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Abstract

Typhoid fever is a highly communicable and infectious disease that can be fatal and causes severe complications if unattended to timely. The
infection, at times, can be more complex, challenging, and impossible to treat as antibiotics become less effective. Hence, the effect of limited
clinical efficacy of the antibiotics with corresponding relapse response to treatment on infected humans is considered in this paper by formulating
a deterministic model for direct and indirect transmission mode of Typhoid infection. The basic reproduction number is analytically derived
and used to implement the global sensitivity analysis. Following the sensitivity analysis result, the optimal control analysis is carried out and
simulated numerically with four controls: sanitation and hygiene practice and awareness campaign control, sterilisation and disinfection control,
the potency of antibiotics control and screening control. Finally, the cost-effectiveness analysis for infected and susceptible humans with four
cases that compared fifteen strategies is analysed. The results indicate that the sanitation and hygiene practice and awareness campaign is good
to implement for single control implementation, while for double control implementation, Strategy 6, which is the combination of Strategy 1
and the potency of antibiotics administered to typhoid patients, is the best to consider. Combining Strategy 6 and screening control is the most
cost-effective for triple controls. Furthermore, the overall computation of cost-effectiveness among all the most cost-effective with all the controls
combined suggests that sanitation and hygiene practice and awareness campaign is the most cost-effective strategy to implement for eradicating
typhoid infection in the population and for preventing susceptible populations from contracting the bacteria.
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1. Introduction

Typhoid fever is a highly communicable bacterial infection
that can be fatal and cause severe complications without prompt
treatment. It is caused by salmonella typhi [1]. The mode of
transmission is through faecal-oral means [2], which can be en-
vironment to humans indirectly through contaminated food or
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water [3]. According to Ref. [4], typhoid transmission can also
be direct, that is, person-to-person transmission; this could be
very rare. In Ref. [3], the disease is peculiar in places with
poor sanitation and areas lacking potable water. Yearly, it is es-
timated that about 11-20 million people contract typhoid fever,
out of which between 128,000 and 161,000 people die from it
worldwide.

The disease is much more common in Africa and South-
East Asia than in other regions of the world, making the dis-
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ease endemic in Africa and South-East Asia. For example,
in Nigeria, typhoid incidence ranges from 3.9% to 18.6% in
a population of about 100,000 [5]. It is noteworthy to state that
some individuals who have totally recovered from a disease like
salmonella typhi and still harbour and shed the bacteria in the
environment for a prolonged period without knowing such in-
dividuals are called chronic or active carriers [6].

About one in every 5 cases of Typhoid infection can be fatal
if untreated, while fewer than 4 in every 100 cases are fatal with
treatment. Symptoms of Typhoid fever usually begin between
6 and 30 days after exposure to the bacteria [7]. The incubation
period for typhoid fever is typically between 6 to 30 days, and
1 to 10 days for paratyphoid fever [8]. If Typhoid fever is di-
agnosed early, antibiotics may be prescribed for the treatment
from 7 to 14 days. However, some typhoid fever patients ex-
perience relapse response to treatment in which the symptoms
of the bacteria return, though this entails further treatment with
antibiotics [1]. Meanwhile, after antibiotics treatment, about
2 − 5% of people who recover from typhoid fever still harbour
the bacteria and continue shedding the organism for over a year;
these people are called Chronic Carriers [1, 7].

The mathematical modelling of infectious diseases is an es-
sential tool for analysing the dynamic nature of the infectious
disease. It helps develop control strategies to forecast appropri-
ate control strategies [9, 10]. An optimal control problem re-
quires regularising and solving problems by choosing the best
way in a dynamic process, which depends on controls and is
always subject to constraints [11].

Lauer et al. [12] stated that cost-effectiveness analysis
(CEA) is a kind of economic evaluation and assessment geared
towards efficiency to achieve the most for the available re-
sources or, to be precise, the value of money. Several au-
thors have studied the dynamics of typhoid disease incorporat-
ing control measures, such as [13–19]. Meanwhile, the opti-
mal control analysis of typhoid infection has been investigated
by Refs. [13], [20], where Ref. [13] considered only indirect
transmission with vaccination, hygiene practices, screening and
sterilisation as controls. In contrast, Ref. [20] considered both
direct and indirect transmission modes of Typhoid fever with
education campaigns, sanitation, screening, and early treatment
as control measures. Employing the cost-effectiveness of the
optimal controls, Refs. [10, 13] (with only indirect transmis-
sion) and Ref. [15] (in the presence of direct and indirect trans-
mission). In Ref. [9], the authors examined sanitation, hygiene,
and treatment as control measures.

Complementing the work of Ref. [16], we constructed a
mathematical model of the type S , Is, Im, Ic,T,R, and Bc. We
include severe and mild compartments and logistic growth in
the bacteria compartment. We also introduced the incidence
function of limited clinical efficacy of antibiotics with corre-
sponding relapse response to treatment in which some treat-
ment individuals failed to recover [13] but returned to the severe
infected compartment instead of the recovery compartment be-
cause infections like pneumonia, tuberculosis, blood poisoning,
gonorrhoea, and foodborne diseases like typhoid – are some-
times becoming more brutal and more challenging, and even
impossible to treat as antibiotics become less effective [21]. We

also carry out global sensitivity analysis, optimal control and
cost-effectiveness analysis for both infected cases and suscepti-
ble individuals in this study.

The rest of the paper is arranged as Section 2 is the model
formulation, while Section 3 is the mathematical analysis. Sec-
tion 4 is the optimal control analysis and cost-effectiveness
analysis. Finally, the paper is concluded in Section 5.

2. Formulation of Model

For the formulation of the model, the total human pop-
ulation, N(t), at any time, t, is subdivided into six (6) sub-
populations: Susceptible humans, S (t), Mild infected humans,
Im(t), Severe infected humans, Is(t), Infected carrier humans,
Ic(t), Treatment humans, T (t) and Recovered humans, R(t),
N(t) = S (t) + Is(t) + Im(t) + Ic(t) + T (t) + R(t). Bc(t) repre-
sents the bacteria-contaminated environment. Susceptible hu-
mans, S (t), are likely to be infected by typhoid fever infection
when they have contact with a contaminated environment or in-
fected humans. Severe infected humans, Is(t), are symptomatic
infected individuals. Mild infected humans, Im(t), represent in-
fected humans with mild symptoms. Infected carrier humans,
Ic(t), stands for asymptomatic infected individuals treated or
people on the verge of total natural recovery but still carrying
Salmonella Typhi [1], [8]. Treatment humans, T (t), are indi-
viduals undergoing treatment assuming that they cannot infect
susceptible people due to their restriction to a particular place
and that they do not shed the bacteria in the environment. Re-
covery humans, R(t), have recovered from the disease entirely
by treatment.

Figure 1 and Table 1 are detailed descriptions of the model
parameters and the systematic diagram. Consequently, with
the systematic diagram of Figure 1, the descriptions of the
model’s parameters in Table 1, and the initial conditions, S (0) >
0, Is(0) ≥ 0, Im(0) ≥ 0, Ic(0) ≥ 0,T (0) ≥ 0,R(0) ≥ 0, Bc(0) ≥ 0,
defining the force of function, λ1 =

β1(Is+α1Im+α2Ic)
N +

β2Bc
K+Bc

, the
treatment functions, T (Is) =

θ1Is
1+ω1Is

and g(T ) = θ2T
1+ω2T and

the model parameters are assumed to be nonnegative, the au-
tonomous system of equations for the typhoid fever model is
obtained as follows:

dS
dt
= Λ − λ1S − µS + σ4R,

dIs

dt
= (1 − p)λ1S + ϕIm + g(T ) − T (Is) − (µ + d1)Is,

dIm

dt
= pλ1S − (µ + d2 + σ1 + ϕ + η)Im,

dIc

dt
= ηIm + τT − (µ + σ2)Ic,

dT
dt
= T (Is) − (µ + d3 + τ + σ3)T − g(T ),

dR
dt
= σ1Im + σ2Ic + σ3T − (µ + σ4)R,

dBc

dt
= αBc(1 −

Bc

K
) + π1Is + π2Im + π3Ic − µBBc.



(1)
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Table 1. Description and parameter values of the model.
Parameter Description Parameter Value Source
Λ Recruitment rate 100 [10]
β1 contact rate for Human to human 0.005 Assumed
β2 contact rate for environment to human 0.085 Assumed
ϕ Progress rate from Im to Is 0.04 Assumed
σ4 Loss of recovery immunity rate 0.000904 [23]
α Growth rate for Bc 0.0014 Assumed
σ1 Progress rate from Im to R 0.004 Assumed
σ2 Progress rate from Ic to R 0.0004 [10]
σ3 Progress rate from T to R 0.002485 [24]
p ∈ (0, 1) Proportion of S (t) that progresses to Im 0.3 Assumed
η Progress rate from Im to Ic 0.03 Assumed
µ Natural death rate for humans 0.016305 Calculated
d1 Disease-induced death rate for Is 0.21 [25]
d2 Disease-induced death rate for Im 0.004 Assumed
d3 Disease-induced death rate for T 0.015 [26]
pi1 Shedding rate for Is 0.7 Assumed
pi2 Shedding rate for Im 0.8 Assumed
pi3 Shedding rate for Ic 0.9 [16]
µB Bacteria decay 0.0345 [27]
τ Progress rate from T to Ic 0.055 Assumed
θ1 Maximum treatment intake over a period of time 0.2827 [24]
θ2 Limited clinical efficacy of antibiotics 0.5 Assumed
K Carrying capacity 500000 [22]
ω1 The degree of the effect of demand for treatment 0.62 [16]
ω2 Relapse response to treatment 0.56 Assummed
α1, α2 Modification parameters for Imand Ic 0.6, 1.2 [24]

Figure 1. The systematic diagram for typhoid fever. The broken lines
indicate the shedding of the bacteria into the environment.

3. Mathematical Analysis of the Model

The basic properties of the system of equations (1) and its
reproduction number are established in this section.

3.1. Invariant Region

The mathematical well-posedness of the model is proven in
this subsection to show that the system (1) is epidemiologically
meaningful. Defining

dN
dt
= Λ − µN − d1Is − d2Im − d3Ic ≤ Λ − µN (2)

and initial conditions, N(0) = N0 and Bc(0) = Bc0, we state the
following theorem.
Theorem 3.1. All feasible solutions of the model are uniformly
bounded in a proper subset D = DH × DBc ,where

DH =

{
(S , Is, Im, Ic,T,R) ∈ ℜ6

+ : N(t) ≤
Λ

µ

}
,

and DBc =

{
Bc ∈ ℜ+ : Bc ≤

(π1 + π2 + π3)Λ
µ(µB − α)

}
, are subset for

the human population and bacteria, respectively provided µB >
α.
Proof. Applying the approach of integrating factors to equation
(2) to get

N(t) ≤
Λ

µ
+

(
N0 −

Λ

µ

)
e−µt, (3)

N(t) ≤ Λ
µ

as t → ∞ in equation (3), implying that the feasible
solutions of the human population are in the region,
DH =

{
(S , E, Is, Im, Ic,T,R) ∈ ℜ6

+ : N(t) ≤ Λ
µ

}
. With Is, Im, Ic ≤

3
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N(t) ≤ Λ
µ

, it means that the last equation of the model (1) can
be written as

dBc

dt
≤
Λ

µ
(π1 + π2 + π3) − (µB − α) Bc −

B2
c

K
,

≤ (π1 + π2 + π3)
Λ

µ
− (µB − α) Bc.

(4)

Employing the method of integrating factor to equation (4)
yields

dBc

dt
≤

(π1 + π2 + π3)Λ
µ(µB − α)

+

(
Bc0 −

(π1 + π2 + π3)Λ
µ(µB − α)

)
e−(µB−α)t,

(5)

with µB > α. As t → ∞ in equation (5), Bc ≤
(π1+π2+π3)Λ
µ(µB−α) ,

this exist for µB > α. Therefore, the feasible solution for the
bacteria concentration enters the region,

DBc =

{
Bc ∈ ℜ+ : Bc ≤

(π1 + π2 + pi3)Λ
µ(µB − α)

}
,

provided µB > α. Thus, the feasible region for the model sys-
tem (1) is given by D = DH × DBc provided µB > α and this
completes the proof.

In addition, with the non-negative parameters of system (1),
it is sufficient to state that the solutions of the system of equa-
tions of the model (1) are non-negative. Therefore, it is rich
enough to study the dynamics of the typhoid model (1) in this
region D = DH × DBc whenever µB > α.

3.2. Disease-Free Equilibrium (DFE) and Basic Reproduction
Number, R0

For the computation of the Basic reproduction number, R0,
we determine the disease-free equilibrium of the system (1) that
is given as

E0 =
(
S 0, I0

s , I
0
m, I

0
c ,T

0,R0, B0
c

)
=

(
Λ

µ
, 0, 0, 0, 0, 0, 0

)
.

The basic reproduction number, R0, determines the trans-
mission tendency of a disease. R0 is mathematically defined
as the matrix’s spectral radius, FV−1, where F =

∂Fi(E0)
∂xi

and V = ∂Vi(E0)
∂xi

are the transmission and transition matrices
derived at disease-free equilibrium (DFE), E0. Here, Fi is the
appearance rate of new infections in compartments i, while Vi
is the transfer of infections from one compartment i to another
(see [29] for detail). Given the DFE, E0 =

(
Λ
µ
, 0, 0, 0, 0, 0, 0

)
,

we have

F =



β1(1 − p) α1β1(1 − p) α2β1(1 − p) 0 β2(1−p)S 0
K

β1 p α1β1 p α2β1 p 0 β2 pS 0
K

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



and

V =


θ1 + k5 −ϕ 0 −θ2 o

0 k1 0 0 0
0 −η k2 −τ 0
−θ1 0 0 θ2 + k3 0
−π1 −π2 −π3 0 µB − α


with

λ1 =
β1(Is + α1Im + α2Ic)

N
+
β2Bc

K + Bc
, a =

θ1
1 + ω1Is

,

T (Is) =
θ1Is

1 + ω1Is
, g(T ) =

θ2T
1 + ω2T

b =
θ2

1 + ω2T
,

k1 = (µ + d2 + σ1 + ϕ + η), k2 = (µ + σ2),
k3 = (µ + d3 + τ + σ3), k4 = (µ + σ4), k5 = (µ + d1).


(6)

By the definition of R0 as the spectral radius of FV−1, we have

R0 =
β1A

k1k2(µB − α)(k3k5 + k3θ1 + k5θ2)
+

β2ΛB
µKk1k2(µB − α)(k3k5 + k3θ1 + k5θ2)

,

(7)

where

A = (µB − α)(k2k3 + k2θ2 + τα2θ1)(k1(1 − p) + pϕ)
+ (µB − α)(k3k5 + k3θ1 + k5θ2)(pα1k2 + pηα2),

B = (τπ3θ1 + π1k2θ2 + π1k2k3)(k1(1 − p) + pϕ)
+ (k5θ2 + k3θ1 + k3k5)(pπ2k2 + pηπ3),

(8)

with A, B > 0, for µB > α and p < 1.

The first term of equation (7) represents the reproduction
number contribution for human-to-human interaction with the
transmission rate, β1. The second term of equation (7) is the re-
production number contribution of the human to contaminated
environment interaction with the transmission rate, β2.

By the approach of Next-generation used for the computa-
tion of R0, we state the stability of the DFE theorem as follows.

Theorem 3.2. If E0 is the DFE of the model, then E0 is
locally asymptomatically stable if R0 < 1; otherwise, it is
unstable if R0 > 1.

Theorem 3.2 means that the typhoid infection can be elim-
inated in the population with time if R0 < 1. Otherwise, it will
remain in the population for R0 > 1.

3.3. Global Sensitivity Analysis
Global sensitivity analysis (GSA) is examined in this sub-

section to determine the most sensitive parameters of R0 as
multiple points entry. It determines the behaviour and degree
of each parameter of R0. Latin Hypercube Sampling (LHS)
sampling-based method with Partial Rank Correlation Coeffi-
cient (PRCC) is used to analyse GSA by generating 1000 sam-
ples from a uniform distribution of each parameter range (see
[30] for details of LHS and PRCC). The PRCCs for the param-
eters and their corresponding p-values are presented in Table
2.

4
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Table 2. Parameter PRCC Significance (FDR Unadjusted p-Values).
Variable PRCC p-value Keep
β1 0.90238886 0.000 TRUE
β2 0.50226243 0.000 TRUE
α 0.06505029 4.060 × 10−2 TRUE
θ1 −0.09983146 1.641 × 10−3 TRUE
θ2 0.05531768 8.176 × 10−2 FALSE
σ3 −0.62992590 0.000 TRUE
π1 0.02099216 5.093 × 10−1 FALSE
π2 0.15505482 8.952 × 10−7 TRUE
π3 0.26466933 0.000 TRUE
µB −0.61194800 0.000 TRUE

The signs (+ and -) of PRCC indicate the definite qualita-
tive relationship between the parameters and output R0. The
parameters with positive PRCC imply that increasing them in-
creases the value of R0, increasing the disease’s spread. At the
same time, the parameters with PRCC negative values indicate
that R0 decreases whenever their values increase, showing a re-
duction in the disease transmission dynamics. The most signif-
icant parameters are those with |PRCC| ≥ 0.5. From Table 2,
the parameters β1, β2, µB and σ3 with |PRCC| ≥ 0.5 are the
most significant; increasing β1 and β2 tends to make typhoid
infection worst in the population while increasing the parame-
ters µB and σ3 reduces the transmission of typhoid bacteria in
the community.

Furthermore, the combined effect of some important param-
eters is shown in Figure 2 as a 3D plot. Figure 2 shows that
increasing the shedding rate (π3) of the infected carrier individ-
uals will increase the value of R0. Also, the higher the recovery
rate (σ3) of treatment individuals, the lower the value of R0.
The implication is that the typhoid infection will reduce in the
community if the treatment rate is increased and the shedding
rate from unaware infected persons is reduced; this will happen
when people undergo screening tests during a typhoid outbreak,
or someone close is infected with typhoid infection. Therefore,
the main strategy to curtail the spread of the bacteria disease is
to reduce the number of asymptomatic infected individuals, as
it has a more significant tendency to shoot up the basic repro-
duction number

4. Optimal Control Analysis and Cost-Effectiveness Analy-
sis

4.1. Optimal Control Analysis

With the result of the sensitivity analysis, we formulate an
optimal control model version of the system (1) given as fol-
lows:

Figure 2. The Effect of the shedding rate from infected carrier individuals,
π3 and recovery rate for treatment individuals, σ3, on the basic reproduction
number, R0.

dS
dt
= Λ − λ1(S ) − µS + σ4R,

dIs

dt
= (1 − p)λ1(S ) + ϕIm +

θ2(1 − u3(t))T
1 + ω2T

−
θ1Is

1 + ω1Is
− (µ + d1)Is,

dIm

dt
= pλ1S − (µ + d2 + σ1ϕ + η)Im,

dIc

dt
= ηIm + τT − (µ + σ2)Ic,

dT
dt
=
θ1Is

1 + ω1Is
− (µ + d3 + τ + σ3u3(t))T

−
θ2(1 − u3(t))T

1 + ω2T
,

dR
dt
= σ1Im + σ2Ic + σ3u3(t)T − (µ + σ4)R,

dBc

dt
= αBc(1 −

Bc

K
) + π1Is + π2Im

+ π3(1 − u4(t))Ic − (1 + u2(t))µBBc,



(9)

with initial conditions of the system (1).
Here, u1(t) is the sanitation and hygiene practice and awareness
campaign control, u2(t), the sterilisation and disinfection con-
trol, u3(t) as the potency of antibiotics administered to typhoid
patients and u4(t) is the screening control for infect carrier’s hu-
mans.

The objective function to be minimised is given as

J(u1(t), u2(t), u3(t), u4(t)) =
∫ t f

0
(AIs + BIm +CIc + DBc

+
1
2

4∑
i=1

miu2
i (t))

(10)

where the coefficient associated with the infected state vari-
ables, A, B, C and D, and the control weight coefficients, m1,
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m2, m3, m4, are assumed positive. The quadratic form of the
control variables,

∑4
i=1 miu2

i (t) in equation (10), is due to the
nonlinearity of the cost of controls as used in the literature on
optimal control of infectious diseases [10, 31].

The objective functional goal is to minimise the number
of infected humans, bacteria concentration in the environment
and the cost of implementing them. Thus, the optimal controls,
U∗(t) = u∗1(t), u∗2(t), u∗3(t), u∗4(t) is to find a way such that

J(U∗(t)(t)) = min
Φ1

J (u1(t), u2(t), u3(t), u4(t)) (11)

where

Φ1 =
{
ui(t), i = 1, 2, 3, 4 are measurable with

ui(t) ∈ [0, 1]for 0 ≤ t ≤ t f
}
.

(12)

The state and the control variables of equations (9) and (10) are
non-negative, as established in Subsection (3.1) and the condi-
tion in equation (12); this implies that the set Φ1 is closed, con-
vex and exists. The optimal control exists by applying Corol-
lary 4.1 of Pages 68-69 in [32] as implemented in [33].

We derived the Hamiltonian and optimality system by ap-
plying the Pontryagin maximum principle (PMP) [30] to the
optimal control problem. PMP transforms Equations (9) and
(10) into a problem of minimizing pointwise Hamiltonian, H,
that is presented as;

H (S , Is, Im, Ic,T,R, Bc) = L
(
Is, Im, Ic, Bc, U(t)

)
+ λ1

dS
dt

+ λ2
dIs

dt
+ λ3

dIm

dt
+ λ4

dIc

dt

+ λ5
dT
dt
+ λ6

dR
dt
+ λ7

dBc

dt
,

(13)

where U(t) = u1(t), u2(t), u3(t), u4(t), λ1, λ2, λ3, λ4, λ5, λ6, λ7
are the adjoint variables for the respective state variables.
Using a similar approach in Refs. [10], [33], we derive the
following optimality system;

Theorem 4.1. With the optimal control u∗1(t), u∗2(t), u∗3(t), u∗4(t)
and solutions S , Is, Im, Ic,T,R, Bc that minimizes J(U) over Φ1,
there exist non-trivial adjoint functions λ1, · · · , λ7 that satisfies;

dλ1

dt
=

(
β1(N − S )(1 − u1(t))(Is + α1Im + α2Ic)

N2

+
β2(1 − u2(t))Bc

(K + Bc)

)
((λ1 − λ2) + (λ2 − λ3)p)

+ λ1µ,

dλ2

dt
=

(
β1(N − (Is + α1Im + α2Ic))(1 − u1(t))S

N2

)
× ((λ1 − λ2) + (λ2 − λ3)p) − A + (λ2 − λ5)

×

(
θ1

(1 + ω1Is)2

)
+ λ2(µ + d1) − λ7π1,

dλ3

dt
=

(
β1(α1N − (Is + α1Im + α2Ic))(1 − u1(t))S

N2

)
× ((λ1 − λ2) + (λ2 − λ3)p) + (λ3 − λ2)ϕ − λ7π2

+ (λ3 − λ6)σ1 + λ3(µ + d2) + (λ3 − λ4)η − B,

dλ4

dt
=

(
β1(α2N − (Is + α1Im + α2Ic))(1 − u1(t))S

N2

)
× ((λ1 − λ2) + (λ2 − λ3)p) + (λ4 − λ6)σ2 + λ4µ

− λ7π3(1 − u4(t)) −C,

dλ5

dt
=

(
β1(Is + α1Im + α2Ic)(1 − u1(t))S

N2

)
((λ1 − λ2)

+ (λ2 − λ3)p) + (λ5 − λ2)
(

(1 − u3(t))θ2
(1 + ω2T )2

)
+ (λ5 − λ6)σ3u3(t) + (λ5 − λ4)τ + λ5(µ + d3),

dλ6

dt
=

(
β1(Is + α1Im + α2Ic)(1 − u1(t))S

N2

)
× ((λ1 − λ2) + (λ2 − λ3)p) + (λ6 − λ1)σ4 + λ6µ,

dλ7

dt
= ((λ1 − λ2) + (λ2 − λ3)p)

(
β2(1 − u2(t))BcKS

(K + Bc)2

)
− λ7α

(
1 −

2Bc

K

)
+ λ7(1 − u2(t))µB − D.

(14)

with the transversality condition λi(t f ) = 0, i = 1, 2, 3, 4, 5, 6, 7
and the controls u∗1(t), u∗2(t), u∗3(t), u∗4(t) that satisfies the opti-
mality condition;

u∗1 = max{0,min (1,Θ1)},
u∗2 = max {0,min(1,Θ2))} ,
u∗3 = max {0,min(1,Θ3))} ,

u∗4 = max
{

0,min
(
1,
λ7π3Ic

m4

)}
.

(15)

where,

Θ1 =
β1(pλ3 + (1 − p)λ2 − λ1)(Is + α1Im + α2Ic)S

m1N
,

Θ2 =
λ7µBBc

m2
+
β2(pλ3 + (1 − p)λ2 − λ1)BcS

m2(K + Bc)
,

Θ3 =
(λ5 − λ6)σ3T

m3
+

(λ2 − λ5)θ2T
m3(1 + ω2T )

.

Proof. Using PMP, the adjoint system of equation (14)
is obtained by differentiating equation (13) with respect
to their corresponding state variables, S , Is, Im, Ic,T,R, Bc,
that is obtained by evaluating the optimal control functions
u1(t), u2(t), u3(t), u4(t) and after then apply negative to the dif-
ferentials. The optimality condition equation (15) is obtained
by solving for the controls, u∗1(t), u∗2(t), u∗3(t), u∗4(t) at the respec-
tive steady states

∂H
∂u1(t)

=
∂H
∂u2(t)

=
∂H
∂u3(t)

=
∂H
∂u4(t)

= 0

on the interior of the control set. Thus, the optimality system is
equations (14) and (15) substituted into equation (9). The proof
is complete.

6
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Figure 3. Simulation results for one Control Implementation: (a) Susceptible Humans, (b) Infected Humans, (c) Bacteria Concentration, Bc(t), and
(d) Control Profile.

4.2. The Optimal Control Problem Simulations

The optimality system is simulated numerically to illustrate
the dynamics of the optimal control system with time. The
fourth-order Runge-Kutta method, coded in MATLAB R2007b,
is used for the numerical simulations (see [28] for the fourth-
order Runge-Kutta method and its stability details). Table 1
is the parameter values used for the simulations while the ini-
tial conditions and weight coefficient values are as follows;

S (0) = 10000, Is(0) = 100, Im(0) = 10, Ic(0) = 10, T (0) = 100,
R(0) = 0, Bc(0) = 100000, A, B,C,D = 10, m1 = 5, 000, m2 =

1, 000, 000, m3 = 7, 000 and m4 = 20, 000. The initial condi-
tions are obtained from Ref. [16], except Is(0), Im(0) and T (0),
which are assumed. Meanwhile, the weight coefficient values
are chosen so the control variables are within the region feasi-
ble, u(t) ∈ [0, 1].

The simulations are partitioned into four (4) possible cases

7
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Figure 4. Simulation results for two combined Controls Implementation: (a) Susceptible Humans, (b) Infected Humans, (c) Bacteria Concentration,
Bc(t), and (d) Control Profile.

according to control combinations;

Case A (one control implementation)

• Strategy 1 (u1): sanitation and hygiene practice and
awareness campaign (u1 , 0, u2, u3, u4 = 0),

• Strategy 2 (u2): sterilisation and disinfection of the con-
taminated environment (u2 , 0, u1, u3, u4 = 0),

• Strategy 3 (u3): the potency of antibiotics administered
to typhoid patients (u3 , 0, u1, u2, u4 = 0),

• Strategy 4 (u4): screening control (u4 , 0, u1, u2, u3 = 0).

Case B (Two controls combine implementation)

• Strategy 5 (u12): sanitation and hygiene practice and
awareness campaign + sterilization and disinfection of
the contaminated environment (u1, u2 , 0, u3, u4 = 0),

8
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Figure 5. Simulation results for three combined Controls Implementation: (a) Susceptible Humans, (b) Infected Humans, (c) Bacteria Concentra-
tion, Bc(t), and (d) Control Profile.

• Strategy 6 (u13): sanitation and hygiene practice and
awareness campaign + potency of antibiotics administers
to typhoid patients (u1, u3 , 0, u2, u4 = 0),

• Strategy 7 (u14): sanitation and hygiene practice and
awareness campaign + screening control (u1, u4 ,
0, u2, u3 = 0),

• Strategy 8 (u23): sterilization and disinfection of the con-

taminated environment + potency of antibiotics adminis-
ters to typhoid patients (u2, u3 , 0, u1, u4 = 0),

• Strategy 9 (u24): sterilization and disinfection of the con-
taminated environment + screening control
(u2, u4 , 0, u1, u3 = 0),

• Strategy 10 (u34): potency of antibiotics administers to
typhoid patients + screening control (u3, u4 , 0, u1, u2 =

9
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Figure 6. Simulation results for all combined Controls Implementation: (a) Susceptible Humans, (b) Infected Humans, (c) Bacteria Concentration,
Bc(t), and (d) Control Profile.

0).

Case C (three controls combine implementation)

• Strategy 11 (u123): sanitation and hygiene practice and
awareness campaign + sterilization and disinfection of
the contaminated environment + potency of antibiotics
administers to typhoid patients (u1, u2, u3 , 0, u4 = 0),

• Strategy 12 (u124): sanitation and hygiene practice and

awareness campaign + sterilization and disinfection of
the contaminated environment + screening control
(u1, u2, u4 , 0, u3 = 0),

• Strategy 13 (u134): sanitation and hygiene practice and
awareness campaign + potency of antibiotics administers
to typhoid patients + screening control
(u1, u3, u4 , 0, u2 = 0),

10



Tijani et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1579 11

• Strategy 14 (u234): sterilization and disinfection of the
contaminated environment + potency of antibiotics ad-
ministers to typhoid patients + screening control
(u2, u3, u4 , 0, u1 = 0).

Case D (all controls combine implementation)

• Strategy 15: (u1234)sanitation and hygiene practice and
awareness campaign + sterilisation and disinfection of
the contaminated environment + potency of antibiotics
administered to typhoid patients + screening control
(u1, u2, u3, u4 , 0).

4.3. The Discussion of Optimal Control Problem Simulations

Figure 3 shows the simulation results when applying a sin-
gle control. It shows that implementing Strategy 2 will prevent
more susceptible humans from contracting the infection com-
pared to other single strategies, followed by Strategy 1 (u1),
likewise in the infected humans and bacteria in the environ-
ment. To implement Strategy 2, u2 must be maintained at 39%
for about 145 days before declining to its lower bound at day
150 (see Figure 3d).

For the double control combinations in Figure 4, it is ob-
served that the combined double strategies with sterilisation and
disinfection of contaminated environment control (that is, u12,
u23, u24) prevented the susceptible humans from contracting the
infection and also reduced the infected human population and
bacteria concentration in the environment more than other dou-
ble control implementations, which shows the importance of
sterilisation and disinfection of contaminated environment on
typhoid infection control. The best control combinations are
Strategy 9 (u24), sanitation and hygiene practice and awareness
campaigns, and screening control. Figure 4d shows that Strat-
egy 9 maintains a control profile at 58% for 147 days before
declining to the lower bound.

According to the simulation in Figure 5, three controls com-
bined strategies with sterilisation and disinfection of contami-
nated environment control (that is, u124, u234) have more impact
than the others (that is, u134, u123). All the control combinations,
u124, u234, should be maintained at their various percentages for
almost 147 days before declining to achieve these results (See
Figure 5d).

Figure 6(a-c) indicates that the combined implementation
of all the controls (Strategy 15) significantly impacts the sus-
ceptible human population, infected human population and the
bacteria in the environment than without control. Figure 6(d)
shows the control profile for applying all four controls together
and should be maintained at 75% for about 145 days before de-
clining. We further determine which of these strategies is the
most cost-effective to implement by conducting a cost-effective
analysis of the strategies.

4.4. Cost-effectiveness analysis

Cost-effectiveness analysis is an analysis for finding the cost
and economic health results of one or more control measures. It
determines the most cost-effective control strategy to eliminate
the disease at a reduced cost. We consider two approaches for

Table 3. Case A (Single Control implementation).
Strategies Total infection averted Total cost ACER
Strategy 2 0.0133 3.4521107 26042
Strategy 3 9.7645 568.2 58.19423
Strategy 4 4.1378 × 105 1.4075 × 106 3.4014
Strategy 1 2.3912 × 107 4.3414 × 107 1.8156

Table 4. Case B (Double Control implementation).
Strategies Total infection averted Total cost ACER
Strategy 8 4.8620 3.4521 × 107 7.1002 × 106

Strategy 9 3.9414 × 105 3.5261 × 107 89.4626
Strategy 10 4.1392 × 105 0.1412 × 107 4.1392 × 105

Strategy 5 1.8178 × 106 3.8495 × 107 21.1769
Strategy 6 2.3912 × 107 4.3417 × 107 1.8157
Strategy 7 2.3935 × 107 4.4880 × 107 1.8751

Table 5. Case C (Triple Control implementation).
Strategies Total infection averted Total cost ACER

Strategy 14 3.9422 × 105 3.5263 × 107 89.4491
Strategy 11 1.8179 × 106 3.8496 × 107 21.1758
Strategy 12 2.1442 × 106 3.8292 × 107 1.8753
Strategy 13 2.3935 × 107 4.4886 × 107 1.8753

cost-effectiveness analysis, namely, average cost-effectiveness
ratio (ACER) and incremental cost-effectiveness ratio (ICER)
[31, 34]. Also, we consider two situations, which are to deter-
mine the strategies that avert infected cases and prevent suscep-
tible humans from contracting the infection.

4.4.1. Average cost-effectiveness ratio (ACER)
The average cost-effectiveness ratio (ACER) is defined as

ACER =
Total cost generated by the control

Total number of infections averted with the control
.

Here, the total cost generated by the control strategy is evalu-
ated using the objective function in Equation (9). The strategy
with the least ACER is the most cost-effective, while the strat-
egy with the highest ACER is the least cost-effective, meaning
it is costlier to implement.

For the single control implementation (CASE A), Strategy
1 is the most cost-effective, followed by Strategy 4, Strategy 3
and then Strategy 2 for infected cases averted (see Table 3) and
susceptible cases prevented (see Table 6). For Case B, the dou-
ble control implementation, Strategy 6 is the most cost-effective
strategy compared to other double combined control strategies
for infected cases averted (see Table 4) and susceptible cases
prevented (see Table 7). At the same time, for Case C, Strategy
13 is the most cost-effective strategy for infected cases averted
(see Table 5) and susceptible cases prevented (see Table 8).

4.4.2. Incremental cost-effectiveness ratio (ICER)
Incremental cost-effectiveness ratio (ICER) is the changes

between the costs and health benefits of any two intervention
strategies competing for the same limited resources. In the
ICER approach, two competing control intervention strategies
are compared incrementally; one is compared with the follow-
ing less effective alternative strategy [23]. It is calculated using

11
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Table 6. The most Cost-Effective Strategy of each case in ascending
order of Total Infections Averted.

Strategies Total infection averted Total cost ACER
Strategy 15 2.1452 × 106 3.9035 × 107 18.1965
Strategy 1 2.3912 × 107 4.3414 × 107 1.8156
Strategy 6 2.3912 × 107 4.3417 × 107 1.8157
Strategy 13 2.3935 × 107 4.4886 × 107 1.8753

Table 7. Case A (Single Control Implementation) for susceptible cases
prevented.

Strategies Total susceptible prevented Total cost ACER
Strategy 3 70.6242 5.7228 × 105 8.1032 × 103

Strategy 4 1.8324 × 105 1.6921 × 106 9.2343
Strategy 1 5.5059 × 105 2.7246 × 105 0.4949
Strategy 2 1.8734 × 106 5.3383 × 108 284.9462

Table 8. Case B (Double Control implementation) for Susceptible cases
prevented.

Strategies Total susceptible prevented Total cost ACER
Strategy 10 1.8509 × 105 1.0635 × 107 57.4601
Strategy 7 4.9146 × 105 1.7971 × 106 3.6566
Strategy 6 5.5067 × 105 8.4080 × 105 1.5269
Strategy 8 1.8779 × 106 5.3415 × 108 285.1201
Strategy 5 1.8779 × 106 5.3082 × 108 282.6669
Strategy 9 1.8848 × 106 5.2583 × 108 278.9841

Table 9. Case C (Triple Control implementation) for Susceptible cases
prevented.

Strategies Total susceptible prevented Total cost ACER
Strategy 13 4.9345 × 105 1.0279 × 107 20.8316
Strategy 11 1.8779 × 106 5.3114 × 108 282.8378
Strategy 14 1.8849 × 106 5.2631 × 108 279.2279
Strategy 12 1.8879 × 106 5.2323 × 108 277.1452

the following formula:
Considering two strategies, p and q, as two control intervention
strategies, then ICER is computed as

ICER =
Change in total costs in strategies p and q

Change in control benefits in strategies p and q
.

The difference in disease-averted costs, as well as the costs
of screening, disinfection, and prevention, can be represented
by the ICER numerator. The difference in health outcome, or
the difference between the total number of infections avoided
or the total number of susceptible cases avoided, is the denom-
inator of the ICER. Put another way, it can be calculated as
the difference between the susceptible population or the entire
infectious population with and without control. The strategy
with the highest ICER value is excluded from the computation
of ICERs since it is the most expensive and ineffective to im-
plement. The total infection averted is arranged in ascending
order.

4.5. Calculation of ICERs for infected cases averted
4.5.1. ICER for single control implementation for infected

cases averted
For Case A, the ICERs are calculated using Table 3 as

follows:

ICER(2)=
3.4521 × 107 − 0

0.01326 − 0
= 2.603318 × 106,

ICER(3)=
568.2 − 3.4521 × 107

9.764 − 0.01326
= −3.549186 × 106,

ICER(4)=
1.4075 × 106 − 568.2
4.1378 × 105 − 9.76

= 3.3989,

ICER(1)=
4.3414 × 107 − 1.4075 × 106

2.391 × 107 − 4.1378 × 105 = 1.7878.

The computed results show that the ICER value of Strat-
egy 2, ICER (2), strongly dominates other strategies. The
implication is that application of u2 is more costly and less
effective than when u1, u3, and u4 are implemented. Thus,
Strategy 2 is eliminated from the list of alternative control
strategies. Hence, we compute the ICERs for u3, u4, and u1 as
follows, in the ascending order of the total number of infections
averted;

ICER(3)=
568.2 − 0
9.764 − 0

= 58.1934,

ICER(4)=
1.4075 × 106 − 568.2
4.1378 × 105 − 9.764

= 3.3989,

ICER(1)=
4.3414 × 107 − 1.4075 × 106

2.391 × 107 − 4.1378 × 105 = 1.7878.

Following the computed outcomes, the ICER value of
Strategy 3 is higher than Strategies 4 and 1. Therefore, Strategy
3 is eliminated from the list of alternative control strategies.
Hence, we compute the ICERs for u4 and u1 as follows, in the
ascending order of the total number of infections averted to
get;

ICER(4)=
1.4075 × 106 − 0
4.1378 × 105 − 0

= 3.4002,

ICER(1)=
4.3414 × 107 − 1.4075 × 106

2.391 × 107 − 4.1378 × 105 = 1.7878.

Since the ICER of Strategy 4 is higher than that of Strat-
egy 1, it implies that Strategy 4 is costlier and less effective;
Strategy 4 is thereby eliminated from the list of alternative
control interventions. Hence, the remaining Strategy 1 (the
sanitation and hygiene practice and awareness campaign) is
the most cost-effective optimal control strategy in combating
the bacteria disease for single control implementation. It
is illustrated in Figure 7, that is, expenditure on Strategy 1
produced effective results by averting the highest number of
infections.=

4.5.2. ICER for double control implementation for infected
cases averted

The ICER for Case B is calculated as follows using Table
4;

ICER(8)=
3.4521 × 107 − 0

4.8620 − 0
= 7.100165 × 107,

ICER(9)=
3.5261 × 107 − 3.4521 × 107

3.9414 × 105 − 4.8620
= 1.8775,
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Figure 7. Plots displaying the comparison of infection averted cases for single
control implementation (Case A).

ICER(10)=
0.1412 × 107 − 3.5261 × 107

4.1378 × 105 − 3.9414 × 105 = −1711.3,

ICER(d5)=
3.8495 × 107 − 0.1412 × 107

1.8178 × 106 − 4.1392 × 106 = 26.4147,

ICER(6)=
4.3417 × 107 − 3.8495 × 107

2.3912 × 107 − 1.8178 × 106 = 0.2228,

ICER(7)=
4.4880 × 107 − 4.3417 × 107

2.3935 × 107 − 2.3912 × 107 = 63.6087.

The results show that ICER (8) is greater than the ICERs of
other strategies for Case B; thus, Strategy 8 is eliminated from
the list of alternative strategies. Hence, we compute the ICERs
for the remaining Strategies 9, 10, 5, 6 and 7 as follows, in the
ascending order of the total number of infections averted to get

ICER(9)=
3.5261 × 107 − 0
3.9414 × 105 − 0

=89.4631,

ICER(10)=
0.1412 × 107 − 3.5261 × 107

4.1378 × 105 − 3.9414 × 105=-1711.3,

ICER(5)=
3.8495 × 107 − 0.1412 × 107

1.8178 × 106 − 4.1392 × 106=26.4147,

ICER(6)=
4.3417 × 107 − 3.8495 × 107

2.3912 × 107 − 1.8178 × 106=0.2228,

ICER(7)=
4.4880 × 107 − 4.3417 × 107

2.3935 × 107 − 2.3912 × 107=63.6087.

The ICER(9) is greater than other strategies, implying
that Strategy 9 is costlier than other competing strategies. We
eliminate Strategy 9 from the competing alternative interven-
tions for Case B. Hence, we calculate the ICERs of the other
remaining strategies as follows in their ascending order of
infection averted:

ICER(10)=
0.1412 × 107 − 0
4.1378 × 105 − 0

==3.4113,

ICER(5)=
3.8495 × 107 − 0.1412 × 107

1.8178 × 106 − 4.1392 × 106=26.4147,

ICER(6)=
4.3417 × 107 − 3.8495 × 107

2.3912 × 107 − 1.8178 × 106=0.2228,

ICER(7)=
4.4880 × 107 − 4.3417 × 107

2.3935 × 107 − 2.3912 × 107=63.6087.

From the results, Strategy 7 could be more efficient and
more effective. Therefore, Strategy 7 is eliminated from the list
of alternative control interventions. So, we compute the ICERs
for the remaining three strategies by following their ascending
order of infection averted as follows:

ICER(10)=
0.1412 × 107 − 0
4.1378 × 105 − 0

3.4113,

ICER(5)=
3.8495 × 107 − 0.1412 × 107

1.8178 × 106 − 4.1392 × 106=26.4147,

ICER(6)=
4.3417 × 107 − 3.8495 × 107

2.3912 × 107 − 1.8178 × 106=0.2228.

It shows that Strategy 5 has a higher ICER value than
other strategies, meaning it is strongly dominated, costlier
and less effective. Therefore, Strategy 5 is eliminated from
competing alternative control strategies. So, we evaluate the
ICERs of the remaining two strategies in increasing order of
their infected averted, and this is shown as follows:

ICER(10)=
0.1412 × 107 − 0
4.1378 × 105 − 0

=3.4113,

ICER(6)=
4.3417 × 107 − 0.1412 × 107

2.3912 × 107 − 4.1392 × 105=1.7876.

The results show that the ICER of Strategy 10 is higher
than other strategies; hence, it is more expensive and less
effective. Therefore, Strategy 10 is eliminated, and the only
strategy left is Strategy 6. The implication is that Strategy 6
(combination of sanitation and hygiene practice and awareness
campaign and potency of antibiotics administered to typhoid
patients) is the most cost-effective strategy to contain the
bacteria disease for double control implementation, as shown
graphically in Figure 8, that is, cost expended on Strategy 6
produced high result by averting highest number of infection.

4.5.3. ICER for triple control implementation for infected
cases averted

The ICER for Case C is calculated as follows using the
details in Table 5;

ICER(14)=
3.5263 × 107 − 0
3.9422 × 105 − 0

=89.4501,

ICER(11)=
3.8496 × 107 − 3.5263 × 107

1.8179 × 106 − 3.9422 × 105=2.2709,

ICER(12)=
3.8292 × 107 − 3.8496 × 107

2.1442 × 106 − 1.8179 × 106=-0.6252,
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Figure 8. Plots displaying the comparison of infection-averted cases for double
control implementation (Case B).

ICER(13)=
4.4886 × 107 − 3.8292 × 107

2.3935 × 107 − 2.1442 × 106=0.3026.

The computations show that the ICER of Strategy 14 is
more expensive and less effective. Therefore, it is eliminated
from the list of alternating control strategies for Case C. Hence,
we compute the ICERs of the remaining three strategies in
ascending order of the infection they averted as follows:

ICER(11)=
3.8496 × 107 − 0
1.8179 × 106 − 0

=97.6511,

ICER(12)=
3.8292 × 107 − 3.8496 × 107

2.1442 × 106 − 1.8179 × 106=-0.6252,

ICER(13)=
4.4886 × 107 − 3.8292 × 107

2.3935 × 107 − 2.1442 × 106=0.3026.

The results reveal that Strategy 11 has a higher ICER
value than the other two strategies, which means that Strategy
11 is more expensive and less effective. Therefore, Strategy
11 is eliminated from competing alternative intervention
strategies. Hence, we calculate the ICERs for the remaining
two strategies in ascending order of infection averted;

ICER(12)=
3.8292 × 107 − 0
2.1442 × 106 − 0

=17.8584,

ICER(13)=
4.4886 × 107 − 3.8292 × 107

2.3935 × 107 − 2.1442 × 106=0.3026.

The results indicate that the ICER(12) >ICER(13) implies
that Strategy 12 is more costly and less expensive. Therefore,
Strategy 13, the combination of hygiene practice and awareness
campaign, the potency of antibiotics administered to typhoid
patients, and screening control, is the most cost-effective triple
combined control strategy to fight the typhoid disease for
Case C, and it is shown graphically in Figure 9, which shows
that expenditure on Strategy 13 produced effective result by
averting highest number of infection compare to others that
have no significant infection averted.

Figure 9. Plots displaying the comparison of infection-averted cases for triple
control implementation (Case C).

4.5.4. Overall ICER for infection cases averted
Furthermore, the details in Table 6 are used to compute the

overall ICERs for the most cost-effective strategy in each of
Cases A, B, and C, including Case D, and the result shows that
Strategy 1 is the most cost-effective strategy that can be used
in the eradication of the typhoid fever disease in the population
follow by Strategy 15.

ICER(15)=
3.9035 × 107 − 0
2.1452 × 106 − 0

=18.1964,

ICER(1)=
4.3414 × 107 − 3.9035 × 107

2.3912 × 107 − 2.1452 × 106=0.2012,

ICER(13)=
4.4886 × 107 − 4.3414 × 107

2.3935 × 107 − 2.3912 × 107=64.

From these results, Strategy 13 has higher ICER than the
two other strategies, which implies that Strategy 13 is strongly
dominated, costlier and less effective. Hence, Strategy 13 is
eliminated from the alternative control intervention strategies
list. Therefore, the ICERs of the remaining two strategies are
computed in increasing order of their total infections averted,
and this is shown as follows:

ICER(15)=
3.9035 × 107 − 0
2.1452 × 106 − 0

=18.1964,

ICER(1)=
4.3414 × 107 − 3.9035 × 107

2.3912 × 107 − 2.1452 × 106=0.2012.

Strategy 15, a combination of all four controls, has greater
ICER than Strategy 1, meaning that Strategy 15 is costlier and
less effective. Hence, it is eliminated from the list of alternative
control strategies. Therefore, Strategy 1, a hygiene practice
and awareness campaign, is the most cost-effective strategy to
contain typhoid bacteria. Furthermore, it is noteworthy that
Strategy 6 is omitted, which is the combination of sanitation
and hygiene practice and awareness campaign, and potency
of antibiotics administered to typhoid patients since both

14
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Strategies 1 and 6 have the same total infections averted.
However, with the cost-minimisation technique, Strategy 1 is
the most cost-effective strategy.

4.6. Calculation of ICERs for susceptible humans prevented

4.6.1. ICER for single control implementation susceptible hu-
man prevented

For Case A, the ICERs are calculated using Table 7 as
follows:

ICER(3)=
5.7228 × 105 − 0

70.6242 − 0
=8103.1714,

ICER(4)=
1.6921 × 106 − 5.7228 × 105

1.8324 × 105 − 70.6242
=6.1136,

ICER(1)=
2.7246 × 105 − 1.6921 × 106

5.5059 × 105 − 1.8324 × 105=-3.8645,

ICER(2)=
5.3383 × 108 − 2.7246 × 105

1.8734 × 106 − 5.5059 × 105=403.3516.

The computed results show that the ICER value of Strat-
egy 3, ICER (2), strongly dominates other strategies. The
implication is that the application of u3, the potency of antibi-
otics administered to typhoid patients, is more costly and less
effective than when each of u1, u2, and u4 is applied. Thus,
Strategy 3 is eliminated from the list of alternative control
strategies. Hence, we compute the ICERs for u4, u1, and u2
as follows, in the ascending order of the total susceptible
prevented;

ICER(4)=
1.6921 × 106 − 0
1.8324 × 105 − 0

=9.2343,

ICER(1)=
2.7246 × 105 − 1.6921 × 106

5.5059 × 105 − 1.8324 × 105=-3.8645,

ICER(2)=
5.3383 × 108 − 2.7246 × 105

1.8734 × 106 − 5.5059 × 105=403.3516.

Following the computed outcomes, the ICER value of
Strategy 2 is higher than Strategies 4 and 1, which means it is
costlier and less effective. Therefore, Strategy 2 is eliminated
from the list of alternative control strategies. Hence, we
compute the ICERs for u4andu1 as follows, in the ascending
order of the total susceptible prevented to get;

ICER(4)=
1.6921 × 106 − 0
1.8324 × 105 − 0

=9.2343,

ICER(1)=
2.7246 × 105 − 1.6921 × 106

5.5059 × 105 − 1.8324 × 105=-3.8645.

Since the ICER of Strategy 4 is higher than that of Strat-
egy 1, it implies that Strategy 4 is costlier and less effective;
Strategy 4 is thereby eliminated from the list of alternative
control interventions. Hence, the remaining Strategy 1 (the
sanitation and hygiene practice and awareness campaign) is the
most cost-effective optimal control strategy in preventing the
susceptible populations from contracting typhoid infection for
single control implementation, Case A, and this is displayed

Figure 10. Plots displaying the comparison of susceptible cases prevented for
single control implementation (Case A).

in Figure 10, that is, implementing Strategy 1 will have more
susceptible people prevented from contracting the typhoid
disease with a less cost than when compared to other strategies
such as Strategy 2 that will prevent more susceptible people at
a high cost.

4.6.2. ICER for Double control implementation for susceptible
cases prevented

The ICER for Case B is calculated as follows using Table
8;

ICER(10)=
1.0635 × 107 − 0
1.8509 × 105 − 0

=57.4583,

ICER(7)=
1.7971 × 106 − 1.0635 × 107

4.9146 × 105 − 1.8509 × 105=-28.8471,

ICER(6)=
8.4080 × 106 − 1.7971 × 106

5.5067 × 105 − 4.9146 × 105=-16.1510,

ICER(8)=
5.3415 × 108 − 8.4080 × 106

1.8734 × 106 − 5.5067 × 105=403.1883,

ICER(5)=
5.3082 × 108 − 5.3415 × 108

1.8779 × 106 − 1.8734 × 106=-740,

ICER(9)=
5.2583 × 108 − 5.3082 × 108

1.8848 × 106 − 1.8779 × 106=-723.1884.

The results show that the ICER value for Strategy 8 is
greater than the ICERs of other strategies for Case B; this
implies that Strategy 8 is strongly dominated over others. The
implication is that Strategy 8 is costlier and less effective than
other Strategies. Therefore, Strategy 8 is eliminated from the
list of alternative Strategies. Hence, we compute the ICERs
for the remaining Strategies 10, 7, 6, 5 and 9 as follows, in the
ascending order of the total susceptible prevented to get;

ICER(10)=
1.0635 × 107 − 0
1.8509 × 105 − 0

=57.4583,
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ICER(7)=
1.7971 × 106 − 1.0635 × 107

4.9146 × 105 − 1.8509 × 105=-28.8471,

ICER(6)=
8.4080 × 106 − 1.7971 × 106

5.5067 × 105 − 4.9146 × 105=-16.1510,

ICER(5)=
5.3082 × 108 − 8.4080 × 106

1.8779 × 106 − 5.5067 × 105=399.3123,

ICER(9)=
5.2583 × 108 − 5.3082 × 108

1.8848 × 106 − 1.8779 × 106=-723.1884.

The ICER of Strategy 5 is more than other strategies, in-
dicating that Strategy 5 is strongly dominated and is more
expensive and less efficient. Therefore, Strategy 5 is eliminated
from the list of competing alternative interventions. Hence, we
calculate the ICERs of the other remaining strategies, and this
is computed as follows by following their increasing order of
susceptible prevented;

ICER(10)=
1.0635 × 107 − 0
1.8509 × 105 − 0

=57.4583,

ICER(7)=
1.7971 × 106 − 1.0635 × 107

4.9146 × 105 − 1.8509 × 105=-28.8471,

ICER(6)=
8.4080 × 106 − 1.7971 × 106

5.5067 × 105 − 4.9146 × 105=-16.1510,

ICER(9)=
5.2583 × 108 − 8.4080 × 106

1.8848 × 106 − 5.5067 × 105=393.5068.

From the results, the ICER of Strategy 9 is more signifi-
cant than others, implying that Strategy 7 is costlier and less
effective. Therefore, Strategy 9 is eliminated from the list of
alternative control interventions. So, we compute the ICERs
for the remaining three strategies by following their ascending
order of susceptible prevented as follows:

ICER(10)=
1.0635 × 107 − 0
1.8509 × 105 − 0

=57.4583,

ICER(7)=
1.7971 × 106 − 1.0635 × 107

4.9146 × 105 − 1.8509 × 105=-28.8471,

ICER(6)=
8.4080 × 106 − 1.7971 × 106

5.5067 × 105 − 4.9146 × 105=-16.1510.

This shows that Strategy 10 has a higher ICER value
than other strategies, meaning it is strongly dominated, costlier
and less effective. Therefore, Strategy 10 is eliminated from
competing alternative control strategies. So, we evaluate the
ICERs of the remaining two strategies in increasing order of
their susceptible prevented, and this is shown as follows:

ICER(7)=
1.7971 × 106 − 0
4.9146 × 105 − 0

=3.6567,

ICER(6)=
8.4080 × 106 − 1.7971 × 106

5.5067 × 105 − 4.9146 × 105=-16.1510.

The results show that the ICER of Strategy 7 is higher
than other strategies; hence, it is more expensive and less
effective. Therefore, Strategy 7 is eliminated, and the only

Figure 11. Plots displaying the comparison of susceptible cases prevented for
double control implementation (Case B).

strategy left is Strategy 6. The implication is that Strategy 6 (a
combination of sanitation and hygiene practices, an awareness
campaign, and the potency of antibiotics administered to
typhoid patients) is the most cost-effective in preventing
susceptible populations from the bacteria disease. It is shown
graphically in Figure 11, that is, implementing Strategy 6
will cost less in preventing more susceptible people from
contracting the typhoid disease compared to other Strategies 5,
8 and 9 that have a high cost of implementation.

4.6.3. ICER for Triple control implementation for susceptible
cases prevented

The ICER for Case C is calculated as follows using the
details in Table 9;

ICER(13)=
1.0279 × 107 − 0
4.9345 × 105 − 0

=20.8309,

ICER(11)=
5.3114 × 108 − 1.0279 × 107

1.8779 × 106 − 4.9345 × 105=376.2223,

ICER(14)=
5.2631 × 108 − 5.3114 × 108

1.8849 × 106 − 1.8779 × 106=-690,

ICER(12)=
5.2323 × 108 − 5.2631 × 108

1.8879 × 106 − 1.8849 × 106=-1026.6667.

The computations show that the ICER of Strategy 11 is
more significant, which means it is more expensive and less
effective and, therefore, is eliminated from the list of alternat-
ing control strategies. Hence, we compute the ICERs of the
remaining three strategies by following the increasing order of
the susceptible human they prevented as follows:

ICER(13)=
1.0279 × 107 − 0
4.9345 × 105 − 0

=20.8309,

ICER(14)=
5.2631 × 108 − 1.0279 × 107

1.8849 × 106 − 4.9345 × 105=370.8585,
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Figure 12. Plots displaying the comparison of susceptible cases prevented for
triple control implementation (Case C).

Table 10. The most Cost-Effective Strategy of each Case in ascending
Order of Total susceptibility prevented.

Strategies Total susceptible prevented Total cost ACER
Strategy 13 4.9345 × 105 1.0279 × 107 20.8316
Strategy 1 9.7844 × 104 4.8273 × 106 49.3373
Strategy 6 5, 5067 × 105 8.4080 × 105 1.5269

Strategy 15 1.8880 × 106 5.2387 × 108 277.4758

ICER(12)=
5.2323 × 108 − 5.2631 × 108

1.8879 × 106 − 1.8849 × 106=-1026.6667.

The results reveal that Strategy 14 has a higher ICER
value than the other two strategies, which means that Strategy
11 is more expensive and less effective. Therefore, Strategy
11 is eliminated from competing alternative intervention
strategies. Hence, we calculate the ICERs for the remaining
two strategies by following their increasing order of susceptible
prevented;

ICER(13)=
1.0279 × 107 − 0
4.9345 × 105 − 0

=20.8309,

ICER(12)=
5.2323 × 108 − 1.0279 × 107

1.8879 × 106 − 4.9345 × 105=367.8518.

The results indicate that the ICER value of Strategy 12 is
stronger than Strategy 13; this implies that Strategy 12 is
more costly and less expensive. Therefore, Strategy 13, which
is the combination of sanitation and hygiene practices and
awareness campaigns, the potency of antibiotics administered
to typhoid patients, and screening control, is the most cost-
effective combined control strategy to prevent the susceptible
populations from contracting the bacteria disease for triple
control implementation. It is displayed in Figure 12, that
is, Strategy 13 implementation will cost less in preventing
more susceptible people from contracting the typhoid disease
compared to other Strategies 11, 12 and 14 that have a high
cost of implementation.

4.6.4. Overall, ICER for susceptible cases prevented
Furthermore, the details in Table 10 are used to compute

the overall ICERs for the most cost-effective strategy in each
case, including Case D for susceptible cases prevented.

ICER(13)=
1.0279 × 107 − 0
4.9345 × 105 − 0

=20.8309,

ICER(1)=
2.7246 × 105 − 1.0279 × 107

5.5059 × 105 − 4.9345 × 105=-175.1232,

ICER(6)=
8.4080 × 106 − 2.7246 × 105

5.5067 × 105 − 5.5059 × 105=7104.25,

ICER(15)=
5.2387 × 108 − 8.4080 × 106

1.8880 × 106 − 5.5067 × 105=391.0991.

From these results, Strategy 6 is strongly dominant, costlier
and less effective since it has the highest ICER value compared
to others. Hence, Strategy 6 is eliminated from the alternative
control intervention strategies list. Therefore, the ICERs of the
remaining three strategies are computed in increasing order of
their total susceptible prevented, and this is shown as follows:

ICER(13)=
1.0279 × 107 − 0
4.9345 × 105 − 0

=20.8309,

ICER(1)=
2.7246 × 105 − 1.0279 × 107

5.5059 × 105 − 2.7246 × 105=-175.1232,

ICER(15)=
5.2387 × 108 − 8.4080 × 106

1.8880 × 106 − 5.5059 × 105=391.5011,

implying that Strategy 15 is costlier and less effective.
Hence, it is eliminated from the list of alternative control strate-
gies. The ICERs of the remaining two strategies are computed
in increasing order of their total susceptible prevented, and this
is shown as

ICER(13)=
1.0279 × 107 − 0
4.9345 × 105 − 0

=20.8309,

ICER(1)=
2.7246 × 105 − 1.0279 × 107

5.5059 × 105 − 2.7246 × 105=-175.1232.

Strategy 13 has greater ICER than Strategy 1, meaning
that Strategy 13 is costlier and less effective when compared
with Strategy 1. Therefore, Strategy 1, a sanitation and hygiene
practice and awareness campaign, is the most cost-effective
strategy and the overall best strategy that can be implemented
to prevent susceptible populations from contracting bacterial
disease.

5. Conclusion

A mathematical model for the dynamics of typhoid fever in-
fection with treatment relapse of the limited clinical efficacy of
antibiotics is investigated in this study. The basic reproduction
number, R0, is derived and used to investigate the sensitivity
of the model parameters via Latin hypercube sampling (LHS)
with a partial rank correlation coefficient (PRCC) approach.
The sensitivity analysis results indicate that R0 decreases when
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the maximum treatment intake over time with high clinical ef-
ficacy of antibiotics, the recovery rate for treated individuals
with a high potency of antibiotics, and the bacteria decay rate
increases. Meanwhile, R0 increases when the human-to-human
contact rate, environment-to-human contact rate, relapse re-
sponse to treatment, the growth rate for the bacteria, and the
shedding rates for severe, mild and carrier-infected individuals
increase, meaning disease invasion in the population. The sen-
sitivity results for the parameters with PRCCs (≥ 0.5), which
are the bacteria decay, the treated individuals’ recovery rate, the
human-to-human contact rate and the environment-to-human
contact rate, have more impact on R0.

Furthermore, the optimal control model with four control
measures is formulated and analysed based on the sensitivity
analysis result. The controls are sanitation and hygiene prac-
tice and awareness campaign control, sterilisation and disinfec-
tion control, the potency of antibiotics administered to control
and the screening control for carrier-infected humans. Also,
cost-effectiveness analysis is computed to determine the most
cost-effective optimal control strategy for both infected cases so
that the bacteria can be eliminated and for susceptible humans
so that they can be prevented from contracting the disease. In
conclusion, the deduction from the study suggests that for both
infected humans and susceptible humans, Strategy 1, which is
the sanitation and hygiene practice and awareness campaign, is
the most cost-effective strategy to contain the typhoid fever in-
fection and prevent susceptible population from contracting the
bacteria; this conforms with the work of [13]. For applying dou-
ble controls (Case B), Strategy 6, combining Strategy 1 and the
potency of antibiotics administered, is the most cost-effective
for containing the bacteria disease and preventing susceptible
humans from contracting the disease. Also, for implement-
ing triple controls (Case C), the result dictates that Strategy 13,
which combines sanitation and hygiene practice and awareness
campaign, the potency of antibiotics administered, and screen-
ing control is the most cost-effective for eradicating the bac-
teria disease and for preventing susceptible individuals. How-
ever, the overall computation of the cost-effectiveness among
the most cost-effective control strategies to be considered from
each case, including Case D (all the controls), indicates that
Strategy 1 is the most cost-effective control intervention to con-
trol typhoid fever bacteria and to prevent susceptible humans
from contracting the disease.

However, all the combined controls (Strategy 15) may
be implemented to reduce the infected cases in the commu-
nity, while Strategy 13 (sanitation and hygiene practice and
awareness campaign, the potency of antibiotics administered to
typhoid patients and screening control) may be implemented to
prevent the susceptible from contracting the infection when the
cost of implementation does not matter. The study has some
limitations, such as the derivation endemic equilibrium state,
the model parameters uncertainty, and the control interven-
tions’ efficacy. The limitations could be considered in future
research. In addition, the model in this study can be extended
by considering exposed individuals.
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