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Abstract

This study examines a system that consists of three subsystems 1, 2 and 3. These three subsystems are each linked together in series. Subsystem
1’s three units are wired in series, subsystem 2’s three units are wired in parallel and operating under the 2-out-of-3: G; policy, and subsystem
3’s three units are wired in parallel and operating under the 1-out-of-3: G; policy. Units and subsystems failure rates are constant and follow an
exponential distribution. The repair rate follow two types of distributions, namely general and Gumbel Hougaard family copula distribution. The
system was studied using Laplace transforms and supplementary variable methods. For specific values of the failure and repair rates, availability,
reliability, mean time to failure (MTT F), and cost analysis have been assessed. As a means to improve the system’s overall effectiveness and
availability, a reduction strategy is utilized. Tables and graphs are used to display computed results.
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1. Introduction

Indirectly programmable network control for applications
and network services is made possible by software-defined net-
working (SDN). In order to provide a more flexible and man-
ageable network infrastructure, software defined networks de-
tach the control and forwarding operations of the network from
the underlying hardware, such as routers and switches. Net-
work programmability is offered via software-defined network-
ing (SDN) from a central location. Since the complexity of the

∗Corresponding author tel. no: +201558057345
Email address: smondy1974@gmail.com (Elsayed E. Elshoubary )

control plane is offloaded onto the controller, the nodes or data
plane devices in SDN simply need to worry about transmitting
data packets. Typically, all of the regulations and policies are
implemented by the controller. Centralized control allows for
more adaptability in identifying and fixing link failures because
the controller understands the complete network’s structure.

Reliability engineering research has shown time and again
that detailed performance analysis can help prevent disasters
and save money. One example is the investigation of reliabil-
ity for a cold standby PCB manufacturing system consisting of
two identical units that failed due to the development of flaws
in the primary unit by Batra and Malhotra [1]. Gahlot et al.
[2] examined how a complicated system operating sequentially
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performed under the 2-out-of-3: G and 1-out-of-2: G strategies.
Ye et al. [3] looked at the reliability of a machine that could
be repaired while it was being shocked and degraded by low-
quality feedstocks. to look at the connections between machine
problems, product quality, and the inspection process.

The research of reliability measures for the system, that
consists of two subsystems operating under the 2-out-of-4 rule:
G; policy, was the main focus of Kabiru et al. [4]. In order to the
performance of the complicated system in a series arrangement
while accounting for failure and repair, Singh et al. [5] used
copula and controllers. Yusuf et al. [6] solved recursively to
provide availability, repairmen’s peak demand, and profit func-
tion. Ashish et al. [7] analyzed a novel efficient and intelli-
gent irrigation system (EIIS) using the concept of cold standby
redun-dancy. Singh et al. [8] used Copula to analyze the perfor-
mance of complex systems in series configuration across sev-
eral failure and repair scenarios. Neama [9] investigated how a
dependent system develops its reliability. Yusuf et al. [10] stud-
ied the RAMD analysis on PV systemplant where PV system
mainly consists of five components namelyPV modules, con-
troller, batteries, inverter and Distribution Board. El-Damces et
al. [11] looked at how a parallel system’s equivalence factor
in dependability might be affected by fluctuating failure rates.
The growth of a complex system with three subsystems was ex-
amined by Elsayed et al. [12]. Every subsystem consists of
three units that use the reduction method and the (1-out-of-3:
G) policy.

This paper seeks to examine the reliability and performance
of coopration via software defined networks (SDN) in terms
of reliability, Mean time to failure (MTT F), cost, availability
utilizing copula distribution and the effective of the reduction
method on Performance of the system in terms of reliability,
availability and cost analysis. The system is divided into three
subsystems (Figure 1), subsystem 1 (three units in series), sub-
system 2 (three controller servers in parallel) follows 2-out-of-
3:G operational policy and subsystem 3 (three unis in parallel)
follows 1-out-of-3:G operational policy. series connections be-
tween all subsystems.The system can go through three distinct
states: successful, partially unsuccessful, and failed. The fol-
lowing options may cause the system to enter the failed state:

• Subsystem 1 can fail in any of its three components, yet
subsystems 2 and 3 remain functional.

• More than one subsystem 2 unit fail, yet all subsystem 1
and 3 units are in fine working order.

• More than two subsystem 3 units malfunction, yet all
subsystems 1 and 2 units function well.

In the following scenarios, the system will be partially failed:

• All units in subsystems 1 and 3 are operational, but in
subsystem 2 there is at least one nonworking unit and
potentially more than two.

• None of the components from either of the first two sub-
systems have failed. However, one or both components
from the third subsystem may be non-functional.

Network

Devices

Network

Devices

Network

Devices

Controller

Controller

Controller

Application 2

Application 1

Application 3

Data plane Control plane Management plane

Figure 1. Block diagram for SDN

2. Assumptions

The following ideas were made during model analysis (Fig-
ure 2):

• At first, everything is running smoothly, including the
subsystems.

• It takes three units from subsystem 1, two from subsys-
tem 2, and one from subsystem 3 for the system to be
operational.

• The system’s capacity will be diminished if one of the
subsystems 2 or 3’s units malfunctions.

• In the event that one subsystem 1 unit, two subsystem 2
units, and three subsystem 3 units fail, the system will
become unworkable.

• When a system’s malfunctioning component is in a low-
performance or failed condition, it can still be repaired.
Once a subsystem fully fails, copula maintenance is nec-
essary. Since no damage is done during the repair, it is
claimed that a copula-repaired system performs identi-
cally to a brand-new system.

• Once the defective unit has been repaired, the operation
can begin.

3. Notations

t / s : Time scale / the variable of Laplace transform
δ1/δ2/δ3 : Rates of system-1 failure in units 1-2-3.
δc/δa : Symbolizes the rate with which components of Subsys-
tems 2 and 3 fail.
α(x)/ α(y) : Repair rate of sybsystem-2 / sybsystem-3
η(z) : Rate of repair for fully broken systems
Pi(t) : The probability of changing from the current state to the
ith state at any given time t.
Pi(s) : Laplace transform of Pi(t)
Pi(x, t) : The probability that the system is in state S i,
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Figure 2. Diagram showing the model’s state transitions

i = 1, ..., 11. Pi(x, t) represents that the system is in repair with
repair variables x.
K1 / K2 : Revenue / service cost per unit time.
Ep(t) : Expected profit during the interval. [0, t)
η(x) : An expression of the joint probability from a failed
state S j, j = 8, ..., 11, to good state S 0 according to the
Gumbel-Hougaard family of copula is given as:
µ0(x)= Cθ

(
u1(x), u2(x)

)
= exp[xθ + {logφ(x)}θ]

1
θ , 1 < θ < ∞,

where u1 = φ(x) and u2 = ex.

Table 1. Describe the current system state.
State Description
S 0 All of the components are in excellent condition and in

this immaculate form.
S 1 Due to the loss of the subsystem-2’s initial unit, S 1 is

a degraded condition with a slight partial failure in
the subsystem2. The system is under repair

S 2 After the failure of any three units in subsystem 3, the
system is depicted as degraded yet operable, while all units
in subsystems 2 and 1 are in good operational state.
Currently, work is being done on it.

S 3 Two units have failed, one from subsystem 2 and the other
from subsystem 3, causing the system to be degraded at
this point. The total repair times are (x, t) and (y, t),
respectively.

S 4 While the system has been impaired but is still operational
due to the failure of two units in subsystem 3, all system
units are in good working condition as shown. It’s being
worked on right now.

S 5 The system is currently impaired as a result of three units
failing, one from subsystem 2 and the other from subsy
-stem 3. the system is undergoing repair.

S 6 The system has degraded due to two units failing, one
from subsystem 3 and the other from subsystem 2, with
total repair times of (y, t) and (x, t), respectively.

S 7 Because of the breakdown of more than two Sybsystem 3
units, the entire system is currently inoperable. Repairs are
being made using a copula distribution.

S 8 A broken system is indicated when Subsystem 1’s first
component fails. We are using copula distribution to fix
the system.

S 9 Subsystem 1 is in an entirely failed state due to the
breakdown of two units. Copula distribution is utilized to
fix the system.

S 10 Because of the failure of the third unit in subsystem 1, the
entire system is now useless. In order to repair the system,
copula distribution is being used.

S 11 Due to a second subsystem 1 unit failing, the system is
currently down. To correct the issue, we are using
a copula distribution.

4. Mathematical formulation and solution

This mathematical model is related to the following set of
difference-differential equations by use of factor probability and
argument consistency.

[ d
dt

+ δ1 + δ2 + δ3 + 3δa + 3δc

]
P0(t) =

∫ ∞

0
α(x)P1(x, t)dx

+

∫ ∞

0
α(y)P2(y, t)dy +

∫ ∞

0
η(y)P7(y, t)dy +

∫ ∞

0
η(z)P8(z, t)dz

+

∫ ∞

0
η(x)P9(x, t)dx +

∫ ∞

0
η(k)P10(k, t)dk

+

∫ ∞

0
η(w)P11(w, t)dw, (1)
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[ ∂
∂t

+
∂

∂x
+ δ1 + δ2 + δ3 + 3δa + 2δc +α(x)

]
P1(x, t) = 0,(2)

[ ∂
∂t

+
∂

∂y
+ δ1 + δ2 + δ3 + 2δa + 3δc +α(y)

]
P2(y, t) = 0,(3)

[ ∂
∂t

+
∂

∂y
+ 2δa + α(y)

]
P3(y, t) = 0, (4)

[ ∂
∂t

+
∂

∂y
+ δa + α(y)

]
P4(y, t) = 0, (5)

[ ∂
∂t

+
∂

∂y
+ δa + α(y)

]
P5(y, t) = 0, (6)

[ ∂
∂t

+
∂

∂x
+ 2δc + α(x)

]
P6(x, t) = 0, (7)

[ ∂
∂t

+
∂

∂y
+ η(y)

]
P7(y, t) = 0, (8)

[ ∂
∂t

+
∂

∂z
+ η(z)

]
P8(z, t) = 0, (9)

[ ∂
∂t

+
∂

∂x
+ η(x)

]
P9(x, t) = 0, (10)

[ ∂
∂t

+
∂

∂k
+ η(k)

]
P10(k, t) = 0, (11)

[ ∂
∂t

+
∂

∂w
+ η(w)

]
P11(w, t) = 0, (12)

Boundary conditions:

P1(0, t) = 3δcP0(t) +

∫ ∞

0
α(y)P3(y, t)dy, (13)

P2(0, t) = 3δaP0(t) +

∫ ∞

0
α(y)P4(y, t)dy (14)

+

∫ ∞

0
α(x)P6(x, t)dx, (15)

P3(0, t) = 3δaP1(0, t) +

∫ ∞

0
α(y)P5(y, t)dy, (16)

P4(0, t) = 2δaP2(0, t), (17)
P5(0, t) = 2δaP3(0, t), (18)
P6(0, t) = 3δcP2(0, t), (19)
P7(0, t) = δa

[
P4(0, t) + P5(0, t)

]
, (20)

P8(0, t) = δ1

[
P0(t) + P1(0, t) + P2(0, t)

]
, (21)

P9(0, t) = 2δc

[
P1(0, t) + P6(0, t)

]
, (22)

P10(0, t) = δ3

[
P0(t) + P1(0, t) + P2(0, t)

]
, (23)

P11(0, t) = δ2

[
P0(t) + P1(0, t) + P2(0, t)

]
. (24)

Other state transition probabilities at t = 0 are zero, and the
initial condition Po(0) = 1 is also true. By using the Laplace

transformation of (1) - (23), we can solve the partial differential
equations as follows:

P̄0(s) =
1

D(s)
(25)

P̄1(s) =
(1 − S̄ α(s + δ1 + δ2 + δ3 + 3δa + 2δc))

D(s)(s + δ1 + δ2 + δ3 + 3δa + 2δc)

×
[
3δc +

9δaδcS̄ α(s + 2δa)
A

]
(26)

P̄2(s) =
(1 − S̄ α(s + δ1 + δ2 + δ3 + 2δa + 3δc))

D(s)(s + δ1 + δ2 + δ3 + 2δa + 3δc)

×
[3δa

B

]
(27)

P̄3(s) =
(1 − S̄ α(s + 2δa))

D(s)(s + 2δa)

[9δaδc

A

]
(28)

P̄4(s) =
(1 − S̄ α(s + δa))

D(s)(s + δa)

[6δ2
a

B

]
(29)

P̄5(s) =
(1 − S̄ α(s + δa))

D(s)(s + δa)

[18δ2
aδc

A

]
(30)

P̄6(s) =
(1 − S̄ α(s + 2δc))

D(s)(s + 2δc)

[9δaδc

B

]
(31)

P̄7(s) =
6δ3

a(1 − S̄ η(s))
D(s)(s)

[ 1
B

+
3δc

A

]
(32)

P̄8(s) =
(1 − S̄ η(s))

D(s)(s)

[
δ1 +

3δ1δa

B

+
3δ1δc(1 − 2δaS̄ α(s + δa))

A

]
(33)

P̄9(s) =
(1 − S̄ η(s))

D(s)(s)

[
6δ2

c(1 − 2δaS̄ α(s + δa))
A

+
18δaδ

2
c

B

]
(34)

P̄10(s) =
(1 − S̄ η(s))

D(s)(s)

[
δ3 +

3δ3δa

B

+
3δ3δc(1 − 2δaS̄ α(s + δa))

A

]
(35)

P̄11(s) =
(1 − S̄ η(s))

D(s)(s)

[
δ2 +

3δ2δa

B

+
3δ2δc(1 − 2δaS̄ α(s + δa))

A

]
, (36)

where

D(s) = s
[
1 +

(1 − S̄ α(s + δ1 + δ2 + δ3 + 3δa + 2δc))
(s + δ1 + δ2 + δ3 + 3δa + 2δc)

[
3δc

+
9δaδcS̄ α(s + 2δa)

A

]
+

3δa(1 − S̄ α(s + δ1 + δ2 + δ3 + 2δa + 3δc))
B(s + δ1 + δ2 + δ3 + 2δa + 3δc)

+
9δaδc(1 − S̄ α(s + 2δa))

A(s + 2δa)
+

(1 − S̄ α(s + δa))
(s + δa)

[6δ2
a

B
+

18δ2
aδc

A

]
+

(1 − S̄ α(s + 2δc))
(s + 2δc)

[9δaδc

B

]
+

(1 − S̄ η(s))
(s)

[
δ1 + δ2 + δ3

4
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+
3δc(6δ3

a + G(δ1 + 2δc + δ3 + δ2))
A

+
3δa(2δ2

a + δ1 + 6δ2
c + δ3 + δ2)

B

]]
, (37)

A = 1 − δa

[
3S̄ α(s + 2δa) + 2S̄ α(s + δa)

]
, (38)

B = 1 − 2δaS̄ α(s + δa) − 3δcS̄ α(s + 2δc), (39)

G = 1 − 2δaS̄ α(s + δa). (40)

The following Laplace transformations indicate the probability
of the system switching between operational and failed states at
any given moment:

P̄up(s) = P̄0(s)+P̄1(s)+P̄2(s)+P̄3(s)+P̄4(s)+P̄5(s)+P̄6(s).(41)

P̄down(s) = 1 − P̄up(s). (42)

5. Analytical study of the model

5.1. Availability analysis
The fix would be consistent with the general and Gumbel-

Hougaard copula distribution families. Setting

S̄ η(s) =
exp[xθ + {logα(x)}θ]

1
θ

s + exp[xθ + {logα(x)}θ]
1
θ

, S̄ α(s) =
α

s + α
.

We have studied the following two cases for the availability of
system.
Case I: Using various parameter values as δ1 = 0.02, δ2 =

0.03, δ3 = 0.03, δa = 0.025, δc = 0.035, θ = 1, α = 1, x = y = 1
and α(x) = α(y) = 1 in equation (41), and then taking inverse
Laplace transform, we have availability of the system,

Pup(t) = 0.968501+0.0401169e−2.83285t−0.00736907e−1.3617t

− 0.0000102754e−1.23146t − 0.000114346e−1.04506t

− 0.0000477605e−1.03916t − 0.00101205e−0.954528t

− 0.0000641764e−0.905826t − 1.56216(10−13)e−0.235t

+ 5.98848(10−14)e−0.225t + 2.389(10−15)e−0.07t

− 7.916899(10−15)e−0.05t + 3.70097(10−15)e−0.025t. (43)

Case II: Reduction method
By multiplying the failure rates of the system’s components by
a factor rho such that 0 < ρ < 1, we have been able to boost
system availability. Using the inverse Laplace transformation
and the following parameter values (δ1 = 0.02, δ2 = 0.03, δ3 =

0.03, δa = 0.025, δc = 0.035, θ = 1, α = 1, x = y = 1, and
α(x) = α(y) = 1), we may gain the increased availability of the
system.

Pup(t) = 0.987911+0.0134429e−2.75536t−0.00114909e−1.14601t

− 1.52928(10−6)e−1.09258t − 0.0000157255e−1.01784t

− 9.37697(10−6)e−1.01556t − 0.000168718e−0.979336t

Table 2. Comparing the availability of the original and enhanced systems.
Time Availability

CaseI
Availability

CaseII
0 1 1
1 0.968498 0.988324
2 0.967974 0.987821
3 0.968316 0.987867
4 0.968443 0.987896
5 0.968483 0.987906
6 0.968495 0.987909
7 0.968499 0.98791
8 0.9685 0.987911
9 0.968501 0.987911
10 0.968501 0.987911

0 2 4 6 8 10
0.95

0.96

0.97

0.98

0.99

1 Case I
Case II

time (t)

A
va

ila
bi

lit
y

Figure 3. Availability analysis of two cases.

− 9.52708(10−6)e−0.962258t − 9.06119(10−14)e−0.094t

+ 9.29511(10−14)e−0.09t − 1.99697(10−15)e−0.028t

− 1.53729(10−15)e−0.02t + 1.28667(10−15)e−0.01t. (44)

Now, if we change t = 0 to 10 in (43) and (44) above, we get Ta-
ble 2 and the associated Figure 3, which show how availability
shifts with time in two different scenarios.

5.2. Reliability Analysis

For certain levels of failure rates, the reliability can be de-
rived by setting all repair rates in equation (41) to zero. The
same two scenarios that were covered in the discussion of avail-
ability are covered here as well.

Case I: Using the values of various parameters as δ1 =

0.02, δ2 = 0.03, δ3 = 0.03, δa = 0.025, δc = 0.035. After enter-
ing in all of these numbers into (41), the system’s dependability
is calculated using the inverse Laplace transformation:

R(t) = 0.127357e−0.473674t + 0.000261585e−0.230773t

+ 0.174506e−0.0819933t + 0.145205e−0.0587927t

5
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Table 3. Variation of reliability with respect to time in various cases.
Time Reliability

CaseI
Reliability

CaseII
0 1 1
1 0.911036 0.966337
2 0.842435 0.935999
3 0.787218 0.908743
4 0.740997 0.883329
5 0.700998 0.86021
6 0.665459 0.838818
7 0.633247 0.818902
8 0.603622 0.800255
9 0.576097 0.782702

10 0.550336 0.766098

0 2 4 6 8 10
0.4

0.6

0.8

1

1.2 Case I
Case II

time (t)

R
el

ia
bi

lit
y

Figure 4. Reliability analysis of two cases.

+ 0.402824e−0.0390278t + 0.149846e−0.0230376t. (45)

Case II: It is expected that the failure rates of the system’s
units are decreased by a factor of ρ such that 0 < ρ < 1
when the reduction approach is applied. If we set ρ = 0.4 and
δ1 = 0.02, δ2=0.03, δ3 = 0.03, δa = 0.025, δc = 0.035, and so
on, we can predict that the system will exhibit the following
behavior: By plugging these numbers into (41) and doing the
inverse Laplace transformation, we can calculate the system’s
reliability:

R(t) = 0.108202e−0.183232t + 0.000227366e−0.0923024t

+ 0.0701865e−0.0295817t + 0.178017e−0.0221234t

+ 0.56058e−0.015812t + 0.0827866e−0.00961557t. (46)

The reliability variance over time for two situations is shown in
the Table 3 and the associated Figure 4.

5.3. Mean Time to Failure (MTT F) Analysis
Setting the total number of fixes to zero and the limit as

s approaches zero in (41) allows us to determine the system’s

Table 4. Variation of MTT F with respect to failure rates.
Failure
rates

MTT F
(δ1)

MTT F
(δ2)

MTT F
(δ3)

MTT F
(δa)

MTT F
(δc)

0.1 5.70218 5.92611 5.92611 6.23364 5.97549
0.2 4.12612 4.24425 4.24425 5.35957 4.50606
0.3 3.22363 3.296 3.296 4.94086 3.78019
0.4 2.64157 2.69026 2.69026 4.69275 3.34807
0.5 2.23597 2.27089 2.27089 4.5282 3.06156
0.6 1.93754 1.96378 1.96378 4.41097 2.85771
0.7 1.70895 1.72937 1.72937 4.32317 2.70528
0.8 1.52835 1.54469 1.54469 4.25495 2.587
0.9 1.38212 1.39548 1.39548 4.2004 2.49255
1 1.26132 1.27245 1.27245 4.15578 2.4154

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1
0

2

4

6

8
δ1
δ2
δ3
δa

δc

Failure rate

M
T

T
F

Figure 5. MTT F versus rates of failure

MTT F:
MTT F = lim

s→0
P̄up(s).

The formula for MTT F can be derived by defining the limit as
s goes to zero and treating all repairs in equation (41) as zero.

MTT F =
1

2(δ1 + δ2 + δ3 + 3(δa + δc))

[
2

+ δc

(
9 +

6
δ1 + δ2 + δ3 + 3δa + 2δc

)
+ δa

(
21 + 36δc +

4
δ1 + δ2 + δ3 + 2δa + 3δc

)]
. (47)

Failure rates were identified by setting δ1 = 0.02, δ2 =

0.03, δ3 = 0.03, δa = 0.025, δc = 0.035, and then systemati-
cally changing each of these values from 0.01 to 0.10 in (47).
The disparity between the mean time to failure (MTT F) and
the failure rates is seen in Table 4 and Figure 5.

5.4. Cost Analysis

We may calculate the expected benefit of the system for the
time period [0, t) if the service facility is always accessible as

6
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Table 5. Expected profit where the repair follows cupola distribution
Time k2 = 0.5 k2 = 0.4 k2 = 0.3 k2 = 0.2 k2 = 0.1

0 0 0 0 0 0
1 0.477003 0.577003 0.677003 0.777003 0.877003
2 0.944951 1.14495 1.34495 1.54495 1.74495
3 1.41312 1.71312 2.01312 2.31312 2.61312
4 1.88151 2.28151 2.68151 3.08151 3.48151
5 2.34998 2.84998 3.34998 3.84998 4.34998
6 2.81847 3.41847 4.01847 4.61847 5.21847
7 3.28696 3.98696 4.68696 5.38696 6.08696
8 3.75546 4.55546 5.35546 6.15546 6.95546
9 4.22396 5.12396 6.02396 6.92396 7.82396

10 4.69246 5.69246 6.69246 7.69246 8.69246
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Figure 6. An estimate of the expected profit under the copula repair strategy.

follows:

Ep(t) = K1

∫ t

0
Pup(t)dt − K2t. (48)

Like availability and reliability we have studied two cases.
Case I: K1 and K2 represent the revenue and service cost per
unit time, respectively. Using the identical values for the pa-
rameters in equation(43) and equation(48) as in case I of sub-
section (5.1), one obtains the same result as in (49). For this
reason,

Ep(t) =
(
0.00745477 − 0.0141613e−2.83285t

+ 0.00541169e−1.3617t + 8.34404(10−6)e−1.23146t

+ 0.000109416e−1.04506t + 0.0000459607e−1.03916t

+ 0.00106026e−0.954528t + 0.0000708485e−0.905826t

+ 6.6475(10−13)e−0.235t − 2.66155(10−13)e−0.225t

− 3.41286(10−14)e−0.07t + 1.58338(10−13)e−0.05t

− 1.48039(10−13)e−0.025t + 0.968501t
)
K1 − K2t. (49)

Table 5 and Figure 6 show the estimated profit for K1 = 1 and
K2 = 0.1, 0.2, 0.3, 0.4, and 0.5 and t = 0 to 10 units of time.
Case II: When employing the same set of parameters as in Case

Table 6. Expected profit where the repair follows cupola distribution with ρ =

0.4
Time k2 = 0.5 k2 = 0.4 k2 = 0.3 k2 = 0.2 k2 = 0.1

0 0 0 0 0 0
1 0.491665 0.591665 0.691665 0.791665 0.891665
2 0.979601 1.1796 1.3796 1.5796 1.7796
3 1.46744 1.76744 2.06744 2.36744 2.66744
4 1.95533 2.35533 2.75533 3.15533 3.55533
5 2.44323 2.94323 3.44323 3.94323 4.44323
6 2.93114 3.53114 4.13114 4.73114 5.33114
7 3.41905 4.11905 4.81905 5.51905 6.21905
8 3.90696 4.70696 5.50696 6.30696 7.10696
9 4.39487 5.29487 6.19487 7.09487 7.99487
10 4.88278 5.88278 6.88278 7.88278 8.88278
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Figure 7. Expected Profit from developing system with roh=0.4

II of subsection (5.1) and equations (44) and (48). From this,
one can derive equation (50):

Ep(t) =
(
0.00366789 − 0.00487883e−2.75536t

+ 0.00100268e−1.14601t + 1.39969(10−6)e−1.09258t

+ 0.00001545e−1.01784t + 9.23326(10−6)e−1.01556t

+ 0.000172278e−0.979336t + 9.90076(10−6)e−0.962258t

+ 9.63957(10−13)e−0.094t − 1.03279(10−12)e−0.09t

+ 7.13203(10−14)e−0.028t + 7.68644(10−14)e−0.02t

− 1.28667(10−13)e−0.01t + 0.987911t
)
K1 − K2t. (50)

6. Discussion and Conclusions

A complex system with three subsystems was evaluated in
terms of its reliability traits. The supplementary variable tech-
nique has been used to derive explicit expressions. The reduc-
tion method has been utilized as a successful strategy for in-
creasing system reliability by reducing the failure rate of some
of the system components.

7
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The data on the complex repairable system’s availability
evolves over time when rates of failure are set at δ1 = 0.02, δ2 =

0.03, δ3 = 0.03, δa = 0.025, and δc = 0.035 is shown in Table 2
and Figure 3. We can see that the system’s availability declines
as time t’s value rises and eventually stabilizes after a suitably
extended period of time. Utilizing the reduction strategy as case
II, we lower the system’s unit failure rates via a factor ρ such
that 0 < ρ < 1 in order to increase the system availability.
Therefore, It seems reasonable to conclude that the technique
of reduction strategy is an option worth considering.
The system’s reliability is assessed in the same two scenarios as
its availability. The original system’s reliability decreases over
time when failure rates are deliberately varied, as in cases I and
II. When applied to the original system, a reduction strategy
with a factor ρ such that 0 < ρ < 1 reduces the rate of failure
per unit of the system, hence increasing its reliability. Table 3
and Figure 4 show that the reduction technique enhances the re-
liability of the original system when comparing the two cases,
Case I and Case II.

The system MTT F is depicted in Figure 5 and Table 4 with
respect to variations in the failure rates δ1, δ2, δ3, δa, and δc, re-
spectively, with the assumption that all other parameters remain
constant. The system’s MTT F is decreasing in terms of a num-
ber of failure rates. Mean Time to Failure (MTT F) for the en-
tire system is longest for subsystem 3 and shortest for subsys-
tem 1.

The expected profit has been computed (Tables 5 and 6),
and the results are illustrated by the graph given revenue cost is
fixed at K1 = 1 and service cost are at K2 = 0.5, 0.4, 0.3, 0.2,
and 0.1 (Figures 6 and 7). It demonstrates that for smaller val-
ues of K2, predicted profit increased over time, whereas for
greater values of service cost, expected profit declined. For this
reason, when service expenses are low, profits are greater than
when they are high. The expected profit of the system is esti-
mated in two cases, just like its availability, and displayed in
Table 5, Figure 6, Table 6, and Figure 7. As in cases I and II,
it is determined that by employing a reduction procedure with
a factor ρ such that 0 < ρ < 1. By comparing the system’s
expected profit in instance I to the system’s expected profit in
case II while applying the reduction approach, it can be proven
that the reduction technique raises the system’s expected profit.
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