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Abstract

This study presents a class of single-step, self-starting hybrid block methods for directly solving general third-order ordinary differential equations
(ODEs) without reduction to first order equations. The methods are developed through interpolation and collocation at systematically selected
evenly spaced nodes with the aim of boosting the accuracy of the methods. The zero stability, consistency and convergence of the algorithms are
established. Scalar and systems of linear and nonlinear ODEs are approximated to test the effectiveness of the schemes, and the results obtained
are compared against other methods from the literature. Significantly, the study shows that an increase in the number of intra-step points improves
the accuracy of the solutions obtained using the proposed methods.
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1. Introduction subject to initial conditions

Many problems in the fields of mathematics and engineering are ¥(x0) = y0,Y (x0) = 0, (x0) = wo,
formulated using initial and boundary value problems (IVP and

BVP) for third-order ODEs. Most physical problems, includ- boundary conditions

ing the deflection of a curved beam with a constant or varying

cross-section, a three-layer beam, the motion of a rocket, thin y(x0) = y0,¥'(x0) = 80,y (xn) = wo,
film flow, electromagnetic waves, gravity-driven flows, phys-
ical oceanography, and the context of a variational inequality
involve the use of third-order ODEs of the form

Y'(x) = .Y, 5", (1)

or with mixed boundary conditions

y(x0) = y0,¥'(x0) = 80, y(xn) = ¥ (xn) = wo,

where xq, xy, ¥, 80, Wy € R, and f is a continuous function and

“Corresponding author tel. no: +2348034500462 satisfies a Lipschitz cond1t.10n as glven. Henrici [1]. .
Email address: maduabuchi@gmail .com ( Maduabuchi Gabriel Researchers have published a considerable amount of litera-
Orakwelu) ture on Linear Multistep Methods (LMM) for solving Equation
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(1). Through Taylor expansions, some 3 and 5-step schemes
for the special third-order ODEs were presented by Rajabi et
al. [2]. A one-step block method with four equidistant gen-
eralized hybrid points was presented by Adeyeye and Omar
[3]. Via numerical integration, a two-point four-step direct im-
plicit block method implemented at two points simultaneously
in a block using four backward steps was proposed by Majid et
al. [4]. Also, a fourth and fifth derivative, three-point implicit
block method was presented by Allogmany and Ismail [5]. Us-
ing interpolation and collocation techniques, implicit continu-
ous LMM for solving Equation (1) was presented by Jator [6].
Linear multistep methods have also been used to solve other
types of differential equations in Refs. [7, §8].

Proposed to overcome the Dahlquist Barrier theorem, hy-
brid methods were introduced and have continued to generate
interest among numerical analysts as given in Ref. [9, 10]. In
this paper, we derive a class of hybrid block methods via inter-
polation and collocation technique, that directly solves general
third-order ODEs. We reiterate that the most typical methods
for attempting to solve (1) typically entail reducing the problem
to a system of first-order differential equations and then solving
the system using one of the available methods, which has been
shown to have some significant computational drawbacks like
requiring more time and labour from the user as as presented
by Jator et al. [11]. Within the decade researchers have clearly
shown an unequivocal dependence of the accuracy of block hy-
brid methods on the number and type of grid points incorpo-
rated in the derivation process as presented in Refs. [12-15].

In this paper, a self-starting class of single-step hybrid block
methods are presented for numerically integrating general third-
order ODEs. We formulate certain members of the single-step
hybrid block methods, prove the convergence and perform nu-
merical tests to check the precision of the suggested methods
by contrasting them with other schemes from the literature.

2. Derivation and Analysis of Method

2.1. Derivation of the Methods

In this section, we describe the formulation of a class of one-
step block hybrid methods via the interpolation and collocation
approach as proposed by Onumanyi et al. [16], which will be
utilized to generate a number of discrete solutions for solving
(1).

We start by deriving a block hybrid method of the form

1
V() = oy + @y (09,0g + a1t + 1D B0
=0

Y NCY o Ne)
v=1

where p, € (0,k) are a countable number m € O of equally
spaced, non-integer off-grid points with % as midpoint derived
by

hyv=12,---,m. 3)

Xn+p, = Xn t

1%
+1

Equation (1) contains the first and second derivative, hence, the
derivatives of Equation (2) are given as

! 1 ’ ’ ’
V(0 = (@000 + @, 0,0y + ) (e

m

1
(B s + DBy Do)} )
Jj=0 v=1

% + a/ll (X))’n+1

" 1 " ’”
V(0 = (e 0w + {0,

" h3(21: B (v + iﬁ”v(x)fnm))- )
=0 v=1

The following conditions are imposed on Equations (4) and (5)

Y'(x) = 6(x), Y'(x) = w(x), (6)
Y'(a) =6y, Y"(a) = wo. (7)

2.2. Specification of the methods

In this section, Equation (2) is utilized in obtaining a particu-
lar one-step block hybrid method with equally spaced off-grid
points by specifying m. For illustrative purposes, the results for
m = 3 is provided.

Evaluating Equation (2) at x = {xn $1s Xppls X, +%}, we generate
the two main methods (8) and (9) given below as:

3

h
m(f,, F St +126f,,, +86f,,1 + 26fn+%) o)

1
+ §(3yn ~Ynt1 F 6yn+% - 8y,,+%)

n (
o735\~ fot = 126f,0y = 26,1 - 86,0
30720 +1 ; N o0

1
+ g(—y,, + 3y, + 6yn+% - 8yn+%)

The starters Equations (10) and (11) are obtained from Equation
(7) and are given as:

h3

41f, + frur — 288f,,1 — 424f, 1
0041+ font =288, — 4247, o (o)
- 88fn+;) + 1y + 3Yn + Yns1 = 4Vt
1
(59— 3t +481,,, + 2165, oo

+40f, 3 ) + 1 = 43+ et = 20,01

It is worth mentioning that the derivatives are generated by
O0(Xp4r,) = Optr,, and W(Xy4r,) = Wper,, as follows:

3

h‘
161280 (79f” = Sfavt + 534S, + 153211

=0, (12)
+20fn+%)+h5n+% +2( ,,—y,H%)
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]’13
oo o fuet + 2580y + 80,

10080 _0,

(13)
+ SOf,H%) ROy + V0= Vst
3

m(
+ 1532f,,+%) + R, 3 + 2(y,1+% - ym)
h3
10080
- 424fn+;) +hOns1 = Yn = 3Yns1 + 4,41

=S5fi + 79 fus1 + 54fn+% + 20fn+%
=0, (14)

(= 41fue1 — 287,01 — 881,

=0, (1I5)

h3
2880

+ 54 )+ 12,0 = A+ et = 20,0y

(—15f,1 $Tfor + 4561 + 218,
=0, (16)

1
T30 (= o1 =321+ 326,3)| )

17)
+ hz‘”n% - 4(yn + Yn+1 — 2yn+%)
3

2880
- 218](‘”_'%) + th’H—% - 4(}’11 + Yo+l — 2yn+%)

(<750 + 15f101 = 4560y - 54,0 )

—_— S Y Y S

1
(3 = 59fu1 = 48,1 40,

- 216fn+%) + hzwn+1 - 4(yn + Yn+1 — 2yn+%)

For the one-step block hybrid method with m =
spaced off-grid points, we evaluate Equation (2) at

=0.(19)
5 equally

X = {anr%’ 'xn+%’ xn+%’ 'xn+%’ xn+%’ xVH'l}'

We generate the four main methods (20), (21),(22) and (23)
given below as:
3

19595520(
+ 57525f,,+% + 20670f,,+% + 23673fn+é

412f, + 97 fyu1 + 440501,

=0,(20)
1

+ 4773fn+§) + §(sy,, e+ Vs - 9y,,+%)

3

19595520
+40539f,.,1 + 19749f,, 2 +9564f,.,1

(191, + 65 fs1 +45824f,,1
=0,21)

1
+ 5028fn+%) + 6(2)1,, — Vsl + Sym% - 9yn+%)

h3
19595520
— 19749f,,1 — 40539f,,2 — 5028,

(—65fn 191 fy,y — 45824f,,,

=0, (22)

1
- 9564fn+%) + 6(—yn + 2V + 8yn+%

- 9yn+§)

h3
19595520
~20670f,,1 — 575252 — 4773f,..1

(—97 fu— 412,01 — 440501,

1 =0. (23)
- 23673fn+%) + 5(—)’n +5ype1 + Syn+%

- 9yn+%)

The starters Equations (24) and (25) are obtained from Equation
(7) and are given as:
3

268800(_45 Ofu+ 1 fus1 = 6400f,,1 — 66151
= 20252 = 61561 - 756fn+%) S h6,+3y, (=024
t Yn+1 —4yn+%

h3
26880(135 Ofy = 4T fusr +4352f, 1 +1035f, 1
— 1712 +6300f,,1 +612fn+%)+hzwn - 0.025)
— 4(yn + Yn+1 — 2yn+%)

It is worth mentioning that the derivatives are generated by
5(xn+r,n) = 6n+‘rm and U)(xn+'r,,,) = Wn+t,

h3
21772800
- 138825fn+% - 71565]”,”% + 631 14fn+%

(3541 fo = 479 11 — 143300f,,.1

! =0, (26)
- 14886fn+%) +ho,, 1+ 5(7)),, + Ynt1

- 8yn+%)

3

21772800(
+281235f,,1 + 69165, + 84924f, 1

TULfy + 361 fui1 + 152320,
=0,(27)

1
+ 15684fn+%) + h6n+% + g(SYn — Yn+l — 4yn+%)

h3
m(llﬁ, + llﬁHl + 4860f;1+% + 2565f;1+%

+2565f,,2 + 594,

6

+ 594_]‘;“_%) + h6n+% =+ yn = O’(28)

— Yn+l1

h3
21772800
+69165f,,1 +281235f,.; + 15684,

(3614 + 1111 1 + 1523208,
= 0,29)

1
+ 84924fn+;) + h6n+% + 5()’:1 = Syn+1 + 4)’n+%)

h3
21772800
—71565fn+% - 138825fn+% - 14886fn+%

(~479/, + 3541 f,01 — 1433001,

: =0,30)
+ 63114f;l+%) + h5n+% + 5(—)/” = Tyt

+ 8yn+%)
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n and (43) given below as:
m(llﬁl - 459ﬁl+1 - 6400];14—% - 2025];1-*—% .
= 0,31
= 6015f,,2 = 756f,,1 —6156f,,5) D —(937fn +142f,,1 + 131885f,,1
e 88473600 las:
el T V0 T S nel T W g + 144631, 1 +33061f,,; + 53474,
y =0. (39)
725760(_1481fn + 457fn+1 + 42496fn+% + 161518fn+% + 71398fn+% + 7754fn+%)
+ 120867 f,,,.1 + 358052 + 39876f,,1 =0,(32) + 31_2(2 Lyn = 3yner + 14y,,1 = 32yn+%)
+3900f,.5) + 10,0 =430 + st = 20 2
—_(59f, + 19fps1 + 1 .
. 57650032 + 1901 + 187704,
o (245 fu = 85 fue1 + 75008, + 1412211 + 47425 + 3428,
=0, (39
+26889f,.1 +21207f,,2 — 10380, =0,(33) + 22676, + 106365 + 1148fn+%)
2 _ 1
+8076fn+%)+h wn-*—% 4(yn+yn+l 2y"+%) + §(3yn_yn+l +6yn+% _8yn+%)
I ( VLfy + 11 fyuy — 1287F.,1 + 1287F 5
- n n+l — n+‘l n+‘Z —F (296
26880 3 5 123863040( [+ 199/ + 183445fn+%
~ 180, + 180 f,Hg) Fw,, - 4(y,, F oy b= 0.34) +TSIT,,) + 462595 + 18466,
=0, (40)
_ 2yn+%) + 1698861 + 100054f,,5 + 10858ﬁ1+%)
1
1 + 3—2(5y,, 3y +30y,,5 — 32yn+%)
o 60(85 fo = 245 fy1 = 75008 ;.1 %
—21207f,,1 — 26889,,> — 8076f,. 1 h—‘(_l 9f — _
.l .2 oo as) 863030 (199 ~ 296 1 — 183445,
+ 10380 fw%) + Rw,, s - 4(yn + Y1 — 46259, 1 — 75337, — 108581
= 0,(41)
_ 2yn+%) ~ 100054, — 169886, s — 18466 f,ﬁ%)
1
e + —(—3yn  Syper + 30,1 32yn+§)
_ _ 32 2 8
o 60( 457f, + 1481 £,y — 42496,
3
~35805f,,1 — 120867,,> — 3900, =0,(36) h (_1 _59f . 18770
N ’ ‘ 9676800\ | Jn 7 3 net Fust
- 39876, ) + e, - 4(y,1 Yot — 2yn+%) — 47421, — 14122f,,, — 11481,
=0, (42
3 ~ 10636, 1 ~ 226765 — 3428 fm%)
m(m 1359 f,1 — 4352f,, 1 + 17111 1
+ =(=Yn + 3Yn+1 +6y,,1 — 8y,,3)
~ 1035f,,2 = 612f,,1 — 6300fn+%) + K = 0.37) gl T el T Oy T g
h3
=43+ 3 = 20,0 saiacos |~ 1426 — 93 fut - 131885,
For the one-step block hybrid method with m = 7 equally B 33061]0"*% ~ 144631, 3T 77544, nty ~ 0. (43)
spaced off-grid points, we evaluate Equation (2) at 713987, - 161518fn+% B 53474fn+%) =0.
_ 1
X = {anr%’ xn+%7 'xn+%’ xn+%’ xn+§’ xn+f—17 xn+%’ xn+1}' + 3_2(_3yn + 21yn+1 + 14yn+% - 32yn+%)

We generate the six main methods (38), (39), (40), (41), (42)  The starters Equations (44) and (45) are obtained from Equation
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(7) and are given as:

3

4989600(
— 800241 — 13672f,, — 71648,

—4519f, + 719fp1 — 55520fn+%

= (),
— 126304f,, — 58016, s - 6176fn+%)

+ hén + 3yn + Yo+l — 4yn+%

h3
226800
= 2552f,,1 — 4872f,,2 +44192f,,,

(8121f,, ~209f,.1 - 18160f,,

+ 555841 +28384f,, s + 2912fn+%) + hPw,

- 4()’/1 + Vn+1 — 2yn+%)

3

5109350400(
- 43219630fn+% - 31649144fn+%

~ 10970288, + 5710568,
~ 44180864, 3 — 20167160, 5 =0,

371725f, — 65591 fouy

1
- 2191216]‘“%) + o1 + E(Syn + Yni1

- 6yn+%)
3

79833600(
+ 515828]‘“% + 2524fn+% + 156736fn+§

2221f, + 65 fu1 + 10930f,,1

= O,
+ 14992015 ~ 6016, - 608f,,+%)

+ h5n+% + 2(y,1 —yn%)
3

5109350400(
+40485970f,,1 +30702112f, 4

+9998264f,. 1 + 7176736,
+ 595733363 + 22437424, 5 =0,

128801 f, + 39349 f,+1

1
+ 2430808ﬁ1+%) + h5n+% + 5(3)01 = Yn+l

- 2yn+%)
3

4989600
+19504f,.,1 + 19504f,, 5 +4736f,,1

+ 44416, 5

(79 fu+ 79 fuar +T0430f,,.1

+ 4441615 + 4736fn+%) By + Yo = Yo

(44)

= 0.(45)

It is worth mentioning that the derivatives are generated by
6(xn+r,,,) = 611+‘r,,, and W(xn+‘rm) = Wn+t,

(46)

(47)

(48)

=0,(49)

3

5109350400
+40485970f,, 1 +9998264f, 1

+30702112,, + 2430808 .1
+ 22437424f,,5 + 59573336/,

(39349 o+ 128801 fun

ool

1
+ 7176736](;”%) + h6n+% + E(yn - 3yn+l

+ ZYn+%)

1’13
79833600
+2524f,,1 + 515828, — 608f,,1

Il+i

(65 Fu+ 2221 g + 109301

— 6016, + 149920, + 156736 f,H%)

+ 06,3 + 2<yn+% - y,,+1)

3

5109350400(
- 43219630}‘“% - 10970288fn+%

—31649144f,,> — 2191216f,,,
— 20167160f,, s — 441808641, < -

—65591f, + 371725 f,,41

1
+ 5710568fn+%) + hém—% + E(_)’n = S5Yn+1
+ 6yn+%)
h3

4989600
— 13672f,,1 — 80024f,.,> — 6176,

(79 fo = 4519f,1 = 555201

— 58016, — 126304, s - 71648fn+%)
+ h5n+1

—Yn — 3yn+1 + 4yn+%
3

29030400
+2708640f,, 1 +4277938f,,1 + 667598, .5

+ 1189482fn+% + 1519394fn+§ +486814fn+%

+59862 f,ﬁg) + Hw,,1 — 4(yn + Ynel — 2yn+g)

(—30529 £+ 7201 oy

3

h
m(lmﬁ, ~3fy1 + 43480/,

+32286,,1 + 11666f,,5 — 5816f,,1
+ 1022485 + 38808,

+4024 f,H%) + Hw,, ~ 4(yn + Ynet — 2yn+%)

(50)

. (D

. (52

(53)

= 0,(54)

= 0,(55)
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3

29030400
- 605134fn+% + 515406fn+% - 86486fn+%

(—3873 fo+ 31371 + 2224480,

+ 640098, 2 + 843998, 5 + 97174 f,H%)

+ hzwnJr% - 4(yn + Yne1 — 2yn+%)

3

h
45360<_f” + far1 = 608f,, 1 +608f, 5

+ hz‘”n+% - 4(yn + Yn+1 — 2yn+%)

3

29030400(
- 515406fn+% + 605134fn+% - 97174fn+%

~3137f, + 3873 41 — 22244801

- 843998]‘“% - 640098fn+% + 86486fn+%)

+ hzu)nJr% - 4()’11 + Yo+l — 2}’n+%)

3

h
s (31— 1071 — 434807, ~ 116665,

— 322863 —4024f,,1 — 38808,

~ 102248, s + 5816]‘%%) +hPw,, s

ﬂ+1

- 4(yn + Yn+1 — 2yﬂ+%)

3
(—7201 £, 430529,

29030400
~ 2708640, , ~ 667598, — 4277938,
— 59862f,,1 — 486814/, s — 15193941« | _ 0 60)
— 1189482 fn+%)
+ hzwn+% - 4(yn + Yo+l — Zyn-*—%)

h3
m(zo% ~ 812141 + 181601
+4872f,.,) +2552f,,; — 2912f,.,

—0. (6

~28384f,, s — 5558415 - 44192f,1+%)

+ hz“)n+l - 4(yn t Yo+l — zyn+%)
For brevity, we have omitted the schemes for m > 7.

2.3. Analysis of the methods

We report the findings from our analysis of the characteristics
of our proposed method with evenly spaced off-grid collocation
nodes in this section. We focus in particular on the zero stability
analysis and truncation error.

= 0,(56)

—192f,,1 — 19845 + 1984f,, s + 192f,,+%) =0,(57)

=0,(58)

2.3.1. Local Truncation Errors and Order
We express our main methods and starters for third order IVPs
in terms of a linear operator £ defined as

1
D@+ )+ @y, ¥+ pyh)
2

=0

1 m
— IO By + i)+ Y By (5 + poh)),
i=0 v=1

1
Z ajy(xn + Jh) - hyl (xn)

=0

1 m
=IO By + i)+ Y By (5 + poh)),
i=0 v=1

1
Do+ jh) = by ()

=0

1 m
—H Q) BY i)+ Y By (o + pyh)),
i=0 v=1

where { = 1,2,...,m.
Assuming that y(x;,) is sufficiently differentiable, we can expand
the terms y(x, + jh), y(x, + pzh),y"” (x, + pyh)and y”'(x, + jh)
as a Taylor series about the point x, to obtain the expression

LIy(x); h] = Coy(x)+Cihy (x,)+ - -+C,hPyP (x,)+ - -(63)

= 0,(59)where éo, ¢ Toeos ¢ » are constant vectors. As stated in Henrici

[1], we say that the method has order p if

éO, C\l, Y ép, CA‘erls and CA‘p+2 =0 Cp+3 #0.

A

The vector Cp,.3 is called the error constant and
¢ e3P P3yP(x,) the principal part of the local truncation
error at the end point x,,. It is standard from our computations
that our methods have order p > 1 and with comparatively
small error constants.

Consequently, for our method with m = 3, we have

e
125829120
YO )
125829120
'y )
5160960
hty® (x)
33030144

+0(h9),

+0 (h9)
= LY (x,); hl. (64)

+0(r°),

+0 (h9)

= L[Y(x,); h1,(62)
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For our method with m = 5 and m = 7, we have

134105010 (x)
10970982973440
thy(l())(x)
548549148672
thy(lO)(x)
548549148672
13410510 (x)
10970982973440
hloy(m)(x)
4180377600
thy(lO)(x)
179159040

+0(n'"),
+0(n"),
+0(n'"),
+o(n"),
+0(n'"),

+0(n")
Th'2y12(x)
94997804639846400
hlZy(IZ)(x)
2597596220620800
hlZy(IZ)(x)
2955487255461888
h12y(12)(x)
2955487255461888
h12y(12)(x)
2597596220620800
hlZy(IZ) ()C)
4783519825920
h12y(12)(x)
2597596220620800

317h12y12(x)
-2 - 4 o(n?
50226958172160 (n")

+ O(h”),

+-()(h13),

+ O(h”),

+ O(h”),

+—c)(h13),

+ O(hB),

+ O(h”),

2.3.2. Zero Stability

The starters and primary methods are represented in matrix-

vector form as

AVY 1 = ADY 4+ 13 BV F i1 +BQ F A1+ CQ w,+hDQ6,,(67)

= L[Y(xy); hl,

= L[Y(x,); h].

where
Yier=(C-- s Vnrlso o Vs’
Y= (oo vy
Faer=Coe o fusy, oo )
Fu=Co sty s S
S1=0(-- ,5”_%, .. ’5n)T,
W1= (o),
Aﬁ,p ,Af,?), Bf,l), Bﬁ(q)) , C,(f) and Dﬁ,?) are square matrices.

7
For m = 3 we obtain we obtain the square matrices
3 1 3
1 3 0 5, 0 0 0 3
AD — 0 -3 1 -3 A0 _ 0 00 g
3 0 4 0 -1 [0 000 -3Y
0 -8 0 4 00 0 4
43 21 13 1
5360 510 15360 30730
3(31) =| T30 TS0 TTS60 T30 |
) B G |
10 1 18 240
1
SRS AR
) _ 30720 O _
B=10 0 0 w0 S =l 00 01
9
00 0 =5 00 00
and
00 00
o _ |0 0 0 O0
by =10 0 0 0
0 0 0 1
For m = 5 we obtain
10 —§ 00 3
0 1 — 00 5
A0 |00 -5 1 0 -5
5 00 -3 01 -3/
(66) 00 4 00 -1
0 0 -8 00 4
(1) _
By’ =
7891 3835 4405 689 1591 97
6534840 1396368 1939552 CREIED 6531540 19593520
B NG x WAL . IRIGS ¢ 1 SR '/ A () &
1632960 6534570 76545 6531840 1632960 19595520
_ 1391 _ 68 _ 4403 3835 _ 7891 _ 103
6531340 653184 1959552 1306368 6531840 4898880
203 _6 L 27 _5 I
22400 2560 ) 3584 3200 268300
I5 69 17 27 SL 47
64 1792 105 8960 2240 26880
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(=N eNeNeNe]
(=N elNeNeNe)
el eNeleNe]
el eNeNeNe]
(=N eNeNeNe]
—_ o OO o0

00 00

For brevity, we omit the square matrices for the method m = 7.
The matrix system (67) is reduced to

()

AVy = A0y, (68)

The zero stability is established from the nature of the zeros
of the first characteristic polynomial defined as

p(R) = detlAV — A©)]. (69)

A method is said to be zero stable if the roots of p(R) satisfy
| R; |< 1 and all the roots with | R; |= 1 have multiplicity that
does not exceed 2. For our method with m = 3, we obtain the
first characteristic polynomial given as

p(R) = —8R3(1 + R), (70)

which has principal root | Ry |= 1 and spurious roots R; =
0,j = 1(1)3. For our method with m = 5, we obtain the first
characteristic polynomial given as

p(R) = 8R3(1 + R), (71)

which has principal root | Ry |= 1 and spurious roots R; =
0,j = 1(1)5. For our method with m = 7, we obtain the first
characteristic polynomial given as

p(R) = —=8R'(1 + R), (72)

which has principal root | Ry |= 1 and spurious roots R; = 0, j =
1(1)7. In general, the first characteristic polynomial of our class
of hybrid block methods alternates between

p(R) = -R"(R+ 1), (73)
and
p(R) = R™(R +1). (74

Following Jator [17], our class of hybrid block methods are zero
stable, consistent and convergent.

3. Numerical Problems & Discussions

In this section, we have tested the performance of our meth-
ods on both scalar and system ODE:s of the linear and nonlinear
types. All results in this study were compared with the theoret-
ical solutions, hence, the Absolute Errors (AE) and Maximum
Absolute Errors (MAE) obtained. We compare our methods
with the Generalized Linear Block Method (GLBM) of order
5 in Ref. [3], the Direct Two-Point Four-Step Variable Step
(D2P4VS) methods of order 6 and 7 in Ref. [4], the Implicit
Three-Point Block Method of order 9 ITPBMQ9Y) in Ref. [5],
and the Boundary Value Methods (BVMS) of order 6 in Ref.
[11] . All computations were implemented using Mathematica
13.

Table 1. Comparison of the MAE of m = 3 and BVMS5 (Problem 1)

N m=3 BVMS5
10 2.91x 107 5.07 x 107°
20 4.65x 107! 1.16 x 1077
40 7.39 x 10713 2.07x 107°
80 1.84 x 10714 3.35x 1071
160 1.65x 10713 5.92x 1071
320 2.52x 10712 828 x 10714
3.1. Problem 1
Consider the non-linear third order IVP
V() +2e7P® = 4(1 + %), (75)

which was solved in Ref. [11], with the initial conditions, inter-
val of integration and exact solution given as

¥(0)=0,y(0)=1,y"(0) = -1,
x€[0,1],
Exact : y(x) = In(1 + x).

In this example, a comparison is made between our method m =
3 and the BVMS in Ref. [11], both orders 5 and 6 respectively.
In Table 1, we compare the MAE of our method m = 3 with
the BVMS at different values of N. It is evident from the results
that our method m = 3 of order 5 performs favourably well
against the BVMS of order 6. Our method m = 3 outperforms
the BVMS for all the values of N provided except at 320.
Table 2 display the MAE for our method m = 3, 5 and 7. The
results were computed using different values for N.

3.2. Problem 2
Consider the singularly perturbed third order BVP

—ey () +4y(x) =1, xe[0,1], (76)

which was solved in Refs. [6, 11], with the boundary condi-
tions, domain of integration and exact solution given as

y0)=y 0 =y =1,

Exact : y(x) = j—i - CIZ\/E exp (%) + 622\/2 exp(z—\/);) +c3,
where
cp = é - 3
L 4(1 +exp(é))’



Table 2. MAE methods m = 3, 5 and 7 with various N (Problem 1)

Table 3. Comparison of the MAE m = 3 and BVMS (Problem 2, € = 0.01)
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N m=23 m=>5 m="7 N m=3 BVM5
6  593x10°  1.52x 10710 1.69 x 1076 10 3.7% 1076 2.6 x 1073
10 291x10°  276x10712 228 x 1078 20 8.4 1078 1.1x 107
12 984x107°  652x 10713 4.45% 107 40 1.5% 107 6.9 % 1076
20 465x107" 797x10715  373x 1071 80 23% 1071 43 %1077
24 1.56 x 107! 5.53x 1071 6.49 x 10712 160 3.7x 10713 2.7x 10712
40 7.39 x 10713 5.76 x 10713 1.08 x 10714 320 1.3x 1071 1.7x107°
48 232x108 134x10%  171x 107
Table 4. Comparison of the MAE m = 3 and BVMS5 (Problem 2, € = 0.1)
80  1.84x107  241x107™  840x 107 N m=3 BVM>5
96  176x107%  7.64x 1074 1.84x 10713 10 18107 24107
160 165x1073  136x1073  579x 1071 20 2910710 4.8x 1077
192 548x107  158x1078  1.60x 10713 40 4.6 10712 8.0 107
320 252x1072  3.19x1072  1.01x 10712 80 7.7x 1071 1310710
160 1.4x 1071 2.0 % 10712
o = 3 320 1.8x 1071 1.8 x 10714

4(1 + exp(%)
8+ 86Xp(%)—3\/€+ 3\/Eexp(%)

c3 =
8(1 + exp (%E)

The singularly perturbed third-order BVP has been solved with
a variety of values €, and it is shown that the results are still
acceptable as € — 0. In the Tables 3 and 4, the MAE of our
method m = 3 of order 5 is compared with the BVMS5 of order
6. From the results presented, our method m = 3 outperforms
the BVMS for € = 0.01. Although, our methods perform better
with a decreased number of steps, for example, our methods
m = 3, 5 and 7 outperform those presented in Ref. [11] for
smaller values of N, the BVMS5 outperforms our methods at
N =320 and with € = 0.1.

For our methods, m = 3, 5 and 7, the numerical solutions were
contrasted with the theoretical and the MAE presented in Table
5 and 6.

3.3. Problem 3
Consider the third order IVP

vy +2y =9y — 18y = —18x> — 18x + 22, (77)

with the initial conditions, domain of integration and exact so-
lution given as

¥(0) = =2, ¥y (0) = -8,y"(0) = 12, x € [0,5],

Exact : y(x) = —2¢ > + e + x> — 1.

Tables 7 and 8 display the AE at the endpoints x = 1 and x = 4
of the integration domain. The results were computed using
different values for N.

We compare our methods m = 3 of order 5, with the two-point
four-step implicit block method (D2P4VS) of orders 6 and 7
presented in Ref. [4].

In the Tables 9 and 10, we provide the MAE within the inte-
gration domain x € [0, b]. From the results displayed in Table
9, our methods outperform the D2P4VS in a lesser number of
steps with b = 1. In the Table 10, our method m = 3 outper-
forms the D2P4VS.

3.4. Problem 4

Consider the BVP with mixed boundary conditions

Y (x) - +2y(x) = f(x), (78)

1
V1+x



Table 5. MAE method m = 3, 5 and 7 with various N (Problem 2, € = 0.01)

Table 6. MAE methods m = 3, 5 and 7 with various N (problem 2, € = 0.1)
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N m=3 m=5 m="7 N m=3 m=>5 m="17
6 3.9x 107 8.01 x 1077 1.10x 1078 6 3.5x 1077 6.74 x 10710 8.93x 10713
10 3.7x107° 2.63x 1078 1.27 x 10710 10 1.8x1078 1.25x 107! 6.22 x 1071
12 1.4x107° 7.01 x 107° 2.33x 107" 12 6.1 x107° 2.95 x 10712 3.11x 1071
20 8.4 %1078 1.46 x 10710 1.75 x 10713 20 2.9 % 10710 451 x 1071 422 %1071
24 29x10°8 3.54x 107 3.22x 107 24 9.9 x 107! 131 x 10714 444 x 1071
40 1.5x 1077 6.31x 10713 8.88 x 10716 40 4.6 x 10712 1.58 x 10714 7.33x 1071
48 4.9x 10710 1.51x 10713 2.58 x 1071 48 1.5% 1072 333x 1071 7.33x 107
80 23x 1071 3.33x 107 4.00 x 1071 80 7.7 x 10714 2.89 x 1071 2.02x 107
96 7.9 x 1072 7.55%x 10713 1.55x 10719 96 48x 1071 4.06 x 1071 1.26 x 10712
160 3.7x 10713 7.59 x 1071 6.88 x 10713 160 1.4 %107 291 x 107" 5.13x 1071
192 1.2x1071 9.99 x 10713 7.37x 10713 192 1.1x10713 7.86x 10713 4.57x 1071
320 13x 107" 8.00 x 1071 5.45x 10712 320 1.8x 10713 2.25x 10712 520 x 1071

which was solved in Ref. [11], with the mixed boundary condi- Table 7. AE at the end of interval (Problem 3, x = 1)

N m=73 m=>5 m="717

tions, domain of integration and exact solution given as
Y0) =y () = Ly -y (1) =0, xe[0,1],

1
Exact : y(x) = §x3.

In this problem, f(x) is deduced from the exact solution. All
methods solve this problem accurately and are consequently
exact to machine precision. Table 11 shows the computational
comparison of the different methods for this problem.

In Table 12, we display the MAE within the integration domain
of the problem for m = 3, 5 and 7. The results were computed
using different values of N.

3.5. Problem 5
Consider the third order IVP
vy +e =0, (79)

which was solved in Ref. [3], with the initial conditions, do-
main of integration and exact solution given as

y0)=1,y(0)=-1y"(0)=3, x€[0,1],

Exact : y(x) = 2x* —e* + 2.
Tables 13 and 14 show the AE at selected points in the inte-

gration domain for the problem solved with step size h = 1—10

10

8 2456667 x 1077 6.023624 x 1071 1.010961 x 10~

10 6.421349x 107  1.007798 x 107! 1.082454 x 10~13

22 5.640075x 1071 1.829226 x 107 4.059099 x 10~

Table 8. AE at the end of interval (Problem 3, x = 4)

N m=73 m=2>5 m="17

59  1.901826 x 10 1.406541 x 10~  7.038723 x 10713

99 8512268 x 107 2236027 x 1071%  3.974098 x 10713

120 2.683452x107%  4.797736 x 10~'!  5.803680 x 107!°

and compared with the theoretical solution. In the Table 13, we
compare the AE of our methods m = 3 against the GLBM in
Ref. [3]. It is instructive to note that both methods are of order
5. It is easy to see that our method m = 3 performs relatively
well against the GLBM. From Table 13, both methods perform
slightly better than the other at 5 selected points each within
the domain of integration. The AE of our methods m = 5 and
m =7 is presented in Table 14.



Orakwelu et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1484

Table 9. Comparison of MAE m = 3 and D2P4VS (problem 3, x = 1)

Table 12. MAE methods m = 3, 5 and 7 with various N (Problem 4)

N m=3 N D2P4VS N m=73 m=>5 m="17
8 2.46 x 1077 41 9.33 x 1077 6 1.10 x 10716 1.33 x 10713 8.22 x 1078
10 6.42 x 1078 54 7.82%x 1078 10 1.55x 10713 1.44 x 10713 1.57 x 10716
22 5.64 x 10710 64 8.16 x 10710 12 1.22x 1071 1.77 x 10713 1.17 x 10715
20 4.44 x 10715 1.44 x 10713 4.00 x 10715
Table 10. Comparison of MAE m = 3 and D2P4VS (problem 3, x = 4)
N m=3 D2P4VS 24 810x107'6  833x1076  555x 1076
41 L41x 107 2.26x 107 40 244x105 LIIx1075  333x 10715
-8 -8
54 642x10 7.82x10 48 137x 1076 411x1075  822x10715
-10 -10
64 5.64 %10 8.16x 10 80  1.65x10%  199x10  921x107
Table 11. Comparison of the MAE methods m = 3 and BVMS5 (Problem 4) 96 3.15x 1071 1.37 x 107 9.38x 107"
N m=3 BVM5
160 7.07 x 10714 3.21x 107 6.36 x 10714
10 1.55x 1071 1.38 x 1071
192 4.15x 10716 9.03x 10714 2.89 x 10714
20 4.44 x 10715 4.44 x 10716
320 1.94 x 10714 1.22x 10713 2.10x 10713
40 2.44 x 1071 2.87 x 10714
_14 _14 Table 13. Comparison of the AE methods m = 3 and GLBM (Problem 5)
-14 -14
160 7.07x10 245x10 0.1 1.617997 x 1014 1.620926 x 1014
-14 -14
320 194 x 10 5.23x10 0.2 6.611369 x 10714 6.605827 x 10714
-13 -13
36. Problem 6 0.3 1.528079 x 10 1.527667 x 10
Consider the nonlinear third order IVP 04 2.795853 x 10—13 2.795542 % 10—13
"2 . 22
—Xxy +x°y° =xsinx—cosx+ x”sin” x, 80
Y 4 Y (80) 0.5 4501185 x 10713 4.501954 x 10713
which was solved in Ref. [3], with the initial conditions, do-
main of integration and exact solution given as 0.6 6.684659 x 10713 6.683543 x 10713
y(0)=0, y(0)=1,y(0)=0, xe[0,1], 0.7 9.391131 x 10713 9.392487 x 10713
) . 0.8 1.267017 x 10712 1.266987 x 10712
Exact : y(x) = sin x.
In this example, a comparison is made between our methodm = 0.9 1.657656 x 107'2 1.657785 x 10712
3 and the GLBM in Ref. [3]. In Table 15, we compare the AE of
our method m = 3 with the GLBM at selected points within the 1.0 2.117086 x 10712 2.117417 x 10712

integration domain of the problem solved with step size & = 11—0.
It is evident from the results that our method m = 3 performs
relatively well against the GLBM. Our scheme m = 3 slightly
outperforms the GLBM at the first five selected points in the
Table 15, while the GLBM marginally outperforms our method
m = 3 at the points x = 0.6, 0.7, 0.8, 0.9 and 1.0. The AE of our
methods m = 5 and m = 7 is presented in Table 16.

11

3.7. Problem 7
Consider the linear system



Table 14. AE at selected points for method m = 5 and m = 7 (Problem 5)
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Table 16. AE at selected points for method m = 5 and m = 7 (Problem 6)

X m=>5 m=17
0.1 2.667406 x 107"° 3.083489 x 107
0.2 1.091358 x 10~'3 1.262510 x 10723
0.3 2.525817 x 10718 2.924209 x 10723
0.4 4.627550 x 10718 5.361661 x 10723
0.5 7.460028 x 10~'3 8.650259 x 1072
0.6 1.109340 x 1077 1.287332 x 10722
0.7 1.560518 x 1077 1.812293 x 10722
0.8 2.108106 x 1077 2.450086 x 10722
0.9 2.761572 x 1077 3.211957 x 10722
1.0 3.531380 x 1077 4.110336 x 10722

X m=>5 m="17
0.1 244337 x 10713 244337 x 10~'3
0.2 9.39821 x 107" 9.39821 x 107"
0.3 2.65894 x 1077 8.44329 x 1077
0.4 3.0799 x 107" 1.35734 x 1071°
0.5 1.05918 x 1071¢ 3.27963 x 1071°
0.6 9.68481 x 1077 4.29915 x 10716
0.7 1.47862 x 10716 4.80929 x 1071°
0.8 2.97549 x 1077 4.14334 x 10710
0.9 2.47817 x 10716 2.57721 x 1077
1.0 6.64357 x 1077 6.64357 x 107'°

Table 15. Comparison of the AE methods m = 3 and GLBM (Problem 6)

X m=73 GLBM
0.1 6.6369 x 10716 6.661338 x 10716
0.2 3.9126 x 10715 3.913536 x 10713
0.3 1.23524 x 10714 1.243450 x 10~
0.4 2.86685 x 10714 2.886580 x 10714
0.5 5.59501 x 1074 5.601075 x 10714
0.6 9.70193 x 10714 9.692247 x 10~14
0.7 1.55024 x 10713 1.546541 x 10713
0.8 2.33561 x 10713 2.325917 x 10713
0.9 3.35928 x 10713 3.346212 x 10713
1.0 4.65962 x 10713 4.644063 x 10712

Y (x) = &(817y + 1393y, + 448y3)

¥y (x) = — g5 (1141y; + 2837y, + 896y3) , (81)

Yy (X) = 71(3059y; + 4319y, + 1592y3)

which was solved in Ref. [11], with the initial conditions

12

y1(0) = 2, y,(0) = =12, y[(0) =20
2(0) = =2, y,(0) = 28, y;(0) = =52 ,
y3(0) = =12, y;(0) = =33, y;(0) = 5
and exact solutions
y1(x) = e¥ — 2% + 3¢~
ya(x) = 3e* + 2e%F — T3
y3(x) = —=11e* — 5¢* + 4¢3
We compare our method m = 3 of order 5 with the BVMS in
Ref. [11] and ITPBO9 in Ref. [5] of orders 6 and 9 respectively.
From the results presented in Table 17, our method m = 3 per-
forms favourably well against the BVMS5 and ITPBO9.

Table 18 shows the maximum error of our methods m = 3,5, 7.
This problem is solved with various values N.

3.8. Problem 8
Consider the non-linear system

vy (%) = Texp(4x) y3(x) y,(x)
¥y () = Sexp(2x) yi(x) yy(x) . (82)

¥y (X) = 27 yo(x) ¥, (x)

which was solved in Ref. [5], with the initial conditions
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Table 17. MAE Comparison methods m = 3, BVMS and ITPBO9 (Problem 7) Table 19. AE at grid points for method m = 3 (Problem 8)
N m=3 BVM5 ITPBO9 X Vi V2 V3
10 1.51x 1077 5.45x 1073 1.42 x 10712 0.1 1.51546x 10°"* 3.83364%x 10712 8.95258 x 10~!!
20 2.36x%x 107 9.59 % 1075 9.52%x 10713 0.2 3.10129x 107 173926 x 1071 3.39825 x 10710
40 3.68 x 10711 1.80 x 107° 540 x 10713 03 17698 x 10713 4.74889 x 1071 7.1774 x 10710
80 5.76 x 10713 2.98 x 1078 3.13x 10713 0.4 1.31187x 1072 1.06305%x 10710  1.19818 x 10~°
160 8.99 x 10713 529 x 10710 1.22x 10713 0.5 4.92628x 10712 2.11419x 10710 1.76148 x 10~
320 1.41 x 10716 1.07 x 1071 not given 0.6 1.3897x 107" 385917x 1071 239116 x 107°
0.7 3.30345x 107" 6.58552 x 10710 3.0719 x 107°
Table 18. MAE methods m = 5 and m = 7 with various N (Problem 7)

N m=3 m=> m=17 08 698675x 10-11  1.06386 x 10°  3.78767 x 10~

—6 -9 —13
6 321x10 1.16 x 10 3.13x10 09 135634x10710  1.64216x10° 4.51995% 10~

-7 —11 —15
10 1.51x10 1.96 % 10 1.90 %10 10 246510x 1010 243917 x107° 52460 % 10~

12 5.05x 1078 457 x 10712 3.08 x 10716

Table 20. AE at grid points for method m = 5 (Problem 8)
20 2.36x%x 107 7.69 x 10714 1.86 x 10718 X Vi V2 V3
24 7.89 x 10710 1.79 x 1071 3.00 x 10710 0.1 5.55827x 10717  4.81773x 10710 1.29796 x 10714
40 3.68 x 10711 3.00 x 10710 1.82x 107 0.2 295383 x 1071 152751 x 10715  4.95592 x 10~
48 1.23x 1071 6.99 x 10717 2.94 x 10722 0.3 8.98209x 10716 47062 x 10715  1.04197 x 10713
80 5.76 x 10713 1.17x 10718 1.78 x 10724 04 1.91418x 1071  1.1297x107#  1.72933 x 10713
96 1.93x 10713 273 x 1071 2.87 %1072 0.5 2.99826x 10715 241904 x 107*  2.53058 x 1013
160 8.99 x 10713 4.58 x 102! 1.74 x 10727 0.6 5.17479x 10715 4.68669 x 10714 3.41539 x 10713
192 3.01 x 10713 1.07 x 107 2.80x 10728 0.7 8.61645x 10715 832541 x 1074 43678 x 10713
320 1.41 x 10716 1.79x 1073 1.70 x 10739 0.8 1.46822x 107 1.38331x 10713 536118 x 10713
) , 0.9 244228 x 107 21786 x 10713 6.38609 x 10713
y1(0)=1, y,(0)= -1, y,(0) =1

1.0 4.11462x 107* 327866 x 10713 7.38401 x 10713

»0) =1, y,0)=-1, {0 =1,
y3(0) = 1, y5(0) = =3, y,(0) =9 Tables 19, 20 and 21 shows the AE at selected points in the
integration domain for the problem solved with step size h =
L and compared with the theoretical solution. The numerical

10
results for this problem are presented in Tables 19, 20 and 21.

and exact solutions

yi(x) =e*

y2(x) = e

y3(x) = e

13
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Table 21. AE at grid points for method m = 7 (Problem 8)
d Y1 2

V3

0.1 5.55827x 1077 1.48706 x 1071®  1.21053 x 1071°
0.2 295383 x107!®  3.06269 x 1071¢  1.54285 x 1071°
0.3 7.87186x 10716 8.20419x 107'®  3.35219 x 107!¢
0.4 1.35907 x 1071 8.6094 x 1071 6.26151 x 10716
0.5 2.44315x 1071 1.26433 x 10715 6.49266 x 1071
0.6 3.39843x 10715  1.79189x 107>  3.95042 x 107!¢
0.7 4.67516x 107 237434 x 1071 3.1434 x 10716
0.8 5.63386x 107 3.02269 x 107 1.57661 x 1071
0.9 6.93674x 10715  3.58693x 107>  3.53019 x 10°13
1.0 7.89501 x 10°1°  3.95862 x 10°1°  6.27424 x 10~

4. Conclusion

We proposed a class of single-step hybrid block methods for
solving third-order ODEs without first converting to an analo-
gous first-order system. The convergence of the new methods
was established, and the schemes are implemented without the
use of starting values or predictors, avoiding the necessity for
complex subroutines. To illustrate the effectiveness of the new
methods, eight test problems of varied degrees of difficulty are
considered. From the results, it is shown that the improvement
in accuracy increases as the number of intra-step points m is in-
creased. Tables 1-21 discuss the numerical outcomes in further
depth. Our future research will focus on developing optimized
single-step hybrid block schemes for solving third-order ODEs
directly.
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