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1. Introduction , where «;, B, &i, &, i=1,2,a,b,A, B, C are all real constants
) ) and A # 0. y € C*[a,b] X [c,d], x € (a,b), t € (c,d).
In this work, we consider the second-order PDE of the form  gecond-order PDEs can either be of Laplacian, Poisson forms

9y? o dy which could either be heat or waveform of equations. They

Aﬁ +B 2 +C6_t: 0, x€[a,b], t>0 find their applications in numerous areas of human endeavours,
especially in mathematical sciences and engineering.

With any of the following initial-boundary conditions The developed differential equations require solutions, ei-

ther in closed form (analytic form) or in numerical forms. In

X, 1) =G&1, X, a2) = &2, . .
yooan) =61, yn @) =& most cases, closed-form of solutions is rare to come by as there

YR =1, YBa ) = exist limited methods for solving such models in the form of
differential equations. This brings to light the use of numerical
y(x,a1) = &1, (B, D) =0 methods/techniques to solve the modelled problem.

Numerical techniques are numerous and the types know no
bounds. They include; The Euler method, Runge-Kutta meth-
Email address: olaiyaolumide.o@gmail.com (Olumide O. Olaiya ) ods, linear Multistep method, shooting method, Finite differ-
ence method, finite element methods, e.g Galerkin method,
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Spectral element method. Other methods are; Spectral method base on Fourier transformation; Method of lines reduces the
PDE to a large system of the ordinary differential equation (ODE) Boundary Element Method (BEM) based on transforming a PDE
to an integral equation on the boundary of the domains and it is popular in computational fluid dynamics, the list is endless. Authors
who have worked extensively on numerical methods for approximation of solution of a differential equation include but no limited
to Brugnano and Trigiante [1], Onumanyi et al. [2, 3], Jator [4, 5], Fatunla [6], Yusuph and Onumanyi [7], Siraj-ul-Islam, et al.[8],
Adewale et al. [9].

We adopt the method of lines approach which is commonly used for solving time-dependent partial differential equations
(PDEs), whereby the spatial derivatives are replaced by finite difference approximations see Ngwane and Jator [10].

The Method of Lines (MOLs) allows the conversion of PDEs into ODEs by complete or partial discretisation of the independent
variables resulting in algebraic equations. If partial discretization is carried out and with only one remaining independent variable,
then this results in the system of ODEs which is an approximation of the original PDE. Thus, one of the underscored features of the
MOL is the use of existing, and generally well established, numerical methods for ODEs, for more literature on this approach see
Brugnano and Trigiante [1], Ramos and Vigo-Aguiar [11], Cash [12] and Jator and Li [13].

2. Derivation of the Method
Second order ordinary differential equation of the form is considered

V' =f(x,y) )]

subject certain conditions, where a, b are real numbers, f is a continuous function on (a,b) and y € C?[a,b]. A 2-step block methods
for the problem of the form (1) is considered.

The grid points given by x,, X,+1 = X, + h, X442 = X, + 2h, are considered for solving the problem in (1) on the interval [x;,, x,:2].
We assume a trial solution y(x) of (1) by a polynomial p(x) given by

—_

yx) = p(x) = ) ax’ ©))

r

3

Il
(=}

which on differentiating yields

m—1

V@) = p () = )i = Daxd 3)

i=2

with the a; € R real unknown parameters to be determined. and m = r + s; r is the number of interpolation points and s is the
number of collocation points.

2.1. Specification of the method

In this work the interval of integration considered is [x,, x,+2], we thus consider two different categories of off-set points viz-a-
viz the points Xi, fori=1,2,4,5 and Xi, fori=1,2,3,5,6,7.

2.1.1. Case ]
Here, we consider the specification where the off-set points are x i fori =1,2,4,5. interpolating (2) at the points x i fori=1,2
implies r = 2 and collocating (3) at points x I for i = 0(1)6 implies s = 7 so that (2) and (3) becomes ‘

8

y(x) = p(x) = Z a,-xi =ag+a1x+ a2x2 +.00 4 agx8 @)
i=0

which on differentiating twice yields

8
y'(x) = p”(x) = Z i(i — Daix™ = 2ay + 6azx + 12a4x* + - - - + 56a3x° ®)
=2
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From the imposed collocation condition, the following system of algebraic equation is obtained

2 3 4 5 6 7 8
L L L Sl
2 3 5 6 7 8" Y, 1
! x’”% xn+% xn+% xn+% xn+% xn+% anrg xn% apn yn+z
0 0 2 6x, 12x2 20, 30x)  42x) 5618 a A
0 0 2 6x,1 1262 202 | 30x* | 424 | 56x0 a ? n
3 ;+§ g+§ Z+§ ;51+§ g+§ a h fn+%
A= 0 0 2 6xn+% 12xn+% 20xn+% 30xn+% 42xn 2 56xn+% Jx=| a ’Q— hzf,,+ N
0 0 2 6xp 1202 2000, 30xt, 4200 56x0 as R
0 0 2 6x,. 120, 200, 30x%, 420, 56, a6 Y
3 n+3 n+3 B n+x3 n+x3 a7 In+3
0 0 2 6x,s  12xF . 2060, 30kt . 4200 . 560 R f. s
3 nt+x n+3 n+xz n+x n+3 ag 3
2 ) ) 5
0 0 2 6 1202, 2000, 30xt, 4200, 5618, 1 fre2

e= (Lx, x%, %, x*, 20, 10, 7, 4T

Where yn = y (xn) s f;l = f(xmym)’;,)
Hence, we state the following theorem without proof.

28

Theorem 2.1. [14] Let (4) and (5) be satisfied, then the 2-step continuous linear hybrid multistep method is equivalent to the

equation
() =b" (A e

where b, A and e are as defined above.
Applying the above theorem, the following continuous hybrid method is derived

2 2
y(x) = Z ag"yn+§+h2 Zﬁ%ﬁl+§
i=1 =0

where « and S are function of 7 given as

3

a1= =31+2, Q%Z 3r-1

_p2 (216 459, 2713 10, 8,863 _49.3_ 4415 2034
Bo=h [ 4480t eo! + 31+ o+ oo~ d0T 3301 30! ]
i3 842077206, 2615 2614, 3,3 2062, 890
Bi=h 2240t 5t U+t r+3t 60480t+90720]
Ba=i? | 238 513t7 1233te 4149t5 351 Bl L3y 1868, 16 ]
2 6! "l o0 ! 520 120960~ 131440
2(8s 8l 3636, ms_m4 _3_@ 1987
Bi=h l224’ 2! 55t U+ 30— 3611 136080
B —p2 2438 459 4 963 e 2763 St 99 94 15 33, 1021, 160
| 396 224 Te0! ~ 320 120960~ 181440
22438, 10717146, 175 81 4.3 3_ 347 .. 263
Bs ‘_h | 22400+ 5t O+ 4 P =G5+ 30— 1308 1 5593
2 81 8 7. 5 6 27 5. b 4__% 479 . 21
132 h”| 23501 224t 160! ~eal Tazol ~1zl t 200607 544320]
X— xn

where t==—="

b}

Evaluating (7) at non-interpolating points i.e at the points x=x,,, i for i=0,3,4,5, 6 which is equivalent to ¢ = %

Yn= 2yn+, yn+2+h2(108868364f” 980979290 n+*_187164940 n+2 1%2?);0f"+1
—%fm mfmé—mfmz)

Yn+1= _yn+‘+2yn+2+h2(sii£0fn + 55935 n+§+% n+2 + 30080 f+1
+181440fn+3 9o7zofn 544320fﬂ+2)

IYn+d= _Zyn+%+3yn+§+h2 (ﬁf'ﬁ% n+i ;23430ﬁt 4?593670]0”+1
+% n+5_6;_2 n+5+ﬁf’”2)

Yn+3= 3yn+1+4yn+2+h2(%fn 560fn lz(iJSgOfn+§+%f"+l
+3360 n+ﬁ+so4o n+%_ﬁf"+2)

Yn+2= —4y,,+%+5y,,+%+h (52222]‘:1 +3075 n+%+17801% n+2 + 15608 f+1

3893 {061

18144 Jnr 4 T oo72 Tne 3 T 54432f”+2)
28
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Differentiating « 1@z and all the g I i = 0(1)6 and evaluating the derivative of (8) at the points x=x, i ,i = 0(1)6, equivalent
to r=1 ‘ ‘
3

p 3 _ 459 o 27623 139 10921
hyp+3y,,1=3y,,2= [4480f" 60480 +1 7120060 fn+2 = 562.Jo+ 1+ 120060 S+ 4
347 539 f ]

T 12096 /n+3 120960 n+2
g _ _ 320 199 ¢ 1973 4157
hyn+%+3yn+% 3Ype2= h [72576 n7 20160 n+ 1 128fﬂ+2+90720f”+1 70330 n+d
’ 41
5720 /03 120960f"+2]
' B _ 2 [ =731 13 6347 3971 257
yn+%+3yn+% 3yn+%— h [362880 n"320 n+t 40320fn+2 50720 /n+1% T30 n+d
109
20160 n+*+262880f”+2]
: _ TN 1537 39587 4927 » 2201 1
By, #3Vs1=3y,2= b [1920 nt 50480/ n+ 1 T 120060 /n+2 F 30040 /n+1~ 120060 /n+ 4 (10)
4200 s
6720/ n+3 7 120960/ n+2
: B _ 2] =571 691 41299 33533 1223
hyn+%+3yn+% 3Ypp2= b [362880 50160+ 1 F 3350Sn42 + 50720 St 1+ 506a S 4
79 59
+6720 n+5+5184ofﬂ+2]
2 _ ~29 13313 5081
hyn+%+3y,1+%—3yn+%— [362880f” 5540 w1 30320 Sy + 15142 S = 5140 n+d

73

1313
*576/n+2 ¥ 362880 fﬂ+2]

The schemes in (9) and (10) form the requited method for solving (1) numerically.

2.1.2. Case 2

Here, we consider the specification where the off-set points are also Xi, for i=1,2,4,5. Interpolating (2) at the points x;,,, for
i= 0, 1 implies r= 2 and collocating (3) at points Xi, fori=0(1)6 1mphes s= 7 so that (2) and (3) becomes

8
y(x)=p(x) = Z aix'=ap+a\ x+ar x>+ - +agx® (11)
i=0
which on differentiating yields
8
y'(x)=p”(x) = Z i(i-D)aix 2= 2a,+6a3x+12a, x> +- - -+56asx° (12)
i=2
From the imposed collocation condition, the following system of algebraic equation is obtained
1 x x2 x xt x x8 x] x8
2 3 4 5 6 7 8 Y
1 Xn+1 RS Al Xt xn+£ Xnt1 Yl Y+l ag In
0 0 2 6y 12x2 20x; 30x2 2% 568 . Yn+l
00 2 Gy 120, 2080, 30¢, 42x}51+% 56:°, “ 1
0 0 2 6x,o 122, 200, 30xt , 420, S6x° a Zf o
A= 5 n+3 n+3 n+3 n+3 +5 x=| as |:b= h*f.2
0 0 2 bxan 1242, 203, 30x%, 4200, S6:6 L= = A
0 0 2 ex.. 1228, 202, 30, 40, 568 s t s
"*’% n+% n+% n+% n+% n+% ae hzfnJr%
2 3" 4 5 7 6 3
0 0 2 6xn+% 12xn+% 20xn+% 30xn+% 42x % 56xn+% Lal; h2fn+%
0 0 2 6xpn 1202, 2060,  30xt, 42x 56x8,, R fia
e=(L,x, xz, x3, x4, xs, x°, x7, xg)T
Applying the above theorem, the following continuous hybrid method is derived
1 2
2
Y0 = D ynei ) B (13)
i=0 i=0
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where a and S are function of 7 given as
aog= —t
a= 1+t
Bo= 105h21— 11202 B +56k21* +378h2 15— 2521215~ 324> (" +243K218
= 13440
_ 3(=851%1=56K75 +420% 1 + 168171 — 1681710~ 720> +811%1%)
B 1= 2240
3(34721=56012 P +840121* + 546125~ 10921210~ 180721 +405121%)
/3 1= 4480 (14)
Bi= _ 563121+ 1680h2%2 —3430h21* +35281215 — 121 5K 18
336
B 3(- AU 45601+ SAO 546K — 10924216+ 1804217 +405h21)
4=
3 4480
3(=5h2t+56h2 £ +420%1* — 168h° 10— 1681210+ 72h%1 +81h%1Y)
Bs=—
3 2240
B _ =112 t+11212 8 +56h%* ~378h* £ —2521% 10 +324 1 +243 1218
2= 13440
where ===
Evaluating (13) at the points x=x, i for i=1,2,4,5,6 which is equivalent to t= —-2/3,-1/3,1/3,2/3, 1 the following main
methods are obtained
20y a2 28004 POy 1y 77y ey g 1377
Yn+d= 544320 18144 60480 136080 ' 181440 6048 ' 544320
v a2 (101, PR 1MWy gser, ey T | sig
Yn42=3173 544320~ ~ 30240 181440 136080 ' 60480 _ 90720 ' 544320
. 1789 2147 . 841 :
oo vt o ooty TNy 2 esing g St ng. (15)
Inid= T3 173 272160 T 45360 30240 68040 ' 90720 15120 272160
_ 2 e g2 (535h ey Mg sasp, Py g si
Yn+3= 773 3 108864 6048 36288 27216 12096 8144 108864
4591, 450f 4
— _ 2 ( 474, 563 fu+1 ni 27 47 fosn
Yn2= =Ynt2Yns1th (6720+224 7 RIS T R 7 R 7 AT R 77
differentiating (14) and evaluating the derivative of (13) at the points x=x,,, i for i= 0(1)6 which is equivalent to
=-1,-2/3,-1/3,0,1/3,2/3, 1 the following additional methods are obtained
/ - 253 165 i 2671,.2 5f +363f 4_57f"+3+47fn+2
Y= =T —h| 2688 T 448 e d T Taa80 T 32 0t 1T TaI80 T 2240 T 13440
orm g (000 g Dnd  astingy PV T a5
Ynel= " 362880 60480 3456 90720 120960 12006 362880
. >n+yn+1 TS 2230f,, 1 +7561hfn+_ _3SUf 11930, 4 131hf,, g L g
Yntd=— 362880 T 1728 120960 90720 120960 60480 ' 72576
10417 123
’ }n+)/n+l hfn 51 /’lf i+ 0 f’”z +563hfn+l_ 3 f”*% hf _1lhfun (16)
Y n+1= Tt el T om0 3360 80 Tawtnes 300 |0
. +y,l+| e 7421hf,, | +23593hfn+_ | 395 +3445hfn+% _ 103k, 5 | b
Yntd=— 362880 T 60430 120960 90720 24192 12006 ' 10368 |’
. s9on, | 1345,y 84S9Rf,2  siesu +48551hfn+% +1123hfn+% St
Yned=— 72576 T 13096 120960 18144 120960 8640 362880 |°
f
, _ )n+1 47hf, +1u 1651hfn+l 4219 453N fuiz
V2= T+ +h(13440+ 530 896hfn+§+ 3360 640hfn s s s T ~2w0

Here, it is noteworthy that (9) and (10) are combined to form a block for case 1 while (15) and (16) form another block for
case 11. For each case, (1) is solved which is a system of second-order ordinary differential equations resulting from the semi-

discretization of a second-order PDE.

3. Analysis of the Method

3.1. Order and Local Truncation Error (LTE)

The LMMs (8), and (13) are said to be of order p if
Co=C1=Cr=--- =Cp+ﬂ—1 =0, Cp_,.”i().

30
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Here C,,,,, is the error constant and
pr hpﬂty(pw)( Xn)

is the principal Local Truncation Error (LTE) at the point x,,. The C’s are given by
Co=ap+a+as+--+ay

Ci= (ao+ai+as+: - -+ay) — (Bo+B1+- - +Bx)

1 1
Cy=— (a1 +2%ap+ - +klap)———— (814297 Ba+- - +k13B1)q= 2,3, . ..
q! (g-3)!

The LTE associated with any of (8) and (13) is given by the difference operator
2 ; 2 i
. _ . N2 ] s
LIy(x) :h] —;a%y<xn+3> h ;ﬁ;y (i) amn

where yeC?[a, b] is an arbitrary function. Expanding (17) in Taylor’s series about the point x,,, the expression is obtained as:
Ly(xa) :h) =Coy(x)+Cihy (i) +Cal®y” (n)++ - +Cpuah 2y (1) (18)
Expanding each scheme in (9) and (10), the following principal truncation errors are obtained:

19y [x]h°
0 10
=————+0[h]",C

. 31y(9)[x]h9

9) 9
0~ Y lxlh
2= T1o0a27840 "0 €

10
2= 1723920 T

¢ 3w’ 0 ~3 0 3OLan’ 0 ~0 8881y [x]n’ 10
Ct =2 P om0 3= I oo o0 S00LY WHR oy
27595513020 T O pa= 555513070 TOUT € 2= 5555 130500 TOIM
1 409y [x]h° 0 2 1201yO[x]R° 10 vl 463y [x]h° 0
P S et i S Ot A LI O/% S et 1 L VR LGS B 1 NP1y
2= ~ 1700611200 O 275955139200 OV € 2= ~ 11504278400 TOM
L1209 0 s 409y [x]° 0 r 888y 0
3 v ) AR h ’3 7y AR h ’ o000 ) AR h
" r2=3g50139200 TOUH T r2= 00611200 O € r2= S955 130200 TOIM

The above blocked method (9) and (10) is of uniform order p= 7
Expanding each scheme in (15) and (16), the following principal truncation errors are obtained:

1 349y9 (xR’ 0 2 2900n° 10 % 2y (x)h? 10
2OV O o 05 2 WO g0 o3 o J2 WO Lo
7273571283520 O CraT 55501305 TO T Coa™ 35501305 1O
3 349y (x)h’ 10 2 y(x)h’ 0 0 YOn 10
Y S0 N VoA LU e S0 ) YA G L o(h
2~ 3571283520 0P ConT 35650200 TO - C 2T 65450 TON
Ao 1691y (x)hn° - YO0 11y (x)h°

+o)'°,c’! +O(h)"°

+O()'°, C’ -~
*) P*2 48988800

P27 3968092800 P+27 62001450

4 On § 1691y O n’ 2 YWR

P+262001450 P+2 3968092800 P2 765450
The above blocked method (15) and (16) is of uniform order p= 7

The LMM (8) (same for (13)) is said to be consistent if it has order p>1 and the first and second characteristic polynomials
which are defined respectively, as

+OW)'°, C’ +O(W)"°, C’ ++0(h)"°

k
pr) =) a7 (19)
j=0
and
k .
o) =) B (20)
j=0

31
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where r is the principal root, satisfy the following conditions:

p(D) =p"(1)=0

p”(1) =2lo(1)
Henrici [15], Lambert[16].
Consider the main method in (9) given as

_ 389 7085
Yne2= Ay, 145y, 2 +h? (544%2 ""'m n+d 718144 n+ 2 +Tyggg St

3893 1061 f
18144 "Jrj 9072 n+— 54432 n+2

The condition (21) is satisfied. the first characteristic equation for (9) is given as:

2
3

p(r) =2 4+4r3 =57

10

o' (r) = 2r+3 DEREwYE

Here p(r) = 0, p’(r) = 0. Therefore, (22) is satisfied. The second characteristic polynomial for (9) is given as

-95 389 1 7085 2 4633 3893 e 1061 4 409 ,

70 =532 0072 18144’ T 13608 18144 To072" T34a32”
10
1)=—
o(l) 9

vos 10 oy 20

Hence condition (23) is satisfied. Conclusively, the hybrid method is consistent.
Consider the main method in (15) given as

4501

_ 2| 471 n+3 | 563 fui1
Yns2= =Y +t2¥ne1+h (6720 333Sns 1+ 5530 T Ties0
459
TS S RPN 1)
7230 T 224 n+3 T 6720

The condition (21) is satisfied. the first characteristic equation for (15) is given as:
p(r) =r*=2r+1
o' (r)=2r-2
Here p(1) = 0, p’(1) = 0. Therefore, (22) is satisfied. The second characteristic polynomial for (15) is given as

47 27 1 459 , 563 459 . 27 s 47 ,
o(r) =—/—=+—713+ r3i+ r+ r34+—r3i+——r
6720 224 2240 1680 2240 224 6720

o) =1

Pl =2 p'()=2

Hence condition (23) is satisfied. Conclusively, the hybrid method is consistent.

32

32

2y

(22)

(23)

(24)

(25)

(26)

27)

(28)

(29)

(30)

3D
(32)

(33)
(34)

(35)
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3.2. Zero Stability

To establish hat the methods are zero stable, each of the method in block form are solved simultaneously to obtain all the y; and
y’';’s for appropriate index i, (see Modebei et al.[17]). For the method (9) and its additional methods in (10), they are taken in block
form and solved simultaneously to obtain y i for i = 1(1)6 to obtain the following block method. For block method (9)-(10)

i h),, 2 [ 283498 +275f,,+% T, : 10621 fua 1034 +403f,,+5 199f;.2

Ynel= " Int 1083640 T 5184 120060 T 272160 _ 362880 ' 60480 _ 217723
Y 46

S L - S T St s 19
Yne2= " In T010 +oa5Sn+ L ~51Sus 2T 5505~ Te00 T 2835 8505

_ oy a2 (20165 2Tt spa Pt i a1p,
Yne1= YotV 2688 T 248 n+1 T 4480 ' 32 4480 T 2240 13440

1504f,, , ,

_ v 2 (10885 g 2624 8 32, 8h
Ynes= YutT3h+h (8505 + g5 a5 Sur 2 T 8505 81 net T o5 Sur 3 101

o +5hv b2 35225fn+8375fn+ +3'25fu+2 +25625fn+1_625f 4 +275f~+5 1375/,
Yne3= In 217728 T 12096 73576 54432 a1 T ST T a8

_ 2 (4L 68 fur1
Yn+2= yn+2hy +h (21(; n+1+ n+2+ 10ni +70 n+§+ n+3 (36)

3 15487 6737 o3 .
Con (120875 f o f 03 5864 Ty fn+ _ 863fun2
Ypsel= Y 181440 + 7360 G380 T 3835~ 60a0 T 7360~ 181440
1y 260f
’ _ ’ 1139/, n+3 332fue1 ) _ 3T w2
Yuez= Yuth T 1% n+1t 3780 v 2835 3780 ' 945 n+ 3 T 11340
387 243

by a3 R s PPt o o 290,
Your1= Yo 1344 756 n+1 T T3040 105 2240 " 280Jn+3 T 6720
/ _ ’ 286 fu 464 128 l504fn+1 8fn+2 )
Yours= Y uth( 555 +555 fr L+ o35 fur 2+ 2555 945fn 945fn 2835
, iy, 725fn+% 2577 s, Bhe D53 apss
Yues= YVath|Sgss 51 796 T 507 T 12096 T B T 36288

’ — 41f 9 68]‘,” 41f+2
Y n2= yn+h(420” 35Jne 1 130 0 2T 05 +135 n+5+ n+3 7320

For block method (15)-(16) similar operation is carried out;

A numerical method is zero-stable if the solutions remain bounded as 7—0, which means that the method does not provide
solutions that grow unbounded as the number of steps increases, Modebei et al.[17]. To show the zero-stability of the block method
(36), we take h—0 the method may be rewritten in matrix form as

AoY,=A1Y, 37
=)
Yr(L): (yn%,)’,H.%’}’n+1,yn+§,yn+§,yn+2)T
Y;: (y/n+%’y,n+§’y/n+l’y/n+%’y/n+%7y/n+2)7—
For method (36) Ag=I2x2 identity matrix and A =I,,x;2 matrix given by

0 000

Aqq 0

A=l 0 Axn |,An= ,Axp=

—_ = = =
= eleleNe)
S oo OO
S oo oo
S oo oo
=leloBoNeNe)
S oo oo
—_ = = =
= eBeloNe)
sleleloNeNe)
=l eleloNoNe)
SO OO OO
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The characteristic polynomial of the matrix A;; is given as
|A;,—Al|, that is 2°(1—1)= 0 with root Aj=0for j=1,...,5and
A= 1.

The characteristic polynomial of the matrix Ay, is given as
|Apn—Al|, that is 2°(1—-1) = 0 with root A;=0for j=1,...,5and
Ae= 1.

For method (15)-(16) Ag=112x12 identity matrix and A;=1,2x1>
matrix given by

A O

A= 0 Axn |,A1=An=

—_ = s = =
eNeNeBoNehel
[eNeoNeBoNeNel
[eNeoNeoBoNeoNel
[=NeoNoBoNeNel
eNeNeoBoNehal

The characteristic polynomial of the matrix A;; is given as |A;;—A1|,

i= 1,2, that is 3(1-1) = 0 with root 2;= 0 for j=1,...,5 and
As= 1.

Definition 3.1. The two step hybrid block method (9)-(10) (or
(15)-(16)) is said to be zero stabile if the number of root of the
first characteristic equation |p(r)| < 1 and if |p(r)] = 1, then
the multiplicity of p(r) must not exceed 2. Hence, the are zero
stable.

3.3. Convergence of the Methods

Definition 3.2. Convergence: An LMM is said to be convergent
if and only if it is consistent and zero-stable.

By the above definition, the derived hybrid methods are
convergent.

4. Numerical Examples

In this section, the performance of the developed two-step
hybrid block scheme is examined. the exact and approximate
solution are tabulated. The tables below show the numerical re-
sults of the newly developed scheme with the exact solution for
solving the problem and the result of the developed scheme are
more accurate than existing methods. For simplicity, method
in (9)-(10) would be termed Hybrid 2-step Block Method 1
(H2BM1), and method in (15)-(16) would be termed Hybrid
2-step Block Method 2 (H2BM?2)

Example 1.
Consider the PDE (Ngwane and Jator [10]).

a?_dh_

38
¥(0,) =y(1,1) =0, y(x,0) = sintx+sinwnx, «>1 (38)

The analytic solution is y(x, f) =e ™™ “sinzx+e~“"™ “sinzx
Following Ngwane and Jator [10], (38) becomes

dylzn =ly(x > lm+1)—Y(X, tm—l)]
dx? « (AD)

(39)

Y (O0st) =vm(1,t,) =0, yp(x,0) = sintx+sinwrx, «>1
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Table 1: Exact and Numerical solution for Example 1

X Exact H2BM1 Error
0.0 1.65341E-9 1.65341E-9 0

0.1 6.16242E-10  6.16242E-10  2.78E-12
0.2 2.29678E-10  2.29678E-10  4.45E-12
0.3 8.56029E-11  8.56029E-11  4.20E-12
0.4 3.19048E-11  3.19048E-11  5.00E-12
0.5 1.18911E-11  1.18911E-11  6.45E-12
0.6 4.43194E-12 4.43194E-12  7.31E-12
0.7 1.65181E-12  1.65181E-12  3.28E-12
0.8  6.15646E-13  6.15646E-13  4.11E-13
0.9 2.29456E-13  2.29456E-13  5.99E-13

Table 2: Exact and Numerical solution for Example 1

9 Exact H2BM2 Error

0.0 1.65341E-9 1.65341E-9 0

0.1 6.16242E-10  6.16242E-10  3.24E-12
0.2 2.29678E-10  2.29678E-10  7.21E-12
0.3 8.56029E-11  8.56029E-11  2.22E-12
04  3.19048E-11  3.19048E-11  8.45E-12
0.5 1.18911E-11  1.18911E-11  1.15E-12
0.6 443194E-12 4.43194E-12  1.18E-12
0.7 1.65181E-12  1.65181E-12  5.08E-12
0.8  6.15646E-13  6.15646E-13  2.48E-13
0.9 2.29456E-13  2.29456E-13  4.79E-13

where
tw=mAt, m=0,1,...; M
ym(-x)zy()a fm),)’(x) = [Yo(x)’ Y1 (.X), e ,YM—I(X)]T,

hence (39) becomes the system =f(x,yn) which is in the
form of (1), where f(x, t,,) =Ay+G and A is an M—1 square
matrix, G is a vector of constants.

BHSDA is L -Stable Block Hybrid Second Derivative Al-
gorithm in Ngwane and Jator [10].

Tables 1 and 2 shows the comparison of exact solution and
the mothers H2BM1 and H2BM2 respectively. For example 1.

Table 3 shows the comparison of maximum errors obtained
for example 1 using the derived methods and the method in
Ngwane and Jator[10]. This shows the superiorly of the derived
methods over existing methods.

Figure 1 show the surface plots for the exact solution and
Numerical solutions for example 1.
Example 2. Consider the PDE ([14]):

dPyn(x)
dx?

A, 2¢i
&+ 2= -32nsindnx),  xel0, 1] (40)
y(£1,0) =y(x, +1) =0, >0

Table 3: Comparison of maximum errors obtained in different methods for Ex-
ample 1 at 7= 1.

K H2BM1 H2BM2 BHSDA
1 1.076x10°TT  1.022x1072  2.64x107°
2 1.024x10°2 1.085x10° 2 132x10°
3 1.045x10°2 1.045x 1072 132x10°
5  1.035x1072  1.055x10°2  1.32x10°°
10 1.019x10°2  1.041x10°2  1.32x10°
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Figure 1: Surface plots for the Exact and numerical solution for Example 2

Table 4: Exact and Numerical solution using H2BM1 for Example 2.

K H2BM1 H2BM2 BHSDA
X Exact H2BM1 Error
0.0  6.634320126E-16 6.634320126E-16 0.
0.2 0.5590169122545 0.5590169122520  2.51E-12
0.4  -0.9045084378512  -0.9045084378511  1.00E-12
0.6  0.9045084354472 0.9045084354462 1.00E-12
0.8 -0.5590169311454  -0.5590169311421  3.37E-12
1.0 -4.658833273E-16  -4.658833273E-16 0.

for N=

10, xe[-1,1]

Table 5: Exact and Numerical solution using H2BM2 for Example 2.

X Exact H2BM2 Error
0.0 6.634320126E-16 6.634320126E-16 0.
0.2 0.5590169122545 0.5590169122589 4.49E-12
0.4 -0.9045084378512  -0.9045084378577  6.52E-12
0.6 0.9045084354472 0.9045084354428 5.53E-12
0.8  -0.5590169311454  -0.5590169311433  2.12E-12
1.0 -4.658833273E-16  -4.658833273E-16 0.
for N= 10, xe[-1,1]
The analytic solution is y(x, t) = sindmxsindnt.
Following Ngwane and Jator [10], (38) becomes
2
dym _ _y(x > tm+l)_2y (x > tm) +y(x 5 tm—l)]
dx? (240
—327%sin(4nx)
41)
Ym(x£1,ty) =ym(x,£1) =0
where
tn=mAt, m=0,1,... .M
T
Ym(X)=Y(X, 1), y(x) = [yo(x), y1(X), . ... ym-1(x)]",

hence (41) becomes the system —~

& ym )

=f(x,y,) which is in the

form of (1), where f(x, t,) —Ay+G and A is an M—1 square
matrix, G is a vector of constants.
BVM and BUM are Boundary Value Methods and the Block
Unification Methods in Biala [14].
Tables 4-5 shows the comparison of the exact solution and

the methods H2BM1 and H2BM2 respectively for example 2.
Table 6-7 shows the maximum error and CPU time obtained for
different methods. Table 9 shows the maximum error and CPU
time obtained in Biala [14].
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Table 6: Comparison of maximum errors obtained in different methods for Ex-
ample 2 at t= 1

N H2BMI [, error CPU Time H2BM2 [ error  CPU Time
16 2.257E-7 0.112 5.547E-7 0.121
32 2.787E-7 0.898 1.712E-7 0.871
64 8.234E-7 2.785 2.337E-7 2.662
128 3.114E-7 11.211 4.785E-7 12.009
256 2.779E-7 31.812 1.112E-7 30.101

Table 7: Comparison of maximum errors obtained in different methods for Ex-
ample 2 at 7= 1

N BVM I, error CPU Time BUM I, error CPU Time
16 9.662E-0 0.483 1.251E-1 0.531
32 2.582E-2 1.235 2.578E-2 1.031
64 6.433E-3 5.358 6.459E-3 5.516
128 1.607E-3 43.641 1.607E-3 46.923
256 2.000E-0 512.843 4.016E-4 532.657

This show that the derived methods performs accurately, su-
periorly and affluently in terms of the computer time, and errors
obtained in examples 2.

Figure 2 shows the surface plots for the exact and Numerical
solution for examples 2.

Example 3.
We consider the PDE (Jator [15]).

(22 +M2 =sin(y), x€[-3,3]
y(x,0) = 4arctan(e Vi-2),

Wilx,0) = ——He e
Vi—2(1+e Vi-?)

(42)
, 0<«1

The analytic solution is y(x, t) = 4arctan(sech(x)t), c is ve-
locity of the wave. The problem is solved for c= 0.5, A= 0.125
Following Ngwane and Jator [10], (38) becomes

dym _ yOs te) =29 (0, ) B, )] |
= )43
dx? QAD +sin(ym)(43)
Ym (x,0) = 4arctan (e Vi-2 ),
Vg (5,0)= ——2ee et <
Vl—cz[]+e Hz)
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Figure 3: Surface plots for the Exact and numerical solution for Example 3

Table 8: Exact and Numerical solution using different methods for Example 3

X Exact H2BM1 H2BM2 SBVM
0.125  0.12195641127  0.12195641122  0.12195641178  0.121956
0.25  0.11346954831  0.11346954852  0.11346954877  0.113469
0.375  0.10557254177  0.10557254144  0.10557254129  0.105573
0.5 0.09822454418  0.09822454411  0.09822454412  0.0982256
0.625  0.09138842135  0.09138842122  0.09138842129  0.0913892
0.75  0.08502738529  0.08502738541  0.08502738557  0.0850284
0.875  0.07910885264  0.07910885215  0.07910885213  0.0791101
1.00  0.07360212510  0.07360212548  0.07360212544  0.0736035

Table 9: Approximate and Numerical solution for Example 3

X H2BM1 Error H2BM2 Error  SBVM Error
0.125 7.2E-10 5.1E-10 1.30E-7
0.25 2.1E-11 4.6E-10 2.94E-7
0.375 3.3E-11 4.8E-10 4.51E-7
0.5 7.2E-11 8.0E-10 6.49E-7
0.625 1.4E-10 5.5E-10 8.41E-7
0.75 1.2E-10 3.7E-10 1.03E-6
0.875 4.9E-10 3.3E-10 1.25E-6
1.00 3.8E-10 7.7E-10 1.44E-6

where

tn=mAt,

form of (1).

Yu-1(017,

Py (x)
dx?

m=0,1,....M; y,,(x)~y(x, t,,),y(x) = [
Yo(x), y1(x), ...
hence (43) becomes the system

=f(x,y,) which is in the

where f(x, t,,) =Ay+G and A is an M—1 square matrix, G is a
vector of constants.
SBVM is symmetric boundary value method in Jator [15].
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Table 8 shows the exact and numerical solution using the differ-
ent methods for example 3 while Table 9 shows error obtained
for example 3. Figure 3 shows the surface plots for the Exact
and numerical solutions of H2BM1 and H2BM2 for Example 3

5. Conclusion

The development of some numerical schemes has been pro-
posed in this work. This was developed via the interpolation
and collocation techniques using power series function as trial
solutions. The methods were effectively illustrated some partial
differential equations (PDE) and the results obtained were ac-
curate. The analysis of the new methods showed that all satisfy
the properties of numerical methods for the solution of differen-
tial equations. Namely, Consistency, Zero- Stability, Continuity
and convergence.
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