,

3 −
S ∗∗

S
−

HU L∗∗S
H∗∗U LS ∗∗

−
LH∗∗U

L∗∗HU
≤ 0,

4 −
S ∗∗

S
−

HDL∗∗S
H∗∗D LS ∗∗

−
LH∗∗U

L∗∗HU
−

HU H∗∗D
H∗∗U HD

≤ 0,

5 −
S ∗∗

S
−

HW L∗∗S
H∗∗W LS ∗∗

−
LH∗∗U

L∗∗HU
−

HU H∗∗D
H∗∗U HD

−
HDH∗∗W
H∗∗D HW

≤ 0,

5 −
S ∗∗

S
−

AL∗∗S
A∗∗LS ∗∗

−
LH∗∗U

L∗∗HU
−

HU H∗∗D
H∗∗U HD

−
HDA∗∗

H∗∗D A
≤ 0,

4 −
HW L∗∗

H∗∗W L
−

LH∗∗U
L∗∗HU

−
HU H∗∗D
H∗∗U HD

−
HDH∗∗W
H∗∗D HW

≤ 0

Therefore L ≤ 0 when Ror > 1. Hence, by the LaSalle Invari-
ance Principle [27], every solution of the model tends to E2r∗

as t → ∞ for R0r > 1.

The epidemiological implication of this is that HIV infec-
tion will persist in the community irrespective of the initial sizes
of the subpopulations of the model whenever R0r > 1.

3. Numerical Simulations and Discussion of Results

We fit the HIV model to data on HIV/AIDS prevalence in
Nigeria from 1990 to 2019 as presented in table 2 (see Ap-
pendix. A) sourced from [30]. We use the likelihood func-
tion to estimate the values of the contact rate (β) and the de-
tection rate of the undetected class (γ). The estimated val-
ues of β and γ are 0.0785 and 0.392 respectively. The to-
tal population of Nigeria in 1990 stood at 95214256 based
on [31] and the initial conditions used for the simulations are
as follow: S (0) = 94999422, L(0) = 0,HU(0) = 0,HD(0) =

214834,HW (0) = 0 and A(0) = 0. The time interval of 0 to 29
corresponds to the time interval between 1990 to 2019 and the
values of the parameters used for the simulations are given in
table 1. The results of the numerical simulations of the model
are presented in figures 2 - 8.

In figure 2, we fit the HIV model to data in table 2 and also
obtain the estimated values for the contact rate (β) and the de-
tection rate (γ). The model fits well with the real data and thus
the model represents reality. Figure 3 illustrates the behaviour
of each compartment when the basic reproduction number is
greater than unity. The susceptible class keeps decreasing while
the other infected compartments L,HU ,HD,HW and A are in-
creasing which indicates the persistence of the HIV infection.
Figure 4 shows the trajectories of the model when the basic re-
production number is less than unity. The population of the sus-
ceptible declines and the infected classes L,HU ,HD,HW and A
are reducing after some period, which means that the disease
can be controlled if R0 < 1.

Figures 5 and 6 illustrate the verification of the global sta-
bility properties of the disease-free equilibrium and endemic

8
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equilibrium. The long-term dynamics of the model as depicted
by figure 5 shows that the trajectories converge and the disease
vanishes irrespective of the initial sizes of the subpopulations
when the basic reproduction number is less than unity and fig-
ure 6 shows that the disease persists when the basic reproduc-
tion number is greater than unity. In figure 7, the plot shows the
population of latently infected individuals when the fraction of
the HIV-detected individuals that are receiving treatment is var-
ied. The population of the latently infected increases as this
fraction increases. This is due to the fact that HIV infection
has no cure but can be managed. The graph in figure 8 shows
that the population of the AIDS class reduces as the fraction of
detected individuals receiving treatment increases.

4. Conclusion

We propose a mathematical model to study the transmis-
sion dynamics of HIV and conduct qualitative and quantitative
analyses of the model. The model’s disease-free equilibrium
is locally asymptotically stable whenever the basic reproduc-
tion number is less than unity. Also, there exists a unique en-
demic equilibrium for the model whenever the basic reproduc-
tion number is greater than unity and it is shown that the model
exhibits forward bifurcation which implies that the necessary
condition R0 < 1 is sufficient for the elimination of the dis-
ease. Using the Lyapunov function, we further showed that the
disease-free equilibrium and endemic equilibrium are globally
asymptotically stable whenever the basic reproduction num-
ber is less than unity and greater than unity respectively. The
proposed model fits with the data on HIV/AIDS prevalence in
Nigeria from 1990 to 2019 as it represents the reality. The sim-
ulation shows that the disease can be controlled when the basic
reproduction number is less than unity and persists if otherwise.
The simulations that illustrate the global stability of the model
justify the analytic results. The effect of increasing the frac-
tion of the detected individuals that are receiving treatment is
examined and it increases the population of the latent class and
reduces the population of the AIDS class, since the disease has
no cure, the treatment is meant to improve the health of a pa-
tient by reducing the viral load to an undetected level and pre-
vent a patient from progressing into AIDS. Hence, there is a
need to intensify efforts in the treatment of those who are being
detected.
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Appendix A:

HIV/AIDS Prevalence in Nigeria from 1990-2019 as given
by [30]

Table 2. Data of HIV/AIDS Prevalence in Nigeria from 1990-2019 [30]
Year 1990 1991 1992 1993 1994
Cases 214934 307403 417550 541812 674511
Year 1995 1996 1997 1998 1999
Cases 808728 940842 1065300 1177623 1271363
Year 2000 2001 2002 2003 2004
Case 1347177 1406166 1449357 1479819 1500481
Year 2005 2006 2007 2008 2009
Cases 1515892 1527636 1542107 1558937 1581336
Year 2010 2011 2012 2013 2014
Cases 1609292 1638694 1670713 1707410 1752498
Year 2015 2016 2017 208 2019
Cases 1797982 1841027 1882445 1922997 1963044

Appendix B:

Theorem (Castillo-Chavez and Song [29]). Consider the fol-
lowing general system of ordinary differential equations with a
parameter φ.

dx
dt

= f (x, φ), f : Rn × R→ Rn and f ∈ C2(Rn × R)

where 0 is an equilibrium point of the system(that is, f (0, φ) = 0
for all φ) and

1. A = Dx f (0, 0) is the linearization matrix of the system
around the equilibrium 0 with φ evaluated at 0;

2. Zero is a simple eigenvalue of A and all other eigenvalues of
A have negative real parts;

3. Matrix A has a right eigenvector w and a left eigenvector v
corresponding to the zero eigenvalue.

Let fk be the kth component of f and

a =

n∑
k,i, j=1

vkwiw j
∂2 fk
∂xi∂x j

(0, 0)

b =

n∑
k,i=1

vkwi
∂2 fk
∂xi∂φ

(0, 0)

Then the local dynamics of the system around the equilibrium
point 0 is totally determined by the signs of a and b.

i. a > 0, b > 0. When φ < 0 with |φ| � 1, 0 is locally
asymptotically stable, and there exists a positive unsta-
ble equilibrium; when 0 < φ � 1, 0 is unstable and there
exists a negative and locally asymptotically stable equi-
librium;

ii. a < 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable;
when 0 < φ � 1, 0 is locally asymptotically stable, and
there exists a positive unstable equilibrium;

iii. a > 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable,
and there exists a locally asymptotically stable negative
equilibrium; when 0 < φ � 1, 0 is stable, and a positive
unstable equilibrium appears;

iv. a < 0, b > 0. When φ changes from negative to positive, 0
changes its stability from stable to unstable. Correspond-
ingly a negative unstable equilibrium becomes positive
and locally asymptotically stable.
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