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Abstract

A traditional regression method involving time series variables is often observed at the same frequencies. In a situation where the frequencies
differ, the higher ones are averaged or aggregated to the lower frequency. A Mixed Data Sampling (MIDAS) regression model was introduced to
address such problems. In any country, stakeholders are interested in monitoring and forecasting accurately the Gross Domestic Product (GDP)
using the dynamics of macroeconomic variables. We applied the hybrid QRNN-U-MIDAS model to forecast quarterly GDP using monthly and
weekly data. The Quantile Regression Neural Network (QRNN) is designed to model nonlinear relationships amongst data sampled at the same
frequency. Therefore, we take advantage of QRNN skills using the optimization techniques of gradient descent-based algorithms to optimise
the estimated loss function Ea (τ) , and introduce them into the U-MIDAS framework, which can handle mixed data frequencies, and construct
a QRNN-U-MIDAS model. The suggested hybrid QRNN-U-MIDAS model was implemented in an R-package that we created to perform both
simulation and real-time data applications. The findings indicate that the QRNN-U-MIDAS regression model outperforms competing models
in terms of its capacity for prediction across the conditional distribution of a response variable with a comprehensive view of the information
contained in the variables, which is lacking in other competing models like U-MIDAS, ANN-U-MIDAS etc. Moreso, this novel model will add
to the existing works of literature on robust forecasting models.
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1. Introduction

The conventional forecasting models usually require the
data to be sampled at the same frequency. Consider regression
analysis as a statistical technique that serves as an investigating
tool for the relationships among interrelated variables. Some
econometric models have been developed to forecast time series

∗Corresponding author: Tel.: +60164143464;
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data using explanatory variables; unfortunately, most macroe-
conomic indicators are not sampled at the same frequency. GDP
data, for example, are sampled annually or quarterly, import
and export values are sampled monthly, and most stock data
are sampled daily [1]. Therefore, the idea of constructing re-
gression models that combine data with different sampling fre-
quencies emerged. This raises the issue of how to do empirical
analysis on relationships between data collected at different fre-
quencies.

Forecasting major economic factors like GDP growth is
1
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critical for both the central bank and a country’s industry’s
decision-making processes. Economic data is impacted by the
data sampling rate issue as well as the publishing delay. A pre-
liminary estimate is needed because this data is valuable for
creating and implementing policies. Andreou et al. [2] uses
Mixed Data Sampling (MIDAS) to link variables sampled at
various frequencies without missing high-frequency informa-
tion. To achieve a parsimonious specification, MIDAS regres-
sions are often based on distributed lag polynomials such as
the exponential Almon lag [3]. In general, MIDAS regression
is designed to bridge the gap between retaining the individual
timing information of the high-frequency data and minimising
the number of parameters to be estimated [1, 4].

Unrestricted MIDAS is a modified MIDAS that does not use
any functional lag polynomials such as Almon or Beta. The use
of U-MIDAS in macroeconomic applications is motivated by
the fact that the difference between sample frequencies is not
as large in many situations [5]. The Quantile regression neural
network (QRNN) is flexible to represent linear relationships,
including those with interactions between predictors, without
prior specification of the form of the relationships by the mod-
eler [6].

The superiority of the Quantile Regression Neural Network
is that it reveals the entire conditional distribution of the depen-
dent variables and also complex nonlinear problems, which can
produce more accurate and informative results than other meth-
ods [6]. However, it can only model data of the same frequency.
We introduce QRNN into the U-MIDAS framework work and
construct the QRNN-U-MIDAS model. The proposed model
can present an improved forecast with a comprehensive view
of the information contained in the variables. Unlike MIDAS
regression is often based on distributed lag polynomials such as
the exponential Almon lag to achieve a parsimonious specifica-
tion.

The remaining part of this paper continues from Section 2
with an extensive background of the study, followed by Section
3 detailed research methodology that provides the formulation
of the model and analysis techniques. Section 4 presents both
simulation and actual data results, and finally, Section 5 con-
cludes the paper.

MIDAS models can use higher-frequency observations even
when the corresponding lower-frequency data for the period
is not yet available, and they can analyze time series data of
different frequencies in the same regression without aggrega-
tion or interpolation [7, 8]. When the gap between frequen-
cies is modest, and the risk of parameter proliferation is low
[9], found that utilizing an unconstrained lag polynomial (U-
MIDAS) can simplify model estimation while simultaneously
improving forecasting performance. QRNN-MIDAS, which
employs the restricted lag polynomial (e.g., exponential func-
tion), was recently proposed [10]. The class of MIDAS models
uses the Lag Polynomials function to impose some weights on
the regressors, which may cause the model’s predictive power
to decline if the imposed structure differs from the method used
to generate the data [11]. All of these efforts were made to de-
velop a better model to minimise the error in predicting macroe-
conomic variables like GDP, which depend on the outcomes of

other variables observed at different frequencies. To this end,
however, we developed a unique model we named QRNN-U-
MIDAS by dropping the restrictions on the parameters that are
caused by the use of Almon or Beta polynomials so that it
can provide a better estimate while also increasing prediction
performance along the conditional distributions of the response
variable.

The benefits of the proposed model are that:
1. Unlike QRNN modeling, the suggested QRNN-U-

MIDAS can directly use mixed frequency data (raw)
without pre-processing.

2. By utilizing the QRNN framework, the QRNN-U-
MIDAS model can detect nonlinear patterns and improve
forecasts.

3. The QRNN-U-MIDAS is a novel model that proposes
a method for bridging the gap between neural network-
mixed data frequency analysis, such as ANN-U-MIDAS,
MIDAS, and U-MIDAS. The distribution of the output
variable using QRNN-U-MIDAS enhances the heteroge-
neous effect of the input variables, and detailed informa-
tion is provided for decision makers.

The limitations of QRNN are:
1. The Neural Network is designed to model nonlinear,

mixed relationships among data samples observed at the
same frequencies and cannot dictate some valuable infor-
mation in mixed data samples. As a result, we must use
U-MIDAS to investigate the relationship between vari-
ables of various sample frequencies explicitly.

2. The fact that the error function of QRNN is not differ-
entiable at some point, as its derivative is infinity at the
origin, indicated that optimization methods of standard
gradient-based ANN might prematurely converge, which
leads to sub-optimal model parameters [12].

3. Model complexity can over fit the training data to noise
rather than to signal when the number of input variables
and hidden layers are large. To overcome this overfitting
problem, some researchers proposed using weight decay
regularisation and ensemble average via bootstrap aggre-
gation Breiman [13] in He et al. [14]. QRNN can opti-
mise the overall loss directly and can also train a single
model for forecasting several quantiles [15].

In any country, stakeholders are interested in monitoring
and forecasting accurately the Gross Domestic Product (GDP)
using the dynamics of macroeconomic variables. We will uti-
lize the novel QRNN-U-MIDAS model to estimate quarterly
GDP using monthly and weekly financial variables of Japan
and the United States. Looking at the complexity of some mea-
surements in GDP, they’re mostly taken every quarter of a year.
As a result, weekly predictors such as claims and daily stock
market returns, among others, are available while stakeholders
await the publication of GDP for the next period. Based on
this, high-frequency variables can be used to predict a lower-
frequency variable.

For forecasting quarterly data, we will propose a collection
of monthly macroeconomic indicators, providing data on in-
dustrial production, consumer price index, stock prices, etc.,
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similar to other studies [9]. However, fewer variables could
be considered by extracting significant factors utilizing prin-
cipal component analysis (PCA). The principal features could
then be applied as predictors to forecast GDP growth rates.The
forecasting horizon will be generated from hm = 0, 1, and 2
quarters, as monthly steps h = 1/3, h = 2/3, etc. Root mean
square errors (RMSEs) and other accuracy measurements are
often used in calculating multi-step-ahead forecasts with the HF
forecasting horizons of hm = 1/m, 2/m, and m/m . This study
also considers five quantiles: 0.1, 0.25, 0.5, 0.75, and 0.9.

2. Literature review

Determining how to investigate the diverse nonlinear rela-
tionships between variables on mixed data sampling frequency
can be difficult. However, scholars have made an effort to of-
fer some established approaches in an effort to address this dif-
ficulty. The Mixed Data Sampling regression put forward by
Ghysels [4], among them which can handle the unprocessed
mixed data sampling frequency by adding the functional lag
polynomial weights. Other models to be discussed are, mixed
data sampling frequency (MIDAS) and the Artificial Neural
Network (ANN), and unrestricted mixed data sampling fre-
quency methodologies.

However, these models were limited in their ability to ad-
dress the issue fully as it relates to response variables con-
ditional distribution across the quantiles. In order to exam-
ine the heterogeneous nonlinear interaction between factors on
the frequency of the mixed data sample of the macroeconomic
variables directly and thoroughly, we integrate the U-MIDAS
method into the framework QRNN and create a hybrid quantile
regression neural network with unrestricted mixed data sam-
pling frequency, known as the QRNN-U-MIDAS model. The
benefit of this method is that it shows both intricate nonlinear
problems and the entire conditional distribution of the depen-
dent variables.

Various novel models were proposed using both simulation
and empirical studies about the extent to which financial vari-
ables can be used to predict economic activity. More specifi-
cally, gross domestic product (GDP), inflation rate, and so on
have emerged with robust results, despite the brief literature.
To forecast/nowcast macroeconomic variables, the mixed fre-
quency data sampling frequency (MIDAS) regression was uti-
lized alongside other promising models.

2.1. Mixed data sampling

Variables must be sampled at the same frequency in conven-
tional time series regression methods. In the absence of this,
higher-frequency data are averaged or aggregated into lower-
frequency data, which results in the loss of some vital infor-
mation [7]. According to Lements [8], MIDAS regression pro-
vides more accurate forecasts when the variables are not ag-
gregated to the same frequencies, as reported in Franses [16].
Also, Armesto et al. [17] state that MIDAS regression accom-
modates variables observed at various frequencies. It presents

a simple, flexible, and parsimonious class of time series mod-
els that allow the dependent and independent variables of time
series regressions to be sampled at different frequencies.

MIDAS regression generally fills the gap between keep-
ing the high-frequency data’s individual timing information and
minimising the number of parameters that must be estimated
[1]. Because of the parametric restraints, the weight function is
represented as a nonlinear parametric function in MIDAS mod-
els with minimal number of parameters [18, 19]. MIDAS re-
gression models are popular because they exploit information in
high-frequency data under a parsimonious setting. They handle
issues of frequency mismatch between high and low frequen-
cies without aggregating the data before model estimation by
employing a weighting function that uses lag polynomials [20].
Most researchers used these three methods of processing mixed
frequency data sampling for prediction.

Averaging the higher frequencies, as reported by Bams et
al. [21] and Wang et al. [11], is one technique researchers
use to use the mixed frequencies directly by applying the lag
polynomial function to impose weights on the regressors or its
hybrid where the model is not restricted. We call it the unre-
stricted mixed data sampling method developed by Baumeister
et al. [22]. MIDAS models have been used in several studies to
forecast quarterly time series utilising data collected monthly,
weekly, or daily. Most recent research uses monthly or daily
financial data to forecast quarterly time series. Since the criti-
cal performance indicators of forecasting’s accuracy have con-
firmed the efficacy of the MIDAS-Almon model, researchers
like Gunay et al. [23] and Götz & Hauzenberger [24] applied
the MIDAS-Almon method to test the effect of the COVID-19
pandemic on some countries GDP, like the US, China, Indone-
sia, and so on. The model correctly predicts the decrease in the
gross domestic product during these times.

Das et al. [25] and Babii et al. [26] presented a
novel ”mixed frequency-based regression approach,” along
with Functional Data Analysis (FDA), to study the impact of
global unrest on stock market relationships. The output sug-
gests that global crises generally affect global stock markets.
The level of effect mainly depends on the nature and context
of the crises that drive the feelings in financial markets. Vari-
ous authors reported modelling with more than one predictor at
different frequencies. For example. Khoo & Cheung [27] and
Penev et al. [28]. MIDAS has provided researchers with new
opportunities and possibilities to use any accessible data from
various frequencies most efficiently in forecasting and nowcast-
ing without having to deal with the issue of the varied lags
of several macroeconomic time series variables [4]. Zhao et
al. [29], introduced mixed data sampling regression models
to forecast carbon dioxide emissions. Other researchers con-
ducted a study on financial and macroeconomic problems such
as stock market returns [30], GDP [31–34], and inflation [35].
Mixed frequency regression models provide a practical way to
accept variables sampled at multiple frequencies, allowing for
evaluating many specifications. Compared to naive benchmark
models and estimators, different classes of these models pro-
duce a slight boost in out-of-sample prediction performance at
close horizons [36].
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2.2. Mixed data sampling frequency and other forecasting
models

We will review some novel models that took advantage of
the mixed data sampling frequency regression model to build
robust estimation and forecasting models. Using penalized
least-squares estimators and MIDAS to enforce smoothness via
lag distribution Kapetanios [37] employed daily statistics to
predict monthly inflation rates. According to the findings, the
commodity price index (CPI) can be used to predict inflation
rates [31]. To anticipate actual US GDP growth using crude
oil prices, a time-varying parameter called (TVP-MIDAS) was
adopted. The predictability of GDP growth varies depending
on forecasting horizons. Using a regime-switching GARCH–
MIDAS model, they looked into the relationship between oil
price instability and its primary macroeconomic indicator. The
authors claim that TVP-MIDAS beats the other models used
in the study. The authors stated that GARCH-MIDAS models
could significantly beat their single-regime counterparts when
forecasting out-of-sample oil volatility. Building forecasting
models that can provide a better prediction is encouraged by
stakeholders to optimize operations and gain competitive ad-
vantages [38–40]. The unemployment rate is the best indi-
cator to forecast quarterly GDP growth, according to a study
by Kingnetr et al. [33]. The empirical findings showed that
U-MIDAS outperformed MIDAS regardless of other indica-
tors. Similar findings were reported in Foroni & Schumacher
[5]. MIDAS-based models perform better than the traditional
GARCH-based estimates and conditional quantile specifica-
tions, notably over multi-day forecast horizons [41]. The effect
of ”hot money” or money that moves quickly and often across
financial markets and enables stakeholder lock-in at the best
short-term interest rates, on the performance and instability of
the Chinese stock market was investigated using the GARCH-
MIDAS model.

The empirical findings reveal that there is no clear correla-
tion between the hot money growth rate and the return on the
Chinese stock market, meaning that hot money does not drive
the Chinese stock market and vice versa [42]. However, since
volatility is modelled as the combination of two variables, the
Double Asymmetrical GARCH-MIDAS (DAGM) Model has
the benefit of being more accurate [43]. Renato et al. [44] em-
ployed the MIDAS-quantile regression (MIDAS-QR) method
proposed by Ghysels et al. [8] to explore the association among
high-frequency predictor variables and low-frequency predic-
tand variables at different quantiles. Alternatively, Almon’s
constraint may be excessively harsh on the underlying Data
Generating Process (DGP). As a result, Foroni et al. [7] pre-
sented the unrestricted MIDAS model, which has no restric-
tions as a result of the lag polynomial weights. U-MIDAS [7]
made an effort to compare unrestricted MIDAS (U-MIDAS)
and MIDAS with distributed lag functions estimated by NLS
and find out that U-MIDAS performs better in both simulated
and empirical quarterly GDP and monthly predictors than MI-
DAS when sampling differences are small, similar to OLS, but
not with large differences in sampling frequencies [45]. As
the difference in frequency increases, the U-MIDAS becomes
unappealing because of the parameter proliferation associated

with high-frequency lag growth [46]. In summary, when the
aggregated frequency is small, U-MIDAS regression outper-
forms the MIDAS model. Barsoum & Stankiewicz [9] inves-
tigated the utility of MIDAS models with unconstrained lag
polynomials and a Markov-switching component for modeling
massive datasets. For many macroeconomic applications, the
unconstrained Markov-switching MIDAS model is an excel-
lent choice for the constrained MS-MIDAS model, particularly
when the frequency difference between the variables is small.

2.3. Model specifications

Using parameters of the lagged coefficients of B(k; θ) in a
parsimonious fashion is one of the key MIDAS features. We
call various specifications of MIDAS regression polynomials
the” Exponential Almon Lag,” a specification selection and ad-
equacy testing. Besides the usual properties of the error term,
other specifications of the MIDAS regression models need to be
considered. We first select the functional constraints that will
affect the model’s precision and an appropriate maximum lag
order should be chosen. The best way to address these issues
is to use information criteria to select the appropriate model in
terms of the parameter restriction and the lag orders using either
in-sample or out-of-sample precision measures [47].

In order to estimate and interpret the UMIDAS model, key
assumptions such as aggregation, constant coefficient, linearity,
and uncorrelated measurement errors between high-frequency
and low-frequency variables should be considered. Violations
of these assumptions were addressed through data transforma-
tion, modifying model specifications, adding variables, using
robust estimation techniques, running diagnostic tests, and ex-
ploring alternative models.

2.4. Nowcasting

Nowcasting, derived from the words ”now” and ”forecast-
ing,” has lately gained popularity in economics due to the ris-
ing demand for rapid, short-term economic analyses and projec-
tions. Data on crucial indicators, such as GDP and its compo-
nents, is only released after a significant delay and is suscepti-
ble to modifications afterward [48, 49]. Short-term forecasting
and nowcasting of economic activities are of interest for eco-
nomic and policy decision-making during the Covid-19 crisis.
Nowcasting is regarded as a crucial forecasting topic since it is
frequently utilised as an input for models that are successful in
the medium-term [50].

Using an extensive real-time dataset of about 550 macroe-
conomic indicators from New Zealand and worldwide,
Richardson et al. [51] trains various popular machine learn-
ing algorithms to simulate a genuine nowcasting situation. The
findings suggest that machine learning approaches improve
nowcasting accuracy [20, 52]. The main premise of nowcasting
is to construct an ”early estimate” before the data is officially
released by using information available earlier and at a higher
frequency than the variable of interest [53].
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2.5. Artificial Neural Network (ANN) and MIDAS

Other machine learning algorithms that might effectively
model mixed sampling frequency are briefly mentioned in this
section. Artificial neural networks (ANNs) are models based on
biological neural networks and are used to approximate func-
tions with a high number of inputs. They are typically depicted
as systems of interconnected components that communicate
with one another. Researchers have recently made a tremen-
dous breakthrough in taking advantage of MIDAS regression to
build numerous novel models that can provide better forecast-
ing and dictate volatility in macroeconomic and financial data.
Machine learning has not also been left behind in that regard.
See, for example, a paper by Eds & Goebel [54], that discussed
a hybrid of the mixed data sampling (MIDAS) regression and
back propagation (BP) neural network (MIDAS-BP model) to
forecast carbon dioxide emissions. The forecasting ability of
MIDAS-BP is remarkably superior than MIDAS, OLS, polyno-
mial distributed lags (PDL), and auto-regressive moving aver-
age (ARMA) models in terms of accuracy [29].

Neural network models have been successful in providing
robust forecasting in many areas of research, such as demand
forecast [55], energy market [15], CO2 emissions [29] and sev-
eral competing forecasts Pan et al. [31] in Challu et al. [55].
The popularity of neural network forecasting procedures is not
restricted to industry but has also reached academia [56]. The
versatility of an artificial neural network (ANN) in discovering
nonlinear correlations or patterns among variables is well rec-
ognized [57]. Some of ANN’s characteristics are self-learning,
anti-jumping capacity, and data-driven [58].

Consequently, its robustness can be extended to nonlinear
problems in areas such as economy [59], finance [11], energy
management and environment [60], etc. A typical ANN model
samples time series data at the same rate. In order to forecast
Lahore, Pakistan’s primary weather parameter, Artificial Neural
Networking Multi-layer Perceptron (ANN-MLP) models were
compared with the Exponential Smoothing Algorithm (ETS),
and the Auto-Regressive Integrated Moving Average (ARIMA)
models [38]. Application of ANN to macroeconomic variable
forecasting has been demonstrated, for example, in a study by
Galeshchuk [61], that predicted the exchange rates and that
forecasted the Indian monthly inflation rate [36]. While Ste-
vanović et al. [62], and Xu et al. [11] created a model called Ar-
tificial Neural Network Mixed Data Sampling (ANN-MIDAS)
in recent years to investigate the nonlinear pattern contained in
the variables, and the use of China’s monthly inflation rate esti-
mate serves as evidence of its efficacy.

Based on the QRNN-MIDAS method, frequency alignment
is conducted on each high-frequency variables based on the
maximum lag order as determined by information criteria. The
frequency alignment is then given a weight function to create
a low-frequency variable. This enables the QRNN model to
deal with the MIDAS data in their raw form. In the electric
power business, reliable and accurate load forecasting is es-
sential for decision-making. Traditional point forecasting ap-
proaches are unable to account for uncertainty. This work sug-
gests an improved QRNN (iQRNN) that leverages well-known

deep-learning techniques. It is superior to regular QRNNs in
terms of accuracy, stability, and computing efficiency [62].

However, these models were limited in their ability to ad-
dress the issue fully as it’s related to how the response variable
was distributed along the quantiles. The QRNN model can sim-
ulate the nonlinear relationships between variables observed at
the same frequencies. Still, it is unable to grasp the impor-
tant information present in the mixed data sampling frequency.
In contrast, U-MIDAS directly handles the raw mixed data
sampling frequency without incorporating the polynomial lag
weights. In order to instantly and thoroughly discover the het-
erogeneous relationship among the variables on the mixed data
frequency of the macroeconomic variables, we integrate the U-
MIDAS method into the QRNN framework and create a novel
quantile regression neural network with unrestricted mixed data
sampling frequency, known as the QRNN-U-MIDAS model.

The proposed QRNN-U-MIDAS model aids in preserving
important information concealed in the real dataset by avoiding
potential issues with frequency conversion. The ability to rec-
ognize complex nonlinear interactions between variables with
heterogeneous sample frequencies is flexible. Additionally, it
lessens the covariates’ diverse impacts on the conditional dis-
tribution of a response variable. The advantage of the Quantile
Regression Neural Network is that it displays the conditional
distribution of the dependent variables and complex nonlinear
issues, which can result in more accurate and detailed results
than other approaches.

3. Methodology

We seek to develop a robust model that can display the en-
tire conditional distribution of the dependent variable and com-
plex nonlinear issues, which can result in more accurate and
detailed results than other approaches for variables sampled at
different frequencies. The theoretical basis and formulations of
the models will be discussed. The novel model will be sub-
jected to testing using macroeconomic variables and compared
with other models to examine its efficacy. We consider QRNN
alongside U-MIDAS approach to develop QRNN-U-MIDAS.
The outcome QRNN-U-MIDAS will be considered for com-
parison among other competing models like ANN-U-MIDAS,
U-MIDAS, and MIDAS.

Artificial Neural Networks (ANNs) are powerful in solving
nonlinear problems and handling missing, noisy, and inconsis-
tent data without requiring assumptions about data distribution.
They learn from data and accept numeric inputs directly for
mining purposes, making them applicable to a wide range of
problems Xu et al. [11]. However, the performance of a neural
network model can be influenced by factors like data quality,
variable selection, and network architecture. For time series
data, pre-processing steps such as outlier elimination, handling
missing values, data normalization, and transformation were
conducted before training a neural network.

For example, consider a three-layered QRNN with ‘I’ and
‘h’ input and hidden/inner layer neurons, respectively. The hy-
perbolic tangent sigmoid function will be used to activate the
hidden layer, while the identity function will be used as the
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transfer function in the output layer. Frequency alignment will
be conducted on the variables. An optimum solution procedure
will be provided using the gradient-based optimization algo-
rithm to renew biases and weights [11]. We wish to discuss the
individual models separately.

3.1. U-MIDAS model

Similarly, because the U-MIDAS regression does not en-
force any constraints on the parameters, no bias can arise due
to a potentially inaccurate restriction on coefficients. As a re-
sult, when k is just relatively smaller, the U-MIDAS regression
model provides a good choice for modeling and forecasting [7].
Suppose low-frequency data is measured quarterly while high-
frequency data is measured monthly. The U-MIDAS model for
h-step forecasting can be specified as:

yQ
t = β0 +

k∑
j=1

β jxm
t−h−( j−1)/m + εt, (1)

where yQ
t is a quarterly response variable, xm

t−h−( j−1)/m as
monthly predictors considered at j−1 months before the last
month t−h of the quarter, h represents the forecasting horizon,
frequency mismatch m, which is 3 in this case, and k being the
number of predictors used to predict yQ

t .
For the purpose of demonstration, there are three months in

a quarter, m = 3, let k = 4 and h = 2, the equation will be as:

yQ
t = β0 +β1x3

t−2+β2x3
t−2−(2−1)/3+β3x3

t−2−(3−1)/3+β4x3
t−2−(4−1)/3

= β0 + β1x3
t−2 + β2x3

t−2−1/3 + β3x3
t−2−2/3 + β4x3

t−3. (2)

This implies if yQ
t is the growth rate for the first quarter of 2020,

x3
t−2 refers to the value of the predictor from September 2019.

While x3
t−3 refers to the values from June 2019 and so on. How-

ever, the best specifications for MIDAS and U-MIDAS models
are based on the information criterion (AIC, BIC, or GACV).

The common identification issues in U-MIDAS regressions
include overparameterization, misspecification of the func-
tional form, data availability challenges, and weak instruments,
all of which can hinder the accurate estimation and interpreta-
tion of parameters. Researchers focus on proper model spec-
ification, variable selection, and robust estimation techniques
tailored to the specific data context in U-MIDAS regressions
to address these issues. Several approaches can be employed to
detect overparameterization in U-MIDAS models: model selec-
tion criteria like AIC or BIC, or GACV, assessing variable im-
portance and significance, conducting sensitivity analysis, diag-
nosing collinearity, and considering expert knowledge and eco-
nomic theory. These techniques help determine if the model has
excessive parameters that may not be necessary for accurately
describing the relationship between variables.

Using QRNN-U-MIDAS regressions with macroeconomic
and high-frequency financial data, identification issues such as
overfitting due to model complexity and the choice of neural
network architecture, as well as misspecified lag structures and
input variables, can impact the reliability and generalization of
the model’s predictions. Proper model selection, regularization

Figure 1. Schematic QRNN model neural network.

techniques, and careful consideration of lag structures and input
variables are essential for addressing these identification chal-
lenges, leading to more meaningful predictions of GDP and in-
flation. However, we recommended for further studies to take
care of regularization techniques.

3.2. QRNN model

Suppose a forecasting model consisting of x1, x2, x3, . . . ,xp

predictors, corresponding to ‘p’ input neurons, which connect
to ‘n’ hidden neurons of a single layer and connect to one output
neuron to give out the prediction. We present Figure 1 as the
schematic architecture of neural networks for the purpose of
demonstration.

The j-th hidden layer node output is

g j,t = tanh(
p∑

i=1

xitwH
i j + bH), (3)

where wH
i j is the weights connecting the ith node of the input

to jth node of the hidden layer j = 1, 2, . . . , n and bH is the bias
to the jth node.

The estimate ŷτt (conditional (tau) τ- quantile) is given by;

ŷτt = f o
p∑

i=1

g j,two
j + bo, (4)

where ŷτt = estimated conditional τ- quantile.
f o = output transfer function.
wo

j = weight connecting the output node.
bo = bias of the output.
Usually, Back Propagation (BP) algorithm is used to deter-

mine weights and biases in QRNN at different quantiles. How-
ever, it has a drawback in computational time and delays in con-
vergence rate, among other things. The Particles Swarm Opti-
mization (PSO) is one of the ways to overcome these drawbacks
[6]. QRNN is flexible to represent linear relationships, includ-
ing those with interactions amongst variables without earlier
design by Pradeepkumar & Ravi [6]. The superiority of the
Quantile Regression Neural Network is that it reveals the en-
tire conditional distribution of the dependent variables and also
complex nonlinear problems, which can produce more accurate
and informative results than other methods [6].

6



Hassan et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1394 7

3.3. Building QRNN-U-MIDAS model
Given (yt)

N
t=1 as the response variables observed at low fre-

quency (LF), and a high frequency (HF) predictor as (xt)I
i=1,

mi is the frequency associated with the variable i which is mi

times higher than the lower frequency variable. This is some-
times called frequency mismatches between (yt)N and(xt)I

i=1.
Also, (Li)I

i=1 is the maximum lag order. The following steps are
used to build the QRNN-U-MIDAS model estimation.

1. Frequency alignment is conducted on the input variable
xti to get xi,t−hi, xi,t−1/mi−hi, xi,t−2/mi−hi, . . . , xi,t−Li/mi−hi,
so that xti is transformed into low frequency. By so do-
ing, therefore, the MIDAS variables are transformed to
be of equal frequencies as the response variable. Conse-
quently, it can be solved by ordinary least squares (OLS),
and at this stage, it can be introduced into a neural net-
work [63].

2. The jth hidden layer node g j(τ) is considered by introduc-
ing a sigmoid transfer function f (H) to give:

g j(τ) = f (H)

 I∑
i=1

wH
i j (τ) xi,t−hi + bH

j (τ)

 , (5)

where wH(τ) =( wH
11(τ), wH

12 (τ) , ..., wH
i j (τ) , wH

21(τ), ...
, wH

IJ(τ))T is considered as hidden layer weights, bH
j (τ) is

the vectors of the hidden layer bias, f (H) is a sigmoid
transfer function applied to inner product between the
hidden layer weight and predictors, plus the hidden layer
bias using hyperbolic tangent function.

f (H) =
ex − e−x

ex + e−x . (6)

3. Consequently, the τth conditional quantile ŷ(τ)th is given
as;

ŷ(τ) = f (o)

 I∑
i=1

wo
i (τ) g j (τ) + bo

j (τ)

 , (7)

where wo(τ) = (wo
1(τ) , wo

2(τ) , . . ., wo
j (τ) )T is a weight

associated with the output layer, bo
j (τ) is the output bias,

and f (o) transfer function selected based on the task, us-
ing identity function.

Adding up the three layers of the model we get similar to
what is obtained in Xu et al. [10].

ŷτt = f (o)(
I∑

i=1

wo
i (τ) f (H)(

I∑
i=1

Li∑
I

wH
iI j (τ) xi,t−1/mi−hi+

bH
j (τ)) + bo(τ)), (8)

where all the parameters are as defined above. Usually, the
Back Propagation (BP) algorithm is used to recompute weights
and biases in neural networks at different quantiles lays for op-
timization.

Figure 2 shows how the input variables are introduced into
the neural network and how frequency alignments are handled
at the inner layer. Both feed-forward and back propagation are
indicated.

Figure 2. Feed forward/feed backward QRNN-U-MIDAS with three layers
showing frequency alignment.

3.4. Error function

To estimate the error function of the QRNN-U-MIDAS
model, which we seek to minimize, we define as

E =
1
N

N∑
t=1

(yt − ŷt)2. (9)

The Huber norm is used to build approximations of ρτu.

ρτu =
〈
τh(u), i f u ≥ 0

(τ − 1) h(u), i f u < 0 , (10)

h(u) as the Huber function.

h(u) =
〈

u2

2ε i f 0 ≤ IuI ≤ ε
IuI − ε2 , i f IuI > ε

.

h(u) provides a shift between squared and absolute errors
about the origin.

Eτ =
1
N

N∑
t=1

ρτ(yt − ŷt), (11)

where N denotes the number of observations, yt is the observed
value, ŷt is the predicted output value. We adopt and use the
Huber norm to create smooth approximations of ρτ(u) [11]. We
presented the Huber function as h(u) and the given magnitude
threshold as ε.

The QRNN-U-MIDAS loss E(τ) is revised using the ap-
proximate check function ρa

τ (u). The approximate loss function
in this case is:

Ea(τ) =
1
N

N∑
t=1

ρ
a
τ(yt−̂yτt ) (12)

7
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This approximate loss Ea(τ) is always greater than the curve’s
differentiability ρa

τ (u), which smoothes out at any value of τ.
Using the optimization techniques of gradient descent-based
algorithms to optimise the estimated loss function Ea (τ) . Us-
ing the partial derivatives with respect to the parameters by the
chain rule method, which is presented step by step below.

1. The derivative of Ea (τ) with respect to output weights
w(O)(τ).

∂E(a)
τ

∂w(o)
τ

=
∂E(a)
τ

∂̂y(τ)
t

X
∂̂y(τ)

t

∂w(o)
τ

= −
1
T
ρ

a
τ(yt−̂yτt ). g

(τ), (13)

where gτ= ((gτ1, gτ2, gτ3, . . . , gτj ))
T,

ρ
a
τ(yt−̂yτt ). g

(τ) =


τ, (yt−̂yτt )>ε
τ(yt−̂yτt )/ε, 0≤(yt−̂yτt )≤ε
(1−τ)(yt−̂yτt )/ε, −ε≤(yt−̂yτt )<0
−(1−τ), (yt−̂yτt )<−ε

 .
2. The derivative for the hidden layer weight vector w(H)

τ is
obtained as:
∂E(a)
τ

∂w(H)
τ

=
∂E(a)
τ

∂̂y(τ)
t

X ∂̂y(τ)
t

∂g(τ) X ∂g(τ)

∂w(H)
τ

= − 1
N ρ′

a
τ(yt−̂yτt ).

w(o)
τ . f′

H((w(H)
τ )

T
xt−hi+b(H)

j τ). xt−hi,
where xt−hi = (x1, t−hi, x2, t−hi, . . . ., xI,t−hi)T ,

f ′H((w(H)
τ )

T
xt−hi + b(H)

j τ).
3. The derivative for the output layer biases b(o)(τ) is ob-

tained as:
∂E(a)
τ

∂b(o)
τ

=
∂E(a)
τ

∂ŷ(τ)
t

X
∂ŷ(τ)

t

∂b(o)
τ

= −
1
N
ρ
′a
τ(yt − ŷτt ). (14)

4. The derivative for the hidden layer biases b(H)(τ) is ob-
tained as:

∂E(a)
τ

∂b(H)
τ

=
∂E(a)
τ

∂ŷ(τ)
t

X
∂ŷ(τ)

t

∂g(τ) X
∂g(τ)

∂b(H)
τ

= −
1
N
ρ
′a
τ(yt − ŷτt ). w(o)

τ . f ′H((w(H)
τ )

T
xt−hi + b(H)

j τ).

(15)

In summary, the process of the optimization procedure is as
follows:

The initial weights and biases (w(o)
io , w(H)

io b(o)
io and b(H)

io ) are
estimated randomly. The next sets of parameters as an out-
put of the derivatives are (w(o)

i1 , w(H)
i1 b(o)

i1 and b(H)
i1 ) this itera-

tive process will continue until the optimal loss values is ob-
tained. The maximum iteration K and threshold magnitude ε
= (2−8,2−9,...,2−32)T are set to propagate the loss function Ea(τ)
back to all neurons. Each time the derivatives are calculated, the
parameters are updated. This is the fundamental idea of back-
propagation, which is frequently used to train neural networks
and is effective at resolving this minimization issue. Alterna-
tively put, the approximation check function ρ(a)

τ (u) gets closer
to the initial check function ρτ(u) ie, limε→0 ρ

(a)
τ (u) = ρτ(u). In

a similar vein, we also have
limε→0 Ea(τ) = limε→0

1
N
∑N

t=1 ρ
aτ(yt−̂yτt ) =

1
N
∑N

t=1 ρτ (yt−̂yτt = E(τ).
Collectively, as ε approaches 0, the entire optimization pro-

cess comes to a conclusion and converges to the least E(τ).

3.5. Forecasting design

In most cases, the variables that occur most frequently are
presented at N + d/mi, where, d indicates the most frequent ob-
servations that start the release of yt(τ), as d = 0, 1, 2, . . .,mi.
We observe the forecast of yt(τ) based on the multi-step-ahead
technique. We consider this as the distribution of quantiles
yt+h(τ). From here, we involve quantile operators on QRNN-
U-MIDAS model in Eq. (8) from both sides to obtain:

E(ŷt (τ; h/ΩN, d)

= f o
J∑

j=1

w(o)
j (τ) f H

I∑
i=1

L∑
l=0

w(H)
il j (τ)E(xi, t+h− l

mi−hi
/ΩN, d)

+ b(H)
j (τ)) + b(o)

j (τ). (16)

Ωt,d ≡
{
yt(τ)N

t=1, (xN
t1)N+d/m1

t1/m1 , · · · , (xN
tI )

N+d/mI
tI/mI

}
, and m =

max(m1,m2,m3 · · · ,mI),
where

ϕyt+h (τ) |Ωt,d =

ŷt (τ; h) , h > 0
yt (τ; h) , h ≤ 0 otherwise.

h has a horizon of forecast on the release of the low-frequency
predictor (yt)N

t=1. Then, forecasts of the QRNN-U-MIDAS
model as:

ŷt (τ; h) = f o


J∑

j=1

w(o)
j (τ) f H

 I∑
i=1

w(H)
j (τ)xi, t+h− l

mi −hi

+b(H)
j (τ)

}
+ b(o)

j (τ)
}
. (17)

It is important to note that the multistep-ahead forecast involves
a link amongst the low and the higher frequencies forecast hori-
zons hi, ie., h = [h1] = [h1] = · · · = [h1] where [.] is the upper
limit function.

3.6. Model selection strategy

Determining the maximum lag order values for the QRNN-
U-MIDAS model estimation is essential. L ≡ (l1, l2, l3, · · · , lI)T

and the number of nodes ‘J’ in the hidden layer. Using the gen-
eralized approximate cross-validation (GACV) criterion sug-
gested by Xu et al. [10], we select the ideal pairing of L and J
and describe it as:

GACV(L, J; τ) =
1

N − df

N∑
t=1

ρτ (yt−̂yτt ), (18)

where d f is a measure of the fitted model’s effective-
ness in terms of dimensions, and it may be calculated by∑N

t=1 Cov(ŷ(τ)
t , yt)/σ2yt.

We adopted GACV because, comparisons of GACV, the
Akaike information criterion (AIC), and the Schwarz informa-
tion criterion (SIC) demonstrate that GACV surpasses the other
two in terms of accuracy and computing ease [64]. The GACV
criterion also helps to drastically lower computing complexity

8
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in Xu et al. [10]. The ideal parameter combination (L,J) in this
investigation are determined by:

(L+, J+) = argmin
L,J

(GACV (L, J)). (19)

The best combinations of (L+,J+) with the lowest GACV pa-
rameters are chosen at the end.

3.7. Simulations design

Here we consider Monte Carlo simulations to demonstrate
our novel model’s ability to make better predictions. We will
compare the QRNN-U-MIDAS model with other standard U-
MIDAS, MIDAS and ANN-U-MIDAS models. The following
stages are being used to design the process.

Stage 1: We use low-frequency variable yt of size N =
250, which is equivalent to making 250 quarterly observations.
High-frequency variables, xi,t−l/m1, and zi, t−l/m2. Where xi is the
monthly variable while zi refers to the weekly variables in this
study.

Stage 2: In the trials, we use a rolling forecasting method
to assess the performance of the suggested model in forecasts
made more than one step in advance. The first estimation win-
dow has a fixed size of N1 and ranges from 1 to N1. In order
to move along the entire data set for every rolling window, the
estimating period includes the newest observation while tossing
out the oldest. The following representative quantiles 0.1, 0.25,
0.5, 0.75, and 0.9 - are presented along with the optimal lag
order values and the inner layer nodes, which are determined
by the GACV.Taking into consideration the choice frequencies
of two Variables, where, L1=2,3,4,··· ,9, L2=2,3,4,··· ,12 and J
= 6,7,8,,···16, then each pair (L,J) is used to train the model.
Thus, choosing the ideal pair (L,J) for training models is made
simple by using a data-driven approach like GACV [65].

Table 1 only contains the parameter optimal values in order
to conserve space. The neural network will use the best lag
order and the appropriate number of hidden nodes to train the
model.

We additionally take into account three distinct high fre-
quency prediction horizons hi = 1/m,m/m, and 2m/m and the
equivalent low frequency forecast horizons h = 0, 1, 2in order
to demonstrate the resilience of the QRNN-U-MIDAS model.

Stage 3: We determine the RMSE (root mean squared error)
and MAPE (mean absolute percentage error) values to evaluate
the models’ predictive power.

They are defined as:

RMS E(τ) =

√√√
1
N

N∑
t=1

(yt − ŷτt )
2, (20)

MAPE(τ) =
1
N

N∑
t=1

|(yt−̂yτt )| ∗ 100. (21)

The performance metrics values of RMSE and MAPE are
smaller.

Stage 4: We run the aforementioned simulation 500 times,
and then we present the results along with the Diebold Mariano
(DM) test for the accuracy metrics. The test that Diebold &
Mariano [66] first suggested takes into account a sample path
of loss differentials {dt}Nt=1. For a squared loss function, the for-
mula is dt = e2

t −e
′2
t . The sample average, d asymptotically ap-

proaches a normal distribution under the presumption that the
loss differential is a covariance stationary series:

√
Nd

d
−→N(µ, 2πfd(o)). (22)

In particular, they proposed to test the null hypothesis that
the forecast errors coming from the two forecasts bring about
the same loss: E[e2

t −e
′2
t ]=0 against the two-sided alternative.

Thus, the resulting p-values represent the probability of obtain-
ing the realized forecast error differential or a more extreme one
in a new experiment if the null hypothesis was actually true.
e2

t = forecast error; e
′2
t = benchmark error; dt= differential loss.

The test-statistic that will be used to calculate our p-values
is computed as follows:

DM =
d√

2π f̂ d(o)N
N

, (23)

where, d=
∑N

t=1 dt, 2π f̂ d (o) is a consistent estimate.
Consider 2π f̂ d(0) =

∑N−1
τ=−N−1 wτγd(τ), where γd(τ) =

1
N
∑N

t=|t|+1 (dt−d¯)(dt−|τ|−d¯).

3.8. Data generating process (DGP)
In designing our simulation, we consider some important

features like mixed-frequency variables. Two independent pre-
dictors, x and z, are normally distributed (i = 1, 2, · · · ,N), with
a monthly to quarterly frequency mismatch of 3 and a weekly to
quarterly frequency mismatch of 12. We now use these higher
frequencies to generate the lower frequency response variable
(quarterly in this case). The next step is to design a pattern
of relationship between the dependent and independent vari-
ables with heteroscedastic error terms. Finally, we develop
our data generation process as equation (20) with some hyper-
parameters.

yt = trend + sin

w1(
l1∑
i

βix1,t−l1/m1)


+ exp

w2(
l2∑
i

λi(zi,t−l2/m2)2)

 + σxεt, (24)

where εt∼ N(0,1), , σx,= 0.01, σz = 001, for t = 1, 2, · · · ,N and
N = 500, m1 = 3,m2 = 12, l1 = 2, l2 = 6,w1 = 1,w2 = 0.5,
trend = 1.5.

4. Results and discussion

4.1. Simulation results
This part presents the Monte Carlo simulations to show the

goodness-of-fit and accuracy benefits of our hybrid QRNN-
U-MIDAS model. We contrast the standard U-MIDAS, MI-
DAS, and ANN-U-MIDAS models with the QRNN-U-MIDAS
model. Below are the findings of the simulation.

9
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Table 1. The optimal parameters selected by the GACV for the models across quantiles.
MIDAS U-MIDAS ANN-U-MIDAS QRNN-U-MIDAS

Error τ (L1,L2) GACV (L1,L2) GACV (L1,L2,J) GACV ((L1,L2,J) GACV
N(0,1) 0.10 (6,10) 0.290 (6,12) 0.276 (2,10,16) 0.246 (2,4,16) 0.246

0.25 (4,10) 0.505 (6,12) 0.567 (4,12,16) 0.533 (6,12,14) 0.533
0.50 (4,12) 0.461 (4,5) 0.486 (4,8,14) 0.473 (6,8,14) 0.433
0.75 (6,12) 0.442 (2,10) 0.364 (2,10,16) 0.425 (2,10,16) 0.425
0.90 (6,10) 0.258 (2,10) 0.267 (2,8,12) 0.312 (2,8,15) 0.312

NB: Using a normal distribution the following lags and nodes values were selected for each competing models.

The R package QRNNUMIDASV3 was developed and it
depends on other R packages (“midasr”, “qrnn”, & “nnet” ):

The equation below presents the estimation of the yt series
with a varying lag order between 0 and 7 for variables xt and
between 0 and 16 for variables zt. The results are shown in
Table 2, where the parameters of the lag orders and their sig-
nificance probability (p-values) are shown with the descriptive
statistics in the first row. The process converged after 354 it-
erations, and only the significant parts were presented for the
purpose of space.
>dt1=list(yt=yt,xt=xt,zt=zt)
>
>compare models2(dt=dt1,k1=7,k2=16,m1=3,m2=12,quantile
=c(0.1,0.25,0.5,0.75,0.9),hidden=3,max.iteration=500)

The process in Table 2 converged at 354 iterations.
Resid. standard error: 0.9383 on 221 degree of freedom
(1 missingness observation deleted)
Multiple R-squared: 0.9754, Adjusted R-squared: 0.9635
F-statistic: 578.3 on 26 and 221 df, P-value: < 2.2e-16

With R-square of 0.9654, we can comfortably claim that the
predictor variables have explained up to 97% of the variation in
yt series.

Tables 3, 4 and 5 provide the accuracy measured across the
conditional distributed quantiles of the simulated data applica-
tion of Japan. The first column presents the competing mod-
els, and the metric columns shows the error measures with the
minimum error in bold figures. That is, the smaller the bet-
ter in terms of predictions.It is also obvious that the QRNN-U-
MIDAS model has the least error based on the simulated data
when compared to other sibling models like U-MIDAS, MI-
DAS, and ANN-U-MIDAS models.

4.2. Empirical application

4.2.1. Data
The success of the QRNN-U-MIDAS model for empirical

data is further evaluated in this section. We employ the hy-
brid QRNN-U-MIDAS model specifically to predict quarterly
GDP growth in Japan and the US to see the efficacy of the
model and compare its performance to that of the U-MIDAS,
MIDAS, and ANN-U-MIDAS models. In terms of prospective
low- and high-frequency variables to consider, we looked at the
following variables to be the most effective in determining GDP
growth and also used for forecasting or nowcasting.

Table 6 provides the list of most prominent variables used in
predicting gross domestic product of any nation. The selection

process aims to find the best subset of predictors. To guarantee
the data’s stationarity, we transform the original variables. The
vast majority of these became stationary at the log of the first
difference. Monthly data, such as the industrial output volume
index, consumer price index, Real M2 money stock, and so on,
can be used to estimate GDP [53]. The GACV, BIC, or AIC will
be used to choose the best values for the lag order and the inner
layer nodes. We generate three nowcasts for monthly horizons
hm = 0, 1, 2, and GDP growth estimates for the next three quar-
ters (monthly horizons hm = 3, 6, 9). For its implementation,
we developed an R package called QRNNUMIDASV3, which
depends on some R packages as (“Midasr”, “qrnn”, “nnet”).
For the purpose of testing the package, we used data from two
different countries, namely Japan and the United States.

4.3. Findings

Gross domestic product (GDP) is a key macroeconomic
goal in Japan, and the government takes it seriously, monitoring
its dynamics as it does in every other country. Without a doubt,
precise real-time GDP estimation and forecasting can aid poli-
cymakers’ understanding of the nature of growth and aid in cre-
ating useful monetary policy tools. Many times, a wide range
of predictors, including macroeconomic indicators, is required
for an accurate projection of GDP.

In this paper, we employ the proposed QRNN-U-MIDAS
model to timely and precise GDP prediction. Monthly and
weekly macroeconomic indicators are created by breaking
down the predictions. The predictors, including GDP, real M2,
IPI, houses, stocks, S&P500, etc., can be obtained from the
“Genius finance database FRED (Federal Reserve Economic
Database, https://fred.stlouisfed.org/)”. We achieve stationar-
ity at the first difference for most of the variables, except for the
national housing index and the weekly common stock index at
second differencing.

Figure 3 presents the time series of GDP, and Table 7 pro-
vides summary statistics for all variables from Jan. 1, 1994, to
Dec. 1, 2021, comprising mostly monthly observations and one
weekly observation.

From Figure 3, GDP is available as from 1994, quarter 1,
until 2022, first quarter, with roughly 113 quarterly indicators
within the range of time (depends on the publication delay).
The core source of the data is FRED (Federal Reserve Eco-
nomic Database, https://fred.stlouisfed.org/).

Figure 4 depicts the forecast for the next 12 quarters, or
three-year periods, of GDP growth, along with the 95% confi-
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Table 2. Showing the parameter estimate across the different lag orders for the variables and their respective p-values.
Min ‘= -2.2551 Q1 = -0.6389 Median = 0.1073 Q3 = 0.6680 Max = 2.7807
Coefficients:
Estimates std error t-value pr(>|t|)
Intercept 1.9694327 0.1261210 15.615 < 2e-14 ***
Trends 0.1000072 0.0008679 114.047 < 2e-14 ***
mls(x, k = 0:7, m = 4)x.0/m 0.4267124 0.0643322 8.189 2.07e-12 ***
mls(x, k = 0:7, m = 4)x.1/m 0.3683006 0.0641479 5.896 1.37e-07 ***
mls(x, k = 0:7, m = 4)x.2/m 0.2869682 0.0680465 2.762 0.006219 **
mls(x, k = 0:7, m = 4)x.3/m -0.004230 0.0658730 -0.080 0.936658
- - - - -
- - - - -
mls(x, k = 0:16, m = 12)z.0/m 0.2661054 0.0618960 5.931 1.14e-07 ***
mls(x, k = 0:16, m = 12)z.1/m 0.3402301 0.0599615 5.841 1.82e-07 ***
mls(x, k = 0:16, m = 12)z.2/m 0.4414556 0.0659546 6.845 7.81e-10 ***
mls(x, k = 0:16, m = 12)z.3/m 0.2633647 0.0577702 6.463 6.41e-8 ***
mls(x, k = 0:16, m = 12)z.4/m 0.2603666 0.0700954 5.150 5.75e-06 ***
mls(x, k = 0:16, m = 12)z.5/m 0.1254744 0.0632036 3.411 0.00660 ***
mls(x, k = 0:16, m = 12)z.6/m 0.067153 0.0630194 1.029 0.324821
mls(x, k = 0:16, m = 12)z.7/m 0.0566571 0.0673284 0.989 0.313954

signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

Table 3. Summary of the accuracy measures from the simulated data τ=0.1 and 0.25.
Model Performance measures at 0.1 Performance measures at 0.25

MSEP RMSEP MAEP MAPE MSEP RMSEP MAEP MAPE
U-MIDAS 0.4810 0.0694 0.0537 0.0137 0.4710 0.0694 0.0517 0.0127
MIDAS 0.9002 0.0949 0.0740 0.0182 0.9002 0.0949 0.0740 0.0182
QRNN-U-MIDAS 0.6593 0.0812 0.0421 0.0108 0.2084 0.0457 0.0225 0.0051
ANN-U-MIDAS 33.6763 0.5803 0.4912 0.1150 31.9278 0.5650 0.4761 0.1104

NB: The first column presents the competing models while the second row presents the metric for 10% and 25% quantiles

Table 4. Summary of the accuracy measures from the simulated data τ=0.5 and 0.75.
Model Performance measures at 0.5 Performance measures at 0.75

MSEP RMSEP MAEP MAPE MSEP RMSEP MAEP MAPE
U-MIDAS 0.4709 0.0604 0.0217 0.0125 0.4601 0.0694 0.0427 0.0227
MIDAS 0.9012 0.0922 0.0520 0.0170 0.7011 0.0915 0.0731 0.0172
QRNN-U-MIDAS 0.2810 0.0530 0.0237 0.0055 0.4239 0.0651 0.0317 0.0084
ANN-U-MIDAS 33.6763 0.5803 0.4900 0.1120 30.2015 0.5496 0.4514 0.1069

NB: The first column presents the competing models while the second row presents the metric for 50% and 75% quantiles

Table 5. Summary of the accuracy measures from the simulated data τ = 0.9.
Model Performance measures at 0.9

MSEP RMSEP MAEP MAPE
U-MIDAS 0.4905 0.0694 0.0512 0.0128
MIDAS 0.7202 0.0959 0.0739 0.0190
QRNN-U-MIDAS 0.2004 0.0448 0.0224 0.0050
ANN-U-MIDAS 0.3754 0.0613 0.0433 0.0106

NB: The first column presents the competing models while the second row presents the metric for 90% quantiles.

dence interval. Figure 5 shows both the observed and in-sample
predictions of GDP for the period of 10 years.

For computing the root mean square error for the quan-
tile (RMSEτ) and the mean absolute percentage error of the
quantile (MAPEτ), see equations (20) and (21), in the spirit

of Zang et al. [63], where yt(τ) represents the projected val-
ues and ρτ() represent the check-function. The DM test is also
used to compare the model’s correctness. The period is from
1994Q1 to 2022Q1 with a size of 113 quarters. Three alter-
native high-frequency forecast horizons (hi = 1/12, 12/12, and

11



Hassan et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1394 12

Table 6. Variables and their descriptions.
Variables Abbreviation Description Frequency
GDP Gross domestic products Quarterly
IPI Industrial price index monthly
CPI Consumer price index monthly
M2 Real M2 money stock Monthly
PPI Producer price index monthly
House National house price index Monthly
Unemp Unemployment . . . Monthly
S&P500 S&P common stock index weekly

Table 7. Variables and their descriptions.
Variables Abbreviation Obs. mean min max description Frequency
GDP 113 69556.3 37756 106271.2 Gross domestic products Quarterly
IPI 340 100.057 94.68 108.38 Industrial price index monthly
CPI 341 98.69515 95.91 103.44 Consumer price index monthly
M2 500 4030.701 2305.1 7682.4 Real M2 money stock Monthly
House 500 100.21 94.43 111.12 National house price index Monthly
Unemp 500 4.067 2.30 5.80 Unemployment Monthly
S&P500 1400 7599.63 3437.4 14289.4 S&P common stock index weekly

Source: FRED (Federal Reserve Economic Database, https://fred.stlouisfed.org/).

Figure 3. Quarterly GDP growth rate: Presents the time series of GDP.

Figure 4. Forcast of quarterly GDP: presents three years or twelve quarters
forecast of GDP.

24/12) are used to generate the RMSEs and MAPEs for each
rolling, which relate to low-frequency forecast horizons (h = 0,

Figure 5. In-sample forcast of GDP growth: presents an in-sample forecast for
the period of ten (10) year.

1, and 2). In this application, we identify five sample quantiles
that are considered: 0.1, 0.25, 0.5, 0.75, and 0.9.

Table 8 lists the GACV’s recommended settings for the op-
timal lag order and the required number of inner nodes. It is
important to notice that the chosen best values in this QRNN-
U-MIDAS model are essentially close as those in the ANN-U-
MIDAS model and that the optimal parameters are quite similar
across different quantiles. Test output from seasonally adjusted
variables presented in Table 4 are presented below, and it has
shown favourable results in respect of our novel model across
all quantiles.

Tables 9–13 report the RMSE and MAPE results of the
U-MIDAS, MIDAS, ANN-U-MIDAS, and QRNN-U-MIDAS
models along five quantiles (τ) of 0.10, 0.25, 0.50, 0.75, and
0.90. The first column represents the forecasting horizons
(hi). The columns of U-MIDAS, MIDAS, ANN-U-MIDAS,
and QRNN-U-MIDAS report the average of RMSE and MAPE
across rolling windows. We report the DM test across all mod-

12
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Table 8. Best values of lags and number of nodes in the inner layer.
U-MIDAS GACV MIDAS GACV ANN-U-MIDAS GACV QRNN-U-MIDAS GACV

τ/L l1, l2, l3, l4 l1, l2, l3, l4 l1, l2, l3, l4,J l1, l2, l3, l4,J
0.10 2, 3, 4, 9 0.0021 3, 3, 6, 9 0.0018 6, 6, 9, 9,10 0.0020 5, 6, 9, 9,10 0.0020
0.25 2, 3, 4, 9 0.0017 3, 3, 6, 9 0.0017 6, 6, 9, 9,10 0.0016 5, 6, 9, 9,10 0.0011
0.50 2, 6, 5, 9 0.0013 3, 3, 5, 9 0.0012 5, 5, 9, 9,10 0.0016 5, 6, 9, 9,10 0.0015
0.75 3, 6, 5, 8 0.0018 3, 3, 5, 9 0.0015 6, 6, 9, 8,10 0.0018 5, 6, 9, 9,10 0.0018
0.90 3, 6, 5, 8 0.0023 3, 3, 6, 9 0.0018 6, 6, 9, 9,10 0.0019 5, 6, 9, 9,10 0.0007

NB: number of lag orders for the four variables used in the model and inner layer parameter.

Table 9. RMSE and MAPE for Japan’s quarterly GDP along three forecast horizons τ = 0.1.
Training data Performance measures at 0.1
RMSE MAPE

hi U-
MIDAS

MIDAs ANN-
U-
MIDAS

QRNN-
U-
MIDAS

DM
test

U-
MIDAS

MIDAS ANN-
U–
MIDAS

QRNN-
U-
MIDA

DM
test

1/3 0.6935 0.9488 5.8031 0.212 5.243
(0.000)

0.1372 0.1824 1.1502 0.0177 4.264
(0.000)

2/3 0.5842 1.0013 4.8231 0.5562 7.140
(0.000)

0.0912 0.2435 0.3689 0.0094 8.022
(0.000)

3/3 0.6007 0.7361 4.7612 0.4356 3.025
(0.012)

0.1701 0.2006 1.0378 0.1029 5.386
(0.000)

Testing data Performance measures at 0.1
RMSE MAPE

hi U-
MIDAS

MIDAS ANN-
U-
MIDA

QRNN-
U-
MIDA

DM
test

U-
MIDAS

MIDAS ANN-
U-
MIDAS

QRNN-
U-
MIDA

DM
test

1/3 0.5167 0.8377 4.0291 0.183 5.382
(0.000)

0.1291 0.1965 1.0351 0.011 4.295
(0.000)

2/3 0.4651 0.9103 3.8231 0.0109 3.217
(0.012)

0.0992 0.2001 0.7156 0.0092 4.237
(0.000)

3/3 0.6103 0.5361 5.1512 0.2011 10.123
(0.000)

0.1808 0.1722 1.2072 0.1756 7.001
(0.000)

NB. The first column represents the forecasting horizons (hi). The average of RMSE and MAPE for all metrics with the respective
DM test across all models is reported, with the p-value in parenthesis and in bold.

els, for example, U-MIDAS model 1 as ei
2 and QRNN-U-

MIDAS model 2 as e′i2, in the last column, which includes the
DM values together with the p-value in parenthesis and bold;
the best outcome is indicated when comparing using boldface.
We can infer the following information from these tables: First,
all four models had improved RMSE and MAPE on both train-
ing and test data sets.

Second, our QRNN-U-MIDAS model beats the U-MIDAS,
MIDAS, and ANN-U-MIDAS models on test data and train-
ing data. The former has lowest RMSE and MAPE average
values. Third, given that the DM test findings are statistically
significant at the 5% level, QRNN-U-MIDAS has proven supe-
rior in this case. As a result, the proposed QRNN-U-MIDAS
model works well across all forecast horizons and representa-
tive quantiles and achieves reasonably high prediction accuracy.
We also confirmed the workability of the developed “QRNN-
UMIDASV3” package on the set of real-world data for both
Japan and the United States. However, results from the US data
have not been reported because of space.

5. Conclusion

In order to investigate the heterogeneous nonlinear inter-
action between variables on mixed sample frequency data, we
develop a unique hybrid QRNN-U-MIDAS model. The U-
MIDAS approach is incorporated into the QRNN framework
to create the QRNN-U-MIDAS model. The proposed QRNN-
U-MIDAS model was implemented in an R-package that we
created to perform both simulation and empirical data appli-
cations. The numerical findings from simulation and empiri-
cal data demonstrate that the QRNN-U-MIDAS model is ca-
pable of exploring the nonlinear interaction between variables
on mixed data sampling frequency. Additionally, in terms of
accuracy and predictability, it greatly outperforms a number of
competing models.

The following key benefits of the suggested QRNN-U-
MIDAS model are; utilizing all of the information present in the
original data enables us to directly model on mixed sample fre-
quency data and aids in enhancing forecast accuracy. Second,
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Table 10. RMSE and MAPE for Japan’s quarterly GDP along three forecast horizons τ = 0.25.
Training data Performance measures at 0.25
RMSE MAPE

hi U-
MIDA

MIDAs ANN-
U-
MIDAS

QRNN-
U-
MIDA

DM
test

U-
MIDAS

MIDAS ANN-
U–
MIDAS

QRNN-
U-
MIDA

DM
test

1/3 4.8096 9.0024 3.1578 2.0843 5.108
(0.000)

0.5168 0.7395 4.7614 0.024 6.101
(0.000)

2/3 1.6923 1.5188 5.8231 0.5562 10.135
(0.000)

0.1824 0.2297 0.3689 0.0136 5.126
(0.000)

3/3 0.5168 0.7391 4.9012 0.4356 2.839
(0.030)

0.1971 0.312 1.0378 0.0929 2.920
(0.026)

Testing data Performance measures at 0.25
RMSE MAPE

hi U-
MIDAS

MIDAs ANN-
U-
MIDA

QRNN-
U-
MIDA

DM
test

U-
MIDAS

MIDAS ANN-
U-
MIDAS

QRNN-
U-
MIDA

DM
test

1/3 4.532 7.2201 2.3356 1.7521 3.212
(0.012)

0.1092 0.1865 1.1451 0.017 2.846
(0.027)

2/3 1.8601 1.0133 4.8235 0.511 7.478
(0.000)

0.2101 0.2321 0.1154 0.082 5.116
(0.000)

3/3 0.8214 0.9573 5.1411 0.2301 8.317
(0.000)

0.1608 0.1823 0.0072 0.1756 6.234
(0.000)

NB: See details to table in Table 7.

Table 11. RMSE and MAPE for Japan’s quarterly GDP along three forecast horizons τ = 0.5.
Training data Performance measures at 0.5
RMSE MAPE

hi U-
MIDA

MIDAs ANN-
U-
MIDAS

QRNN-
U-
MIDA

DM
test

U-
MIDAS

MIDAS ANN-
U–
MIDAS

QRNN-
U-
MIDA

DM
test

1/3 0.6935 0.9202 5.8578 0.5301 2.375
(0.032)

0.3008 0.5375 4.7114 0.0201 5.387
(0.000)

2/3 0.5168 0.7392 4.9123 0.2371 5.426
(0.001)

0.1921 0.2208 0.4119 0.1891 3.265
(0.012)

3/3 0.1271 0.1824 1.2425 0.0856 6.035
(0.000)

0.1054 0.232 1.0111 0.0907 10.005
(0.000)

Testing data Performance measures at 0.5
RMSE MAPE

hi U-
MIDAS

MIDAs ANN-
U-
MIDA

QRNN-
U-
MIDA

DM
test

U-
MIDAS

MIDAS ANN-
U-
MIDAS

QRNN-
U-
MIDA

DM
test

1/3 0.5998 0.7271 4.3216 0.5080 8.576
(0.000)

0.2032 0.3165 1.0325 0.0197 5.027
(0.000)

2/3 0.6174 0.8123 5.0245 0.3132 3.254
(0.012)

0.1801 0.272 0.196 0.0082 2.903
(0.032)

3/3 0.2017 0.1573 1.1901 0.1701 7.387
(0.000)

0.1298 0.1903 0.0912 0.0746 10.839
(0.001)

NB: See details to table in Table 7.

the QRNN-MIDAS model, which leverages the power of quan-
tile regression, effectively captures the full conditional distribu-
tion of the estimate of a response variable. Third, by incorporat-
ing the potent capability of neural networks in solving nonlinear
issues, the QRNN-U-MIDAS model may be employed to in-

vestigate the complex nonlinear pattern. From the findings, the
accuracy measured across the conditionally distributed quan-
tiles of the preliminary results indicates that QRNN-U-MIDAS
presents the minimum error over the competing models in most
forecast horizons.
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Table 12. RMSE and MAPE for Japan’s quarterly GDP along three forecast horizons τ = 0.75.
Training data Performance measures at 0.75
RMSE MAPE

hi U-
MIDA

MIDAs ANN-
U-
MIDAS

QRNN-
U-
MIDA

DM
test

U-
MIDAS

MIDAS ANN-
U–
MIDAS

QRNN-
U-
MIDA

DM test

1/3 0.6023 0.7901 5.5121 0.4604 3.108
(0.012)

0.3834 0.5756 5.1212 0.0190 3.278
(0.013)

2/3 0.4868 0.6835 4.729 0.2831 2.106
(0.034)

0.2102 0.2319 0.5631 0.0919 2.210
(0.004)

3/3 0.2151 0.2994 0.9915 0.0783 1.439
(0.006)

0.1078 0.2606 1.1014 0.0735 3.286
2(0.013)

Testing data Performance measures at 0.75
RMSE MAPE

hi U-
MIDAS

MIDAs ANN-
U-
MIDA

QRNN-
U-
MIDA

DM
test

U-
MIDAS

MIDAS ANN-
U-
MIDAS

QRNN-
U-
MIDA

DM test

1/3 0.5781 0.7362 4.2303 0.508 6.325
(0.000)

0.2231 0.3143 1.0325 0.0197 8.132
(0.000)

2/3 0.5011 0.7324 4.922 0.2017 3.326
(0.012)

0.1801 0.28 0.2157 0.0942 5.146
(0.000)

3/3 0.2383 0.2045 1.1901 0.1802 5.213
(0.000)

0.1239 0.1826 0.1863 0.1011 2.921
(0.022)

NB: See details to table in Table 7.

Table 13. RMSE and MAPE for Japan’s quarterly GDP along three forecast horizons τ= 0.9.
Training data Performance measures at 0.9
RMSE MAPE

hi U-
MIDA

MIDAs ANN-
U-
MIDAS

QRNN-
U-
MIDA

DM
test

U-
MIDAS

MIDAS ANN-
U–
MIDAS

QRNN-
U-
MIDA

DM test

1/3 0.6131 0.8629 4.8174 0.4906 4.576
(0.000)

0.3101 0.4132 4.1012 0.0193 5.852
(0.000)

2/3 0.5002 0.7183 3.925 0.2582 2.154
(0.000)

0.1721 0.1397 0.5328 0.0917 5.249
(0.000)

3/3 0.1257 0.1114 1.0293 0.0918 10.839
(0.000)

0.0901 0.1243 0.9492 0.0838 2.005
(0.0034)

Testing data Performance measures at 0.9
RMSE MAPE

hi U-
MIDAS

MIDAs ANN-
U-
MIDA

QRNN-
U-
MIDA

DM
test

U-
MIDAS

MIDAS ANN-
U-
MIDAS

QRNN-
U-
MIDA

DM test

1/3 0.5017 0.7813 4.3191 0.5144 5.279
(0.000)

0.3102 0.3502 1.1305 0.0163 7.108
(0.000)

2/3 0.4283 0.8032 5.128 0.2146 7.042
(0.000)

0.2001 0.252 0.1861 0.0899 3.285
(0.012)

3/3 0.2018 0.1369 1.1654 0.0791 2.133
(0.031)

0.0961 0.1307 0.0975 0.0993 10.132
(0.000)

NB: See details to table in Table 7.

The proposed model, ”QRNN-U-MIDAS,” is a novel model
that will give decision-makers a precise estimate of macroe-
conomic variable, like GDP. Moreover, the developed pack-
age ”QRNNUMIDASV3” shall be sent to CRAN for other re-
searchers to use and improve on it.
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estimation based on electricity utilization by artificial neural network”,
Physica A: Statistical Mechanics and its Applications 489 (2018) 28.
https://doi.org/10.1016/j.physa.2017.07.023

[63] W. Zhang, H. Quan, and D. Srinivasan, “An improved quantile regression
neural network for probabilistic load forecasting”, IEEE Trans Smart Grid
10 (2019) 4425. https://doi.org/10.1109/TSG.2018.2859749

[64] S. Asimakopoulos, J. Paredes, and T. Warmedinger, “Forecasting fis-
cal time series using mixed frequency data”, ECB Working Paper 1550
(2013) 1. https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp1550.pdf

[65] T. Alam, “Forecasting exports and imports through artificial neural net-
work and autoregressive integrated moving average”, Decision Science
Letters 8 (2019) 249. https://doi.org/10.5267/j.dsl.2019.2.001

[66] F. X. Diebold & R. S. Mariano, “Comparing predictive accuracy”, Journal
of Business and Economic Statistics 20 (2002) 134. https://doi.org/10.
1198/073500102753410444

17

https://doi.org/10.46481/jnsps.2020.94
https://doi.org/10.46481/jnsps.2021.431
https://doi.org/10.46481/jnsps.2022.843
https://doi.org/10.46481/jnsps.2022.843
https://doi.org/10.1016/j.ijforecast.2020.01.008
https://doi.org/10.1016/j.ijforecast.2020.01.008
https://doi.org/10.1016/j.physa.2017.11.022
https://doi.org/10.1016/j.physa.2017.11.022
https://doi.org/10.1016/j.ecosta.2020.11.001
https://doi.org/10.1016/j.ecosta.2020.11.001
https://doi.org/10.1016/j.ijforecast.2018.09.011
https://doi.org/10.1016/j.ijforecast.2018.09.011
https://doi.org/10.1016/j.ecosta.2018.02.001
https://doi.org/10.1016/j.ecosta.2018.02.001
https://doi.org/10.1016/bs.host.2019.01.005
https://doi.org/10.18637/jss.v072.i04
https://escoe-website.s3.amazonaws.com/wp-content/uploads/2020/07/13161005/ESCoE-DP-2018-12.pdf
https://escoe-website.s3.amazonaws.com/wp-content/uploads/2020/07/13161005/ESCoE-DP-2018-12.pdf
https://doi.org/10.1016/j.ecosta.2021.08.009
https://doi.org/10.1016/j.ecosta.2021.08.009
https://doi.org/10.1016/j.ijforecast.2020.12.005
https://www.bis.org/ifc/publ/ifcb50_15.pdf
https://doi.org/10.46481/jnsps.2021.308
https://doi.org/10.2478/jeb-2021-0013
https://doi.org/10.1007/978-3-030-38081-6
https://doi.org/10.1007/978-3-030-38081-6
https://doi.org/10.48550/arXiv.2106.05860
https://doi.org/10.1145/3533382
https://doi.org/10.1016/j.physa.2019.123383
https://doi.org/10.1016/j.physa.2019.123383
https://doi.org/10.1016/j.eswa.2015.12.045
https://doi.org/10.1016/j.eswa.2017.01.054
https://doi.org/10.1016/j.cageo.2011.08.023
https://doi.org/10.1016/j.cageo.2011.08.023
https://doi.org/10.1016/j.neucom.2015.03.100
https://doi.org/10.1016/j.neucom.2015.03.100
https://doi.org/10.1016/j.physa.2017.07.023
https://doi.org/10.1109/TSG.2018.2859749
https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp1550.pdf
https://doi.org/10.5267/j.dsl.2019.2.001
https://doi.org/10.1198/073500102753410444
https://doi.org/10.1198/073500102753410444

