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Abstract

Pre-functions are functions that possess a sequence { fn(z, β)} which tends to one of the elementary functions as n tends to infinity and β tends to 0.
The main objective of this paper is to broaden the scope of pre-functions from functions of a real variable to functions of a complex variable by
introducing pre-functions of a complex variable. We have analyzed the pre-functions of a complex variable for their properties. The pre-Laguerre,
pre-Bessel and pre-Legendre polynomials of a complex variable have been obtained as special cases. Graphs have been used to visualize complex
pre-functions.
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1. Introduction

Exponential and logarithmic functions have wide variety of ap-
plications in science, medicine, business and many other fields.
Exponential functions are used to describe growth or decay of
a quantity whose rate of change has a relation to its present
value. Logarithms have the ability to measure quantities that
are vastly different but need an easy way to be talked about and
compared to. On the other hand, trigonometry can be used in
music, roofing a house, cartography, satellite system in naval,
aviation industries and in many other fields.

Deo and Howell [1] introduced and studied trigonometry
and trigonometry like functions. Khandeparkar et al. [2] have
introduced and studied pre-functions of a real variable. Moti-
vated by their work, we have defined pre-functions of a com-

∗Corresponding author tel. no: +91 9840084991
Email address: muthunagai@vit.ac.in (K. Muthunagai )

plex variable. Functions which possess a sequence { fn(z, β),
z ∈ C, β ≥ 0} are called pre-functions of a complex variable
z, if they tend to one of the elementary functions as n → ∞
and β → 0. Pre-functions also possess some of the properties
possessed by the elementary functions but not properties like
periodicity. Pre-functions were found to be very simple and
useful in the study of differential equations. For the methods
and solutions of various differential equations one can refer [3-
10].

2. The pre-exponential function of a complex variable

Exponential functions play a significant role in almost every
branch of Mathematics. In this section, we have determined
a set of functions called pre-exponential functions, owning a
sequence that generalizes the exponential function exp(z).
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For any complex number z, the series form of pre-
exponential function is given by,

pexp(z, β) = 1 +
z1+β

Γ(2 + β)
+

z2+β

Γ(3 + β)
+

z3+β

Γ(4 + β)
+ ....

= 1 +

∞∑
n=1

zn+β

Γ(n + 1 + β)
, β ≥ 0, (1)

β being the parameter.

Figure 1: Graphs of pexp(z, 0), pexp(z, 1) and pexp(z, 2)

Figure 1 represents the behaviour of the pre-exponential
functions pexp(z, 0), pexp(z, 1) and pexp(z, 2) in order. Note
that when β = 0, pexp(z, 0) = exp(z). In general,

pexp(z, n) = ∗ pexp(z, n − 1) −
zn

n!

= pexp(z, n − 2) −
zn−1

(n − 1)!
..., n = 1, 2, 3, ..

Figure 2: Z-Plane

Specifically,

pexp(z, 1) = exp(z) − z

pexp(z, 2) = exp(z) − z −
z2

2!

pexp(z, 3) = exp(z) − z −
z2

2!
−

z3

3!
= exp(z) − S 3

where S 3 is the partial sum of pexp(z, 3). For n ∈ N,

pexp(z, n) = exp(z) − S n (2)

where S n =
∑n

r=1
zr

r! . Also, note that pexp(z, n) = 1, ∀ z ∈ C as
n→ ∞. Replacing z by −z in (1), we have,

pexp(−z, β) = 1 − (−1)β
{ z1+β

Γ(2 + β)
−

z2+β

Γ(3 + β)
+

z3+β

Γ(4 + β)
− ...

}
= 1 + (−1)β

∞∑
n=1

(−1)n zn+β

Γ(n + 1 + β)
. (3)

In (3), replacing β by 0

pexp(−z, 0) = 1 −
z
1!

+
z2

2!
−

z3

3!
+ ... = exp(−z) (4)

In short,
pexp(−z, n) = exp(−z) − S n

where S n =
∑n

r=1(−1)r zr

r! .

3. Pre-trigonometric Functions of a Complex Variable

The pre-trigonometric functions of a complex variable are
defined by

Y1(z, β) = pcos(z, β) = 1 −
z2+β

Γ(3 + β)
+

z4+β

Γ(5 + β)
−

z6+β

Γ(7 + β)
+ ...

= 1 +

∞∑
n=1

(−1)n z2n+β

Γ(2n + 1 + β)
, z ∈ C, β ≥ 0 (5)

and

Y2(z, β) = psin(z, β) =
z1+β

Γ(2 + β)
−

z3+β

Γ(4 + β)
+

z5+β

Γ(6 + β)
− ...

=

∞∑
n=0

(−1)n z2n+1+β

Γ(2n + 2 + β)
, z ∈ C, β ≥ 0. (6)

Table 1 gives the expressions for the pre-trigonometric func-
tions when β takes the values 0,1,2 and 3.
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Figure 3: W-Plane

Figure 4: pcos(z, 1) = 1 − z3

3! + z5

5! −
z7

7!

Table 1: Expressions for the pre-trigonometric functions

S.No (z, β) pcos(z, β) psin(z, β)
1 (z, 0) cos(z) sin(z)
2 (z, 1) sin z − z + 1 1 − cos z
3 (z, 2) −cosz − z2

2 + 2 z − sin z
4 (z, 3) − sin z + z − z3

6 + 1 cos z + z2

2 − 1

4. Euler’s Formula

For a complex number z,

exp(iz) = cos z + i sin z. (7)

Using (1), the above expression can be rewritten as

pexp(iz, β) = 1 − (i)β
{ z2+β

Γ(3 + β)
−

z4+β

Γ(5 + β)
+

z6+β

Γ(7 + β)
+ ...

}
+i(i)β

{ z1+β

Γ(2 + β)
−

z3+β

Γ(4 + β)
+

z5+β

Γ(6 + β)
− ...

}
= 1 − (i)β{1 − pcos(z, β) − i psin(z, β)}, β ≥ 0 (8)

Figure 5: pcos(z, 0.6) = 1 − z2.6

Γ(3.6) + z4.6

Γ(5.6) −
z6.6

Γ(7.6)

Figure 6: psin(z, 1) = z2

2! −
z4

4! −
z6

6!

Figure 7: psin(z, 0.6) = z1.6

Γ(2.6) −
z3.6

Γ(4.6) −
z5.6

Γ(6.6)

Figure 8: pcosh(z, 1) = 1 + z3

3! + z5

5! + z7

7!

which is the general form of Euler’s Formula for pre-
exponential function. Clearly

eiz = pexp(iz, 0) = pcos(z, 0) + i psin(z, 0) = cos z + i sin z.

Using −iz in place of iz, we have

pexp(−iz, β) = 1 − (i)β{1 − pcos(z, β) + i psin(z, β)}, (9)

which results in e−iz = cos z − i sin z, when β = 0.
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Figure 9: pcosh(z, 0.7) = 1 + z2.7

Γ(3.7) + z4.7

Γ(5.7) + z6.7

Γ(7.7)

Figure 10: psinh(z, 1) = z2

2! + z4

4! + z6

6!

Figure 11: psinh(z, 0.7) = z1.6

Γ(2.6) −
z3.6

Γ(4.6) −
z5.6

Γ(6.6)

Figure 12: M3,0(z, 1) = 1 − z4

4! + z7

7! −
z10
10!

5. Relation between pre-circular and pre- exponential func-
tions

Using Euler’s formula, the relation between circular and ex-
ponential functions, we arrive at the following:

pcos(z, β) =
(−i)β pexp(iz, β) + (i)β pexp(−iz, β)

2
−

(i)β + (−i)β

2
+ 1

psin(z, β) =
(−i)β pexp(iz, β) − (i)β pexp(−iz, β)

2i
−

(−i)β − (i)β

2i
.

ptan(z, β) = i
(−i)β − (i)β − (−i)β pexp(iz, β) + (i)β pexp(−iz, β)

(−i)β pexp(iz, β) + (i)β pexp(−iz, β) − (i)β − (−i)β + 2

psec(z, β) =
2

(−i)β pexp(iz, β) + (i)β pexp(−iz, β) − (i)β − (−i)β + 2

Table 2: Expressions for the pre-hyperbolic functions

S.No (z, β) pcosh(z, β) psinh(z, β)
1 (z, 0) cosh(z) sinh(z)
2 (z,1) sinh z − z + 1 cosh z − 1
3 (z,2) cosh z − z2

2 sinh z − z
4 (z, 2n) cosh z −

∑n
r=1

z2r

(2r)! sinh z −
∑n

r=1
z2r−1

(2r−1)!

pcosec(z, β) =
2i

(−i)β pexp(iz, β) − (i)β pexp(−iz, β) + (i)β − (−i)β

pcot(z, β) = −i
(−i)β pexp(iz, β) + (i)β pexp(−iz, β) − (i)β − (−i)β + 2

(−i)β − (i)β − (−i)β pexp(iz, β) + (i)β pexp(−iz, β)
(10)

whenever they exist. For β = 0, these results give the relation
between circular functions and exponential functions.

6. Pre-hyperbolic Functions of a Complex Variable

The pre-hyperbolic sine and cosine functions are defined by

H1(z, β) = pcosh(z, β) = 1 +
z2+β

Γ(3 + β)

+
z4+β

Γ(5 + β)
+

z6+β

Γ(7 + β)
+ ...

= 1 +

∞∑
n=1

z2n+β

Γ(2n + 1 + β)
, z ∈ C,

(11)

and

H2(z, β) = psinh(z, β) =
z1+β

Γ(2 + β)
+

z3+β

Γ(4 + β)
+

z5+β

Γ(6 + β)
+ ...

=

∞∑
n=0

z2n+1+β

Γ(2n + 2 + β)
, z ∈ C.

(12)

Table 2 gives the expressions for the pre-hyperbolic functions
when β takes the values 0, 1, 2 and 2n.

7. Relation between pre-hyperbolic and pre- exponential
functions

pcosh(z, β) =
(−1)β pexp(z, β) + pexp(−z, β)

2
−

1 − (−1)β

2
,

psinh(z, β) =
(−1)β pexp(z, β) − pexp(−z, β)

2
−

(−1)β − 1
2

,

ptanh(z, β) =
(−1)β pexp(z, β) − pexp(−z, β) − (−1)β + 1
(−1)β pexp(z, β) + pexp(−z, β) − 1 + (−1)β

,

psech(z, β) =
2

(−1)β pexp(z, β) + pexp(−z, β) − 1 + (−1)β

pcosech(z, β) =
2

(−1)β pexp(z, β) − pexp(−z, β) − (−1)β + 1
,

pcoth(z, β) =
(−1)β pexp(z, β) + pexp(−z, β) − 1 + (−1)β

(−1)β pexp(z, β) − pexp(−z, β) − (−1)β + 1
,

if exists. Assigning β the value 0, we find these relations reduc-
ing to the relations between Exponential and Hyperbolic func-
tions.
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8. Extended pre-functions of a Complex Variable

From generalized pre-trigonometric and pre-hyperbolic
functions of a complex variable we have,

pexp(−z, β) = 1 − (−1)β
{ z1+β

Γ(2 + β)
−

z2+β

Γ(3 + β)
+

z3+β

Γ(4 + β)
− ....

}
= 1 + (−1)β

∞∑
n=1

(−1)n zn+β

Γ(n + 1 + β)
.

Trisection of the above series leads us to three infinite abso-
lutely convergent series for z ∈ C and β ≥ 0. They are

M3,0(z, β) = 1 +

∞∑
n=1

(−1)n z3n+β

Γ(3n + 1 + β)

M3,1(z, β) =

∞∑
n=0

(−1)n z3n+1+β

Γ(3n + 2 + β)

M3,2(z, β) =

∞∑
n=0

(−1)n z3n+2+β

Γ(3n + 3 + β)
,

(13)

with the initial conditions M3,0(0, β) = 1,M3,1(0, β) = 0,
M3,2(0, β) = 0. One can easily verify

M′3,0(z, β) = −M3,2(z, β)

M′3,1(z, β) = (−1)β
zβ

Γ(1 + β)
+ M3,0(z, β) − 1

M′3,2(z, β) = M3,1(z, β).

Rewriting the above system in matrix form, we have


M3,0(z, β)
M3,1(z, β)
M3,2(z, β)


′

=


0 0 −1
1 0 0
0 1 0



M3,0(z, β)
M3,1(z, β)
M3,2(z, β)

 +


0

(−1)β zβ
Γ(z+β) − 1
0



M3,0(z, β)
M3,1(z, β)
M3,2(z, β)

 =


1
0
0

 (14)

We find the infinite series represented by M3,0(0, β) =

1,M3,1(0, β) = 0,M3,2(0, β) = 0 to be the solutions of the sys-
tem of non-homogeneous equations given by (12). The expres-
sions in (11) define the extended pre-trigonometric functions
for n = 3 . Specifically when β = 1 , we have

M3,0(z, 1) = 1 +

∞∑
n=1

(−1)n z3n+1

Γ(3n + 2)
= M3,1(z, 0) − z + 1

M3,1(z, 1) =

∞∑
n=0

(−1)n z3n+2

Γ(3n + 3)
= M3,2(z, 0)

M3,2(z, 1) =

∞∑
n=0

(−1)n z3n+3

Γ(3n + 4)
= −M3,0(z, 0) + 1

(15)

Figure 13: M3,0(z, 0.5) = 1 − z3.5

Γ(4.5) + z6.5

Γ(7.5) −
z10.5

Γ(11.5)

Figure 14: M3,1(z, 1) = z2

2! −
z5

5! + z8

8!

Figure 15: M3,1(z, 0.5) = z1.5

Γ(2.5) −
z4.5

Γ(5.5) −
z7.5

Γ(8.5)

Figure 16: M3,2(z, 1) = z3

3! −
z6

6! + z9

9!

9. Absolute Convergence, analyticity and univalence of pre-
functions

We know that every absolute convergent series is conver-
gent. But the converse is not true. In this section we have dis-
cussed about the absolute convergence of pre-exponential func-
tion using Ratio test.

pexp(z, β) = 1 +

∞∑
n=1

zn+β

Γ(n + 1 + β)

5
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Figure 17: M3,2(z, 0.5) = z2.5

Γ(3.5) −
z5.5

Γ(6.5) −
z8.5

Γ(9.5)

Figure 18: pexp(z, 0.8) = 1 + z1.8

Γ(2.8) + z2.8

Γ(3.8) + z3.8

Γ(4.8)

Consider ∣∣∣∣∣an+1

an

∣∣∣∣∣ =

∣∣∣∣∣Γ(n + 1 + β)
Γ(n + 2 + β)

∣∣∣∣∣
=

∣∣∣∣∣ (n + β)!
(n + 1 + β)!

∣∣∣∣∣
=

∣∣∣∣∣ (n + β)!
(n + β + 1)(n + β)!

∣∣∣∣∣
=

∣∣∣∣∣ 1
n + β + 1

∣∣∣∣∣
lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣ = 0

In similar lines the absolute convergence of the other pre-
functions can also be proved. As the pre-exponential, pre-
trigonometric, pre-hyperbolic and extended pre-functions are
all polynomials with infinite number of terms, they are analytic
throughout the complex plane, (i.e.) they are entire functions.
Also they are univalent. As any function that is both analytic
and univalent is conformal, so are pre-functions.

10. The transformation w = 1
pexp(z,β)

In this section, we have obtained the image of | pexp(z, β) −
2| = 1 under the transformation w = 1

pexp(z,β) .

w = 1
pexp(z,β) ⇒ pexp(z, β) = 1

w

and pexp(z, β) = 1 +
∑∞

n=1
zn+β

(n+β)! .

| pexp(z, β) − 2| = 1⇒
∣∣∣∣∣1 +

∞∑
n=1

zn+β

(n + β)!
− 2

∣∣∣∣∣ =

∣∣∣∣∣ 1
w
− 2

∣∣∣∣∣
⇒

∣∣∣∣∣ ∞∑
n=1

zn+β

(n + β)!
− 1

∣∣∣∣∣ =

∣∣∣∣∣1 − 2w
w

∣∣∣∣∣

Approximating the series to only one term we have∣∣∣∣∣ z2

2
− 1

∣∣∣∣∣ =

∣∣∣∣∣1 − 2w
w

∣∣∣∣∣ [n = 1, β = 1]

Now ∣∣∣∣∣1 − 2w
w

∣∣∣∣∣ = 1∣∣∣∣∣1 − 2w
∣∣∣∣∣ = |w|

|1 − 2(u + iv)| = |u + iv|

(u −
2
3

)2 + v2 −
1
9

= 0

which is a circle in the w-plane. Figures 2 and 3 are visualiza-
tion of the given transformation.

11. Visualization of Certain pre-functions

The extended trigonometric functions M3,0(z),M3,1(z) and
M3,2(z) are found to be the linear independent solutions of the
differential equation z

′′′

+ z = 0. The properties possessed by
these functions are similar to that of the classical trigonometric
functions but for periodicity. Due to lack of periodicity we see
the graph to be oscillating with interlacing zeros. The paramet-
ric equations

y1 = M3,0(z), y2 = M3,1(z), y3 = M3,2(z)

will generate a surface y3
1 − y3

2 + y3
3 + 3y1y2y3 = r3. For β = 1,

the graphs of pre-trigonometric and extended pre-trigonometric
functions are found to be oscillating and at the same time loos-
ing periodicity. The graphs in Figures 4-18 show how specific
pre-functions behave for some fixed values of β.

11.1. Special Cases

Following are some of the special cases obtained as a result
of our study about the pre-functions of a complex variable.

1. From the first identity of (13), we obtain

M3,0(z1 + z2, 1) = M3,1(z1 + z2, 0)− (z1 + z2) + 1(16)

by replacing z by z1 + z2 in it.

2. Trisecting the series (1) for pexp(z, β), three
infinite absolutely convergent series namely
N3,0(z, β),N3,1(z, β),N3,2(z, β) for z ∈ C, β ≥ 0 have
been obtained and these series define extended hyper-
bolic functions for n = 3. Proceeding in similar lines
as it has been done for n = 2 and n = 3, n-section of
the infinite series pexp(−z, β) and pexp(z, β) give rise
to generalized extended trigonometric and hyperbolic
functions.

6
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3. Generating function for pre-Laguerre polynomial can be
obtained from pexp(z, β), by replacing z using −zy

z−1 .

1
(1 − z)

pexp
(
−zy

1 − z
, β

)
=

1
(1 − z)

{
1 + (−1)β

∞∑
r=0

(−1)r zr+βyr+β

(1 − z)r+βΓ(r + 1 + β)

}
=

1
(1 − z)

+

∞∑
r=0

(−1)r+β

Γ(r + 1 + β)
zr+βyr+β

(1 − z)r+β+1

=
1

(1 − z)
+

∞∑
r=0

(−1)r+β

Γ(r + 1 + β)
zr+βyr+β(1 − z)−(r+β+1)

=
1

(1 − z)
+

∞∑
r=0

(−1)r+β

Γ(r + 1 + β)
zr+βyr+β

∞∑
t=0

(r + t + β)!
(r + β)!t!

zt

=
1

(1 − z)
+

∞∑
r,t=0

(−1)r+β (r + t + β)!
Γ(r + β + 1)(r + β)!t!

yr+β
∞∑

t=0

zr+t+β

For a fixed value of r and taking r + t = n, the coefficient
of zn is

(−1)r+β (n + β)!
Γ(r + β + 1)(r + β)!(n − r)!

yr+β.

Taking all possible values of r into account, the total co-
efficient of zn is obtained to be

n∑
r=0

(−1)r+β (n + β)!
Γ(r + β + 1)(r + β)!(n − r)!

yr+β = Ln(y, β),

s = n − r ≥ 0 or r ≤ n. Here Ln(y, β) represents the
Laguerre Polynomial when β = 0.

Ln(y, 0) =

n∑
r=0

(−1)r n!
(r)!(n − r)!

yr

= Ln(y)
1

(1 − z)
pexp

{(
−zy

1 − z
, β

)
− 1

}
=

∞∑
n=0

zn+βLn(y, β)

4. We can also obtain the generating function for pre-
Bessel polynomial using pre-hyperbolic sine function. In
psinh(z, β), replacing z by zx

2 , we have

(3n + 1 + β)!
−(n + 1 − β)!

psinh
( zx

2
, β

)
=

(3n + 1 + β)!
−(n + 1 − β)!

{ ∞∑
n=0

z2n+1+βx2n+1+β

22n+1+βΓ(2n + 2 + β)

}
=

∞∑
n=0

(3n + 1 + β)!z2n+1+βx2n+1+β

−(n + 1 − β)!22n+1+βΓ(2n + 1 + β)

=

∞∑
n=0

(3n + 1 + β)!z2n+1+βx2n+1+β

−(n + 1 − β)!22n+1+β(2n + 1 + β)!

For a fixed n and setting k = 2n + 1, the coefficient of zn

is
n∑

k=0

(k + n + β)!
(n − k + β)!(k + β)!

xk+β

2k+β
= Yn(x, β),

k ≤ n. Here Yn(x, β) represents the Bessel Polynomial
when β = 0.

Yn(x, 0) =

n∑
k=0

(k + n)!
(n − k)!(k)!

(
x
2

)k = Yn(x)

(3n + 1 + β)!
−(n + 1 − β)!

psinh
( zx

2
, β

)
=

∞∑
n=0

zn+βYn(x, β)

5. Replacement of z using zx
2 yields the generating function

for pre-Legendre polynomial

(3n + α + 1)!
(3m + n + 1 + α)!(2n + m + 1 + α)!

psin
( zx

2
, α

)
=

(3n + α + 1)!
(3m + n + 1 + α)!(2n + m + 1 + α)!

∗

{ ∞∑
n=0

(−1)n z2n+1+αx2n+1+α

22n+1+αΓ(2n + 2 + α)

}
=

∞∑
n=0

(−1)n(3n + α + 1)!z2n+1+αx2n+1+α

(3m + n + 1 + α)!(2n + m + 1 + α)!22n+1+αΓ(2n + 1 + α)

=

∞∑
n=0

(−1)n(3n + α + 1)!z2n+1+αx2n+1+α

(3m + n + 1 + α)!(2n + m + 1 + α)!22n+1+α(2n + 1 + α)!

(17)

Fixing n and taking α = −(n + 2m + 1−β), the coefficient
of zn is

M∑
m=0

(−1)m+β (2n − 2m + β)!xn−2m+β

(m + β)!(n − m + β)!(2n−2m+β)(n − 2m + β)!

= Pn(x, β),

(18)

m ≤ n. Here Pn(x, β) represents the Legendre polynomial
when β = 0.

Pn(x, 0) =

M∑
m=0

(−1)m (2n − 2m)!xn−2m

m!(n − m)!(2n−2m)(n − 2m)!
= Pn(x)

=⇒
(3n + α + 1)!

(3m + n + 1 + α)!(2n + m + 1 + α)!
psin

( zx
2
, α

)
=

∞∑
n=0

zn−2m+βPn(x, β)

(19)

12. Conclusion

In this paper, we have introduced and investigated the prop-
erties of pre-functions and extended pre-functions for a com-
plex variable. By fixing the value of β, we were able to
graph these pre-functions and extended pre-functions. For suit-
able choices of z, we observe that these functions reducing to
Leguerre, Bessel, and Legendre polynomials, among other spe-
cial functions. Some more special functions can be derived by
assuming simple functions for the variable z.

References

[1] S. G. Deo & G. W. Howell,”A highway to trigonometry”,
Bull.Marathawada Mathematical society 1 (2000) 26-62.

[2] R.B. Khandeparkar, S. Deo & D. B. Dhaigude, “pre-exponential and
pre-trigonometric Functions”, Communications in Applied Analysis 14
(2010) 99.

7



Thirumalai et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1392 8

[3] V. O. Atabo & S. O. Adee, “A new special 15-step block method
for solving general fourth-order ordinary differential equations”, Jour-
nal of the Nigerian Society of Physical Sciences 3 (2021) 308.
https://doi.org/10.46481/jnsps.2021.337

[4] S. G. Deo, V. Raghavendra, R. Kar & V.Lakshmikantham, Ordinary dif-
ferential equations, McGraw-Hill Education, 1997.

[5] O. O. Enoch, A. A. Adejimi A. & Lukman O. Salaudeen, “The Deriva-
tion of the Riemann Analytic Continuation Formula from the Euler’s
Quadratic Equation”, Journal of the Nigerian Society of Physical Sciences
5 (2023) 967. https://doi.org/10.46481/jnsps.2023.967

[6] I. S. Sokolnikoff, “R.M. Redheffer”, Mathematics of Physics and Modern
Engineering New York, 1966.

[7] R. B. Khandeparkar, “Pretrigonometric and prehyperbolic functions via

Laplace transforms”, Neural, Parallel and Scientific Computations 18
(2010) 423.

[8] S. B. Dhaigude & D. Chandradeepa, “Some results on Pre-functions
and Differential Equations”, Bull. Marathawada Mathematical Society 12
(2011) 18.

[9] S. B. Dhaigude & C. D. Dhaigude, “Prefunctions and Integral Equations
via Laplace Transforms”, International Journal of Engineering Sciences 2
(2013) 204.

[10] M. Mahmoudi & M. V. Kazemi, “Solving singular BVPs ordinary differ-
ential equations by modified homotopy perturbation method”, Journal of
mathematics and computer science 7 (2013) 138.

8


