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Abstract

We extend the deterministic model for the dynamics of toxoplasmosis proposed by Arenas et al. in 2010, by separating vaccinated and recovered
classes. The model exhibits two equilibrium points, the disease-free and endemic steady states. These points are both locally and globally stable
asymptotically when the threshold parameter Rv is less than and greater than unity, respectively. The sensitivity analysis of the model parameters
reveals that the vaccination parameter π is more sensitive to changes than any other parameter. Indeed, as expected the numerical simulations
reveal that the higher the vaccination rate of susceptible cats the smaller the value of the threshold Rv (i.e., increase in π results in the decrease in
Rv), leading to the eradication of toxoplasmosis in cats population.
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1. Introduction

The causative agent of toxoplasmosis is toxoplasma gondii
(T. gondii), which is a protozoan of the order Eucoccidioroda
and the family Sarcocystidae. T. gondii is characterized as an
intracellular parasite that lives in the host cell by regulating vi-
tal processes to acquire nutrients, guaranteeing its survival and
thus evading the host immune system [12]. It is an infectious
pathogen which enters its host through ingestion of either the
oocysts, the trachyzoite, or tissue cysts (bradyzoites) from con-
taminated water, soil, or infected meat. The three major types of
disease reservoirs of T. godii are: Domestic and wild cats, soil
and water contaminated with feces (Non-living reservoirs) and
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bradyzoites in tissue cysts of intermediate hosts (animal reser-
voirs) [25]. The intermediate hosts of T. gondii include sheep,
goats, rodents, cattle, swine, chicken and birds. The modes of
T. gondii transmissions include ingestion of oocysts that excrete
in cats feces for which tissue cysts develop through exposure to
cat litter or soil and water. This is the most common and well
known modes of transmission to other animals. T. gondii can
also be transmitted via consumption of T. gondii tissue cysts in
raw or undercooked meats, unpasteurized milk and consump-
tion of oocysts in foods infected by contaminated fomites. This
is called the food born transmission. Another route of transmis-
sion is congenital toxoplasmos (transplacental transmission) in
which a mother infect her offspring in uterus through the blood
during pregnancy. A pregnant women with acute infections
can transmit to the fetus and cause severe illness such as men-
tal retardation, blindness, and epilepsy [12, 25]. It was re-
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ported in a recent study in dogs that sexual transmission of T.
gondii in canine species is possible [25]. Treatment of tox-
oplasmosis include sulfonamides against murine toxoplasmo-
sis, combined therapy with sulfonamides and pyrimethamine as
the standard therapy for toxoplasmosis in humans, spiramycin
during pregnancy to reduce transmission of the parasite from
mother to fetus, clindamycin especially for patients allergic to
sulphonamides [12].

A number of mathematical epidemic models for the trans-
mission dynamics of toxoplasmosis parasites with or without
vaccination were proposed in the literature. In 2008, Aranda et
al. [6], proposed a simple mathematical model to study the dy-
namics of Toxoplasmosis disease in the population of Colom-
bia. Numerical simulations of the model using available data
reveals the effect of some (hygienic actions, educations pro-
grams, more testing and treatments) strategies for the control of
toxoplasmosis parasite. This model seems to be the first mathe-
matical model for the transmission dynamics of Toxoplasmo-
sis disease in the human population. In the following year,
an epidemic model of toxoplasmosis disease in human and cat
populations was presented in [9]. The analysis of the model
indicated that toxoplasmosis disease persistence or extinction
is determined by the threshold parameter, R0. Moreover, they
showed by numerical simulations the importance of cats verti-
cal transmission to the dynamics of the infection. In fact, the
higher the vertical transmission the higher the proportions of
infected cats and infected humans at the endemic state. Thus,
the vertical transmission could be an important mechanism that
favours the maintenance of the virus areas with low human den-
sities. Another epidemiological model of toxoplasmosis in a
cat population with a continuous vaccination schedule was pro-
posed in [2]. Indirectly, the model considers the infection of
prey through the oocyst shedding by cats. They proved that
the global dynamics and disease outcome are solely determined
by the basic reproduction number, R0. Furthermore, numerical
simulations of the model suggest that the continuous vaccina-
tion program is more effective than the removing of oocysts in
the environment since the increase of the latter in the environ-
ment to feasible values is not enough to reduce the threshold
parameter, R0 to a value less than unity.

The spatial spread of toxoplasmosis parasite was also con-
sidered later on. In 2012, a spatial model for the spread of tox-
oplasma gondii through a heterogeneous predatorprey system
was proposed in [16]. They considered some relevant toy mod-
els due to the complexity of the proposed model. Then they
proved the existence and local stability of a persistent steady
state for the underlying predatorprey model systems. A spa-
tial mathematical model for the reproduction dynamics of the
Toxoplasma gondii parasite in the definitive host Felis catus
(cat) was presented in [10]. Both asexual and sexual repro-
duction processes of the T. gondii parasite were incorporated in
the model. Some numerical results showed that variations in
the transition and loss rates do not produce significant changes
in the reproduction, propagation and creation of new popula-
tions. On the other hand, with either low or high consumption
of oocysts from the environment by the cat, the involved pop-
ulations are always reproduced. Then they spread by all over

epithelial cells and subsequently are expelled to the environ-
ment through the cat feces. Ferreira et al. [11], studied the
dynamical behaviours of both deterministic and spatial models
of toxoplasmosis disease in cat and human populations. They
showed that the deterministic model exhibits a trans-critical bi-
furcation and the system has no periodic orbits inside the pos-
itive octant. The global asymptotic stability of the endemic
equilibrium point of the model was proven in the first octant.
Moreover, they carried out the local stability analysis for the
spatially homogeneous equilibrium points of the reaction diffu-
sion model. In the restricted region (the first octant), the global
stability of both the disease-free and endemic states of such a
model were established.

In the last decade, a hybrid model for the spread of tox-
oplasmosis between two cities of Colombia in cat and human
populations was proposed by Peña et al. in [4]. The model was
developed using System Dynamics (SD) and Geographic In-
formation Systems (GIS). The analysis of the model indicates
that the disease persistence continues in the first city, even after
transported to another community. This demonstrated that these
diseases should be treated through cooperative mechanisms be-
tween communities. A deterministic mathematical model of
interaction between Toxoplasma Gondii transmission dynamics
and host immune responses was developed and presented in [1].
The local asymptotic stability analysis of the model equilibria
and numerical simulations were carried out to understand the
transmission dynamics and the impact of different functional
responses. In fact, the Holling type II functional response en-
hances the effect or cells of hosts immune response.

In a recent development, an epidemic mathematical model
of toxoplasmosis disease was presented in [15] to study the dy-
namic behaviour of the parasite for controlling the epidemic.
The existence and stability analysis of each equilibrium point
of the model was carried out. They constructed a function of
two important parameters of the model namely the controlled
rate and the rate of infected births which influences the dis-
ease spread. The bifurcation analysis of each region was car-
ried out from each function of such parameters. Three regional
conditions were obtained through this analysis, showing the
dynamics of the toxoplasmosis epidemic of these two impor-
tant parameters with each interpretation of the bifurcation re-
gion. The widespread of co-infection by Plasmodium species
and Toxoplasma gondii in humans mostly in the tropical re-
gion motivated Ogunmiloro to study the co-infection dynam-
ics of malaria-toxoplasmosis in the mainly human and feline
susceptible host population in [18]. The analysis showed that
malaria-toxoplasmosis infection free equilibrium is locally and
globally stable if the basic reproduction number is less than
unity. While the co-infection occurs when the basic reproduc-
tion number is greater than unity. Furthermore, sensitivity anal-
ysis of the model parameters indicated the need for proper op-
timum medical strategies to reduce and contain the spread of
malaria-toxoplasmosis co-infections.

In 2010, a deterministic mathematical model for the trans-
mission dynamics of toxoplasmosis disease in cats population
under vaccination was proposed in [2]. Implicitly, their model
considers the infection of prey through the oocyst shedding by
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cats in the environment. The analysis of the model shows that
the global dynamics and disease outcome are completely de-
termined by the basic reproduction number, R0. Moreover, the
numerical results reveal that the effectiveness of the continuous
vaccination program is more than the removing of oocysts in
the environment. This is for the fact that an increase of the lat-
ter in the environment to feasible values is not enough to control
disease persistence by reducing the threshold parameter, R0 to
a value less than one. It is instructive to note that in their model
the natural immunity and vaccine protection were assumed to
be the same and provide permanent immunity. Therefore, they
merged the vaccinated cats and non vaccinated recovered cats
in the same class. We extend their model here by separating
vaccinated cats from non vaccinated recovered cats to have two
classes. This is done for the fact that there is increasing clin-
ical evidence which differentiate between these two immuni-
ties against toxoplasmosis in cats [5, 7, 8, 21]. As in [2], we
show that the disease outcome, persistence or extinction is de-
termined by the vaccinated reproduction number Rv. The sensi-
tivity analysis of the model parameters indicates that the vacci-
nation parameter π is more sensitive to changes than any other
parameter of the model. Furthermore, numerical simulations
show that the higher vaccination rate of susceptible cats reduces
the value of the threshold parameter Rv the more. This is also
similar to the result presented in [2] that vaccination program is
more effective than the removal of oocysts in the environment.

We organise the remaining part of the paper as follows: In
Section 2, model description is provided, Section 3 presents the
stability analysis of the model equilibria while sensitivity anal-
ysis of the model parameters is presented in Section 4. Finally,
we discuss the results and give a concluding remark in Section
5.

2. Model Formulation

To extend the model proposed by Arenas et al. [2], we sepa-
rate the compartment of vaccinated cats from that of recovered
(vaccinated) cats. Thus we divide the total population of cats
to four compartments of susceptible (S(t)), cats that may be-
come infected after an effective contact with oocysts, infective
(I(t) with T. gondii, vaccinated (V(t)), and non vaccinated re-
covered R(t). Using the following notations and hypotheses as
presented in [2], we have the required model (1). The rates of
transfer between the four classes are shown in Figure 1.

2.1. Basic Assumptions

i. O(t) repreaent the number of oocysts in the environment
at time t,

ii. The birth rate (δ) of cats is assumed to be equal to the
cats natural death rate µ,

iii. The non vaccinated susceptible cats transits to an infec-
tive compartment after an effective contact with oocysts
at the rate β. Thus, β depends on the probability of an
effective contact with oocysts,

τR

μI

μ0O

μS

�I

αI

μV

μRγV

πS

δI
βSO

δ(S+V+R)
S I V R

O

Figure 1: Schematic diagram of model (1).

iv. Vaccinated susceptible cat S (t) transits to the vaccinated
compartment (V(t)) at a rate π and infected cats to recov-
ered compartment R(t) at a rate α,

v. Number of oocysts, O(t) at time t determine the number
of infected cats I(t),

vii. µ0 is the death rate of the oocysts which can be modified
by the removal of oocysts from the environment,

vi. It is assumed that there is vertical transmission in the in-
fected cats population (i.e., transmission from mother to
fetus),

viii. Vaccinated cats do not shed oocysts and acquire perma-
nent immunity so that they move to recovered compart-
ment R(t). The recovered cats can be re-infected with
T.gondii but do not shed oocysts again and so, they move
to susceptible class at the rate τ,

ix. The susceptible cats S (t) have the same probability of be-
coming infected (i.e., homogeneous mixing is assumed)

x. κ > 0 is the rate of appearance of new oocysts from the
infected cats into the environment,

xi. The parameter γ is the progression rate from vaccinated
class to the recovered compartment.

dS
dt

= µV + µR − βS O − πS + τR,

dI
dt

= βS O − αI,

dV
dt

= πS − µV − γV,

dR
dt

= αI − µR − τR + γV,

dO
dt

= κI − µ0O,

(1)

with N(t) = S + I + V + R = 1.
In the first equation of model (1), the rate of change of the

susceptible cats population is increased by per capita birth rate
19
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Table 1: parameter description

Parameter Description Value Source
β Effective contact rate 0.52

54 Wu and Pei
π Vaccination rate of susceptible 0.2 Arena et al.
α HBV induced death rate 0.5 Arenas et al.
µ0 Death rate of Oocysts 7

100000 Wu and Pei.
µ Natural birth rate 0.6

52 Wu and Pei
τ Immunity rate 0.4

52 assumed
κ Rate of appearance of oocyst 1

20 Wu and Pei
γ Progression rate of vaccinated cats 0.3 assumed

δ of susceptible, vaccinated and recovered classes, the waning
immunity after recovery at the rate τ. It decreases by vaccina-
tion at the rate, π, natural death µ and effective contact at the
rate β between the oocysts and the healthy cats. The rate of
change of Infected cats is increased by effective contact of the
susceptible cats and the oocysts at the rate β, with birth rate δ of
the infected cats. While it decreases by contracting the disease
at the rate α. The third equation of model 1 is increased by vac-
cinating susceptible cats at the rate π and decreases by natural
death µ and the rate at which they move to recovered class γ.
Similarly, the rate of change of recovered cats is increased at
the per capita rates of recovery of infected and vaccinated cats
α and γ, respectively. It is reduced by natural death at the rate
µ and wane of immunity from the recovered class at the rate
τ. Finally, the rate of change of oocyst with time is increased
by shedding the virus at the rate, κ and reduced by the natural
death of oocysts at the rate µ0.

Using R(t) = 1 − S − I − V , the system of equations (1)
becomes.

dS
dt

= (µ + τ)(1 − S − I) − τV − βS O − πS ,

dI
dt

= βS O − αI,

dV
dt

= πS − µV − γV,

dO
dt

= κI − µ0O

(2)

Theorem 1. Model (1) is positively invariant and attractive in
the biologically feasible region

Ω0 =
{
(S , I,V,O) ∈ R4

+ :

0 < S ≤
(µ + τ)(µ + γ)

(µ + γ)(µ + π + τ) + πτ
,

0 6 O 6
κ

µ 0

}
.

Proof. Using the first and fourth equations of system (2), we
have

dS
dt
≤ (µ + τ)(µ + γ) − [(π + µ + τ)(µ + γ) + τπ]S

and
dO
dt
≤ κ − µ0O.

Then

dS
dt

+ [(π + µ + τ)(µ + γ) + τπ]S ≤ (µ + τ)(µ + γ),

so that
S (t) ≤

(µ + τ)(µ + γ)
(π + µ + τ)(µ + γ) + τπ

and
O(t) ≤ O(0)e−µ0t +

κ

µ 0
(1 − e−µ0t),

with O(t) ≤ κ
µ 0

if O(0) < κ
µ 0

as t approaches ∞. Thus Ω is
positively invariant. Moreover, if

S (0) >
(µ + τ)(µ + γ)

(π + µ + τ)(µ + γ) + τπ
and O(0) >

κ

µ 0

then the solution either enters Ω in finite times or S (t),O(t) ap-
proaches (µ+τ)(µ+γ)

(π+µ+τ)(µ+γ)+τπ , κ
µ 0

asymptotically [2]. Hence the re-
gion attract all solutions in R4

+. Thus it is sufficient to consider
the dynamics of the model (2) in Ω since it is mathematically
well-posed.

3. Model Analysis

3.1. Disease Free Equilibrium (DFE)

In the absence of infection (i.e., when all the infected com-
partments of the model (2) are empty), we have the disease free
equilibrium point of the model denoted by P0. Then

P0 = (S 0, I0,V0,O0) =

(
(µ + τ)(µ + γ)

(π + µ + τ)(µ + γ) + τπ
, 0,

πS 0

µ + γ
, 0

)
.

For us to establish the linear stability of equilibria, we need
a threshold parameter usually called the basic reproduction num-
ber. This threshold parameter is defined as the number of sec-
ondary infections produced by one infective when introduce
into the susceptible population [13]. The next generation op-
erator method can be used to compute such a threshold param-
eter as presented in [20]. Moreover, when there is a vaccination
such a parameter is called a vaccinated reproduction number
(see for instance, [22]). The method consists of two different
matrices, the matrix of the new infection terms and that of the
transition terms denoted by G and M, respectively. Thus
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G =

[
βS 0
0 0

]
, M =

[
0 α
µ0 −κ

]
.

Then

GM−1 =

[ κβ(µ+τ)(µ+γ)
αµ0[(µ+π+τ)(µ+γ)+τπ]

κβ(µ+τ)(µ+γ)
(µ+π+τ)(µ+γ)+τπ

0 0

]
Hence, vaccinated reproductive number Rv is the largest eigen-
value of the matrix GM−1. Therefore

Rv = ρ(GM−1) =
κβ(µ + τ)(µ + γ)

αµ0[(µ + π + τ)(µ + γ) + τπ]
.

3.1.1. Local Stability Analysis of DFE
Theorem 2. The DFE, P0 of model (2) is locally asymptoti-
cally stable on Ω if Rv < 1 and is unstable whenever Rv > 1.

Proof. The Jacobian matrix of system (2) evaluated at the DFE
is as follows

J(P0) =


−(µ + π + τ) −(µ + τ) −τ −βS 0

0 −α 0 βS 0
π 0 −(µ + γ) 0
0 κ 0 −µ0

 .
Then, interchanging row-3 and row-4 and using row operations,
the matrix J(P0) becomes

J(P0) =


−(µ + π + τ) −(µ + τ) −τ −βS 0

0 −α 0 βS 0
0 κ 0 −µ0
π 0 −(µ + γ) 0

 .
Divide row 4 by π, then new row 4 is R4 = (π + τ + µ)R4 + R1
and so

J(P0) =


−(µ + π + τ) −(µ + τ) −τ −βS 0

0 −α 0 βS 0
0 κ 0 −µ0

0 −(µ + τ) −
[

(µ+γ)(µ+π+τ)
π

+ τ
]
−βS 0

 .
Thus the first two eigenvalues of J(P0) are

λ1 = −(µ + π + τ) and λ2 = −

[
(µ + γ)(µ + π + τ)

π
+ τ

]
.

While the remaining two eigenvalues are for the following 2×2
sub-matrix of J(P0).

J0(P0) =

[
−α βS 0
κ −µ0

]
.

Now, the trace and the determinant of this matrix are respec-
tively given by

tr(J(P0)) = −(α + µ0) < 0

and

det(P0) = αµ0 −
κβ(µ + τ)(µ + γ)

(µ + γ)(µ + π + τ) + τπ

= αµ0

(
1 −

κβ(µ + τ)(µ + γ)
αµ0[(µ + γ)(µ + π + τ) + τπ]

)
= αµ0(1 − Rv).

Thus the determinant is greater than zero if Rv < 1. Hence, all
the four eigenvalues of J(P0) have negative real parts and so,
the DFE, P0 of the system (2) is locally asymptotically stable
whenever Rv < 1.

3.1.2. Global Stability of the DFE
Using Lyapunov Principle method in conjunction with LaSalle’s

Invariant Principles [19], we establish the global asymptotic
stability of the DFE as presented in the following theorem.

Theorem 3. If Rv 6 1, then the DFE, P0 of model (2) is glob-
ally asymptotically stable on Ω.

Proof. We define a Lyapunov function by

H(I,O) = I(t) +
β(µ + τ)(µ + γ)

µ0[(µ + π + τ)(µ + γ) + πτ]
O(t).

Then, the time derivative of V along the solutions of system (2)
is

Ḣ(I,O) = İ(t) +
β(µ + τ)(µ + γ)

µ0[(µ + π + τ)(µ + γ) + πτ]
Ȯ(t)

= βS O − αI +
β(µ + τ)(µ + γ)

µ0[(µ + π + τ)(µ + γ) + πτ]
(κI − µ0O)

= βO
(
S −

(µ + τ)(µ + γ)
(µ + π + τ)(µ + γ) + πτ

)
+ α(Rv − 1)I

= βO(S − S 0) + α(Rv − 1)I.

Then, Ḣ 6 0 since S 6 S 0 and Rv ≤ 1, with V̇ = 0 if and only
if S = S 0 and Rv = 1. Hence, V is a Lyapunov function on Ω

and so, S → (µ+τ)(µ+γ)
(µ+π+τ)(µ+γ)+πτas t → ∞. Therefore, the maximum

invariant set in {(S , I,O,V) ∈ Ω0 : Ḣ 6 0}, is a singleton set
P0. It follows from LaSalle’s Invariant Principles [19] that P0
is globally asymptotically stabile when Rv 6 1.

3.2. Endemic Equilibrium (EE)
In the presence of disease infection, the infected compart-

ments (I, O) are non empty and so, the disease invades the pop-
ulation. Let Pe = (S e, Ie,Oe,Ve) be an endemic equilibrium
point of model (2), then setting the right hand side of model (2)
to zero we obtain after algebraic manipulations.

S e =
αµ0

κβ
, Ie =

αµ0[(µ + π + τ) + τπ](Rv − 1)
κβ(µ + γ)(α + µ + τ)

,

Ve =
απµ0

κβ(µ + γ)
, Oe =

αµ0[(µ + π + τ) + τπ](Rv − 1)
βµ0(µ + γ)(α + µ + τ)

.

Hence, Pe is the unique endemic equilibrium point of sys-
tem (2) which exist if and only if Rv > 1.
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3.2.1. Local stability analysis of the EEP
Theorem 4. The EEP, Pe of model (2) is locally asymptotically
stable in the interior of Ω if Rv > 1.

Proof. Evaluating the Jacobian matrix of system (2) at Pe gives

J(Pe) =


−a −(µ + τ) −

αµ0
κ
−τ

b −α αµ0
κ

0
π 0 0 −µ
0 κ −µ0 0

 ,
with a = (µ+π+τ+βOe) and b = βOe. Then we use elementary
row operations to obtain

J(Pe) =


−a −(µ + τ) −

αµ0
κ

−τ
0 −[αa

b + (µ + τ)] αµ0
κ

[ a
b − 1] 0

0 −(µ + τ) −
αµ0
κ

−( aµ
π

+ τ)
0 κ −µ0 0

 .
Thus the eigenvalues of J(Pe) are

λ1 = −a λ2 = −(
aµ
π

+ τ),

λ3 = −[
αa
b

+ (µ + τ)], and λ4 = −
µ0

κ
(µ + τ + α).

Therefore, all the four eigenvalues are real and negative and so,
the EEP, Pe is locally asymptotically stable if Rv > 1. .

3.2.2. Global Stability of Endemic Equilibrium
Theorem 5. If Rv > 1, then there exist an endemic equilibrium
point Pe and it is globally asymptotically stable in the interior
of Ω.

Proof. : Given thatRv > 1, then the existence of EEP is guaran-
teed (see Section 3.4). Consider the Lyapunov function below:

L(S , I,O,V) = S − S e − S e ln
(

S
S e

)
+ I − Ie − Ie ln

(
I
Ie

)
+ V − Ve − Ve ln

(
V
Ve

)
+ O − Oe − Oe ln

(
O
Oe

)
,

The time derivative of L along the solution curve of the system
(2) yields

L̇ =

(
1 −

S e

S

)
Ṡ +

(
(1 −

Ve

V

)
V̇ +

(
1 −

Ie

I

)
İ +

(
1 −

Oe

O

)
Ȯ

=

(
1 −

S e

S

)
[(µ + τ)(1 − S − I) − τV − βS O − πS ]

+

(
1 −

Ie

I

)
(βS O − αI) +

(
(1 −

Ve

V

)
[πS − (µ + γ)V]

+

(
1 −

Oe

O

)
(κI − µ0O)

(3)

But at endemic state, we have

µ + τ = (µ + τ)(S e + Ie) + τVe + βS eOe + πS e

αIe = βOeS e, πS e = (µ + γ)Ve, κIe = µ0Oe.
(4)

Then using (4) in (3), we obtain alter algebraic manipulations

L̇ = (µ + τ)S e)
(
2 −

S
S e
−

S e

S

)
+ πS e

(
2 −

S
S e
−

S e

S

)
+ (µ + τ)Ie

(
1 −

S e

S

)
− (µ + τ)I

(
1 −

S e

S

)
+ τVe

(
1 −

S e

S

)
− τV

(
1 −

S e

S

)
+ βOeS e

(
1 −

S e

S

)
+ βOS e

(
1 −

S
S e

)
+ βOS

(
1 −

Ie

I

)
+ βOeS e

(
1 −

I
Ie

)
+ πS

(
1 −

V
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(5)

Since S ≤ S e, I ≤ Ie,V ≤ Ve and O ≤ Oe, then (5) becomes

L̇ ≤ (µ + τ)S e)
(
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S
S e
−
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)
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)
+ πS e
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(
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O
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−
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)
= S e(µ + τ + π + βOe)
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)
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(
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+ πS e
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−
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O
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−
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.

(6)

It follows from arithmetic-geometric inequality that(
2 −

S
S e
−

S e

S

)
≤ 0,

(
2 −

I
Ie
−

Ie

I

)
≤ 0,(

2 −
V
Ve
−

Ve

V

)
≤ 0,

(
2 −

O
Oe
−

Oe

O

)
≤ 0,

and so, L̇ ≤ 0. Then we conclude this theorem using similar
argument as in the proof of Theorem 3.

4. Sensitivity analysis

One can observe from Section 3, that the disease persis-
tence or otherwise in a community is determined by the thresh-
old parameter Rv. Moreover, the uniqueness properties of both
disease-free (P0) and endemic (Pe) equilibria indicate that there
is an exchange of stability between P0 and Pe when Rv = 1
(i.e., P0 undergoes a transcritical bifurcation at Rv = 1, see for
instance [23, Theorem 4]). However, it is instructive to investi-
gate the model parameter that has greatest effect on this thresh-
old parameter, thereby having same effect on the toxoplasmosis
disease persistence. To achieve that, we can apply sensitivity
indices to measure the relative change of a state variable with a
changing parameter [17, 23].

Then using the definition in [17], the normalised forward
sensitivity index with respect to each of the parameters of Rv is
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Figure 2: Sensitivity analysis of the reproductive number Rv, showing changes
in the parameters (a) π, (b) β, (c) κ and (d) µ0. Parameter values used are as
presented in Table 1.

the following.
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×
µ
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=
πµ[αµ0(µ + γ) + τ][αµ0(µ + π + τ)(µ0 + γ) + πτ]

(µ + τ)[αµ0(µ + γ)(µ + π + γ) + πτ]2

ΥRv
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×

τ

Rv

=
πτ[αµ0(µ + γ) − µ][αµ0(µ + π + τ)(µ0 + γ) + πτ]

(µ + τ)[αµ0(µ + γ)(µ + π + γ) + πτ]2

ΥRv
γ =

∂Rv

∂γ
×
γ

Rv
=

γπτ[αµ0(µ + γ)(µ + π + τ) + πτ]
(µ + γ)[αµ0(µ + γ)(µ + π + γ) + πτ]2

ΥRv
α =

∂Rv

∂α
×
α

Rv
= −

κβµ0(µ + τ)(µ + γ)2(µ + π + τ)
[αµ0(µ + γ)(µ + π + τ) + πτ]2

ΥRv
µ0

=
∂Rv

∂µ0
×
µ0

Rv
= −

αµ0(µ + γ)(µ + π + τ)
αµ0(µ + γ)(µ + π + τ) + πτ

ΥRv
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∂Rv

∂π
×

κ

Rv
= −

π[αµ0(µ + γ) + τ]
αµ0(µ + γ)(µ + π + τ) + πτ

(7)

Figure 3: Sensitivity analysis of the reproductive number Rv, showing changes
in the parameters (e) γ, (f) µ, (g) τ and (h) α. Parameter values used are as
presented in Table 1.

It can be observed from equation (7) that most of the expres-
sions for the sensitivity indices are complex and so, we evaluate
these indices at the parameter values presented in Table 1. The
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Table 2: Sensitivity indices of Rv to parameters for the toxoplasmosis model,
evaluated at the parameter values presented in Table 1. The parameters are
ordered from most sensitive to least one.

parameter sensitivity index
1. π −644.49655
2. β +1.00000
3. κ +1.00000
4. µ0 −1.00000
5. γ 0.94230
6. µ 0.58798
7. τ −0.58650
8. α −0.00003

resulting sensitivity indices of Rv to the eight model parameters
from the most sensitive to the least one are shown in Table 2.

We infer from Figures 2 and 3 that the threshold parameter
Rv increases with increasing values of β, κ, µ and τ. While it
decreases with increasing values of π, µ0 and α. As expected
the vaccination parameter π is more sensitive to changes than
any other parameter of the model.

5. Discussion and conclusion

In this note, we extend the deterministic model for the trans-
mission dynamics of toxoplasmosis in cats population with vac-
cination by separating the vaccinated and the recovered com-
partments. The stability analysis of the model equilibria are car-
ried out and we show that the unique disease-free equilibrium
as well as the unique endemic state of the model are asymptot-
ically stable globally under certain condition. That is, the DFE,
P0 is stable globally asymptotically when Rv < 1, while the
EEP, Pe is globally asymptotically stable if Rv > 1. In order to
complete our investigation, we use the sensitivity indices as pre-
sented in [17] to determine the most sensitive model parameter.
As expected, the vaccination parameter, π is the most sensitive
to changes than any other parameter of the model. Moreover,
considering the complex nature of the expressions for the sen-
sitivity indices in equation (7), we evaluate these indices at the
parameter values presented in Table 1. Then, we order them
from the most sensitive to the least one as presented in Table 2.

Furthermore, the numerical simulations in Figures 2 and 3
reveal how the threshold parameter Rv varies with varying val-
ues of each of the model parameters. In fact, Rv increases with
increasing values of the parameters β, κ, µ and τ and decreases
with increasing values of π, µ0 and α.

In conclusion, the sensitivity analysis indicates that the best
way to contain the spread of toxoplasmosis is either to increase
the vaccination rate of susceptible cats or to increase the death
rate of the oocysts by environmental sanitation. It can be ob-
served from Figure 2 that vaccination is the best control strat-
egy than the removal of the oocysts. This is similar to the result
presented in [2].
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