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Abstract

This paper presents an Algorithm for the numerical solution of the Optimal Control model constrained by Partial Differential Equation using
the Alternating Direction Method of Multipliers (ADMM) accelerated with a parameter factor in the sense of Nesterov. The ADMM tool was
applied to a partial differential equation-governed optimization problem of the one-dimensional heat equation type. The constraint and
objective functions of the optimal control model were discretized using the Crank-Nicolson and Composite Simpson’s Methods respectively
into a derived discrete convex optimization form amenable to the ADMM. The primal-dual residuals were derived to ascertain the rate of
convergence of the model for increasing iterates. An existing example was used to test the efficiency and degree of accuracy of the algorithm
and the results were favorable when compared the existing method.
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1. Introduction

Optimal control problems (OCP) involving partial differ-

ential equations (PDE) are derivations arising from solid me-

chanics, fluid dynamics, engineering, Economics and sciences

amongst others. Most of which are formulations into second

order performance measures governed by PDE constraints of

the ellipticc type. The classical analytic techniques of the Hamil-

ton -Jacobi -Bellman (HJB) or Euler Lagrange(E-L) may proof

difficult because of the complexity of the formulated contin-

uous nonlinear models. Betts and Campbell in [1] worked

∗Corresponding author tel. no:
Email address: dawodukazeem@futa.edu.ng (K. A. Dawodu )

on the "first discretized then optimize" technique, a novel ap-

proach in obtaining a discretized optimization problem with

finite number of (large) vectors. Ghobadi et al. in [2] ex-

tended this approach to the one-dimensional heat equation

and enumerated a lot of advantages when compared with the

historical "first optimize then discretized" approach. These

include (i) the circumvention of the need to establish certain

properties of the problem such as the active constraint inter-

val and the number of touch points a priori and (ii) its amenabil-

ity to well-structured discretization schemes and optimiza-

tion solvers for inequality constrained problems. The work

of [2] was shrouded with conditional stability problem due to

the explicit discretization method used. However, this draw-
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back of conditional stability will be circumvented in this re-

search with the use of the implicit method of higher order in

the discretization and the ADMM extended in obtaining the

optimal solutions with better accuracy of results and faster

rate of convergence.

Moreover, many authors have such as Olotu and Dawodu

in ([3, 4, 5]) have worked extensively on proportional and multi-

delay systems using the "first discretized then optimize" ap-

proach. However, He and Yuan in [6] and He et. al in [7]

worked on block-convex programming problem synonymous

to discretized continuous distributed systems, though the im-

plementation on PDE-based optimal control problems were

not explored.

2. Statement of problem

Considering a one-dimensional bar connected to a heat-

ing (cooling) device at its both ends with known initial and

lower- bound conditions but with unknown boundary condi-

tions, then the temperature functions on the boundaries are

considered to be the control variables (ui (t ), i = 1, · · · , q) as in

[1]. The heat equation is then given as;

∂ f (x, t )

∂t
= ∂2 f (x, t )

∂x2 , 0 ≤ t ≤ T, l1 ≤ x ≤ l2 (1)

where f (x, t ) is the temperature at position x and at time t .

It is then imperative to have the temperature profile f (x, t )

at each point of the bar that does not go below a given spe-

cific temperature function given by g (x, t )(also known as a

lower bound function), during the time interval. Setting the

temperature of the bar very high makes sure the lower-bound

condition (inequality constraint) below is satisfied.

f (x, t ) ≥ g (x, t ) for all x and t (2)

However, the objective of this modeling is to choose an

appropriate temperature profile such that the energy consumed

(objective function) is at minimum by reducing overheating,

that is, to minimize the cost of energy consumed while keep-

ing the temperature of the bar above the lower-bound profile.

The appropriate choice of the objective function can be com-

pared to the temperature profile of the bar with the lower-

bound profile as closely as possible expressed mathematically

as ‖ f ((x, t ), y)− g (x, t )‖. Assuming the temperature profile is

the approximation of the temperature of the bar provided the

heat equation and initial condition are satisfied. And suppose

the squared values of all the temperature in time t and space

x is expressed as f 2(x, t ), then the objective function to be

minimized is the integral of f 2(x, t ) in time and space.

Then the optimization model of the heat-transfer problem

can be mathematically expressed as

min
u, f

∫ T

0

∫ l2

l1

f 2(x, t )d xd t +
∫ T

0
[pu2

1(t )+qu2
2(t )]d t ,

s.t
∂2 f (x, t )

∂x2 = ∂ f (x, t )

∂t
,

f (x, t ) > g (x, t ),

f (x,0) = f0(x), (3)

f (l1, t ) = u1(t ),

f (l2, t ) = u2(t ),

t ∈ [0,T ], x ∈ [l1, l2],

where x ∈ R,u ∈ R and f0(x) is a known initial function of tem-

perature at the initial time (t = 0). While u1(t ) and u2(t ) are

the temperatures at the two boundary points, l1 and l2 re-

spectively, of the bar whose optimal values will be obtained.

3. Materials and methods

The continuous non-linear model (problem) formulated

above can now be solved using the approach of "first-discretized-

then-optimize" to obtain a quadratic optimization problem

with finite number of (large) variables. The implicit discretiza-

tion methods will be used for the discretization of the continuous-

time OCP because its (i) stability is unconditional,(ii) time

step-length can be chosen independent of the spatial step-

length and (iii) coefficient matrix remains well-conditioned.

3.1. Discretization of the Constraints

In the transformation of the continuous time PDE con-

straints, the second-order Crank-Nicolson method derived from

the averaging of the forward Difference method at the j th step

in time t and the Backward-Difference at the ( j + 1)th step

in t with truncation error h
2
∂2 f
∂t 2 (xi ,µ j )+O(h2) will be used.

And given that the grid points are equally-distributed for both

the spatial interval (length of bar)[l1, l2] and the time inter-

val [0,T ] with step-lengths δ and h respectively, computed as

δ = (l2 − l1)/n and h = T /N . Then the number of intervals n

from the discretization in space and N from the discretization

in time will generate (n+1) and (N +1) number of grid points

respectively.

In generating the numerical sequence, let xi = l1 + iδ be

the i th point in space (for i = 0,1,2, . . . ,n) and t j = j h be the

j th point in time (for j = 0,1,2, . . . , N ), provided the usual dif-

ferentiability conditions are satisfied, then the Crank-Nicolson

(averaged difference) discretizations scheme in time and space

with local truncation error of order O(δ2 +h2) expressed be-

low as;

∂ f (x, t j )

∂t
= f ′

t (x, t j ) ' fi , j+1 − fi , j

h
, (4)
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∂2 f (x, t j )

∂x2 = f ′′
x (xi , t j )+ f ′′

x (xi , t j+1)

2
,

' 1

2

[
fi−1, j −2 fi , j + fi+1, j

δ2

+ fi−1, j+1 −2 fi , j+1 + fi+1, j+1

δ2

]
(5)

where fi , j ' f (xi , t j ) and uk, j ' uk (t j ) for i = 0,1,2, . . . ,n, j =
0,1,2, . . . , N−1 and k = 1,2. The discretization of the PDE con-

straint function using eqns. (4) and (5), given that f (0, t j ) =
f0, j = u1, j , f (xn , t j ) = fn, j = u2, j and f (x j ,0) = 0 yields;

fi , j+1 − fi , j

h
=

1

2

[
fi−1, j −2 fi , j + fi+1, j + fi−1, j+1 −2 fi , j+1 + fi+1, j+1

δ2

]
, (6)

for i = 1,2, · · · , (n−1) and 0 ≤ j ≤ N −1. Substituting θ = h/δ2

and collecting like-terms gives the recurrence formula below;

−λ fi−1, j −λ fi−1, j+1 +2(λ−1) fi , j +2(λ+1) fi , j+1

−λ fi+1, j −λ fi+1, j+1 = 0. (7)

Setting i = 1 and f0, j = u1, j yields;

−θu1, j −θu1, j+1 +2(θ−1) f1, j +2(θ+1) f1, j+1

−θ f2, j −θ f2, j+1 = 0 for 0 ≤ j ≤ N −1. (8)

For j = 0 given f1,0 = f2,0 = u1,0 = 0 yields;

−λu1,1 +2(θ+1) f1,1 −θ f2,1 = 0 (9)

For j = 1 yields;

−θu1,1 −θu1,2 +2(θ−1) f1,1 +2(θ+1) f1,2

−θ f2,1 −θ f2,2 = 0 (10)

For j = k (2 ≤ k ≤ N −1);

−θu1,k −θu1,k+1 +2(θ−1) f1,k +2(θ+1) f1,k+1

−θ f2,k −θ f2,k+1 = 0. (11)

When eqn. (11) is expanded for i = 1 and
1 ≤ j ≤ N −1 gives the matrix equation below:

−θ 0 . . . . . . . . . 0

−θ −θ 0
. . .

. . .
...

0 −θ −θ 0
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . . . . 0 −θ −θ





u1,1

u1,2

u1,3
...
...

u1,N


+



2(θ+1) 0 . . . 0

2(θ−1) 2(θ+1) . . .
...

0
. . . . . .

...
... . . . 2(θ−1) 2(θ+1)




f1,1

f1,2
...

f1,N



+



−θ 0 0 . . . 0

−θ −θ 0 . . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 −θ −θ





f2,1

f2,2
...
...

f2,N


=



0

0
...
...

0


, (12)

compactly written as

LU1 +ĜF1 +LF2 = 0, (13)

where F1 = [ f1,1, f1,2, .., f1,N ], F2 = [ f2,1, f2,2, .., f2,N ], U1 =
[u1,1,u1,2, ...,u1,N ]T and 0 are column vectors of dimension

N ×1 while L and Ĝ are bi-diagonal square-matrices of N ×N

dimensions with respective entries described below.

L =


−θ : 1 ≤ i ≤ N and j = i

−θ : 2 ≤ i ≤ N and j = i −1

0 : otherwise

(14)

and

Ĝ =


2(θ+1) : 1 ≤ i ≤ N and j = i

2(θ−1) : 2 ≤ i ≤ N and j = i −1

0 : otherwise

(15)

Set i = 2; this then gives the recurrence equation below;

−θ f1, j −θ f1, j+1 +2(θ−1) f2, j +2(θ+1) f2, j+1−
θ f3, j −θ f3, j+1 = 0 for 0 ≤ j ≤ N −1. (16)

For j = 0; and equating f1,0 = f2,0 = f3,0 = 0 yields,

−θ f1,1 +2(θ+1) f2,1 −θ f3,1 = 0 (17)

For j = 1;

−θ f1,1 −θ f1,2 +2(θ−1) f2,1 +2(θ+1) f2,2

−θ f3,1 −θ f3,2 = 0 for 0 ≤ j ≤ N −1. (18)

For j = 2;

−θ f1,2 −θ f1,3 +2(θ−1) f2,2 +2(θ+1) f2,3

−θ f3,2 −θ f3,3 = 0 for 0 ≤ j ≤ N −1. (19)

...
...

...
...

...
...

...
...

...
...,

For j = N −1;

−θ f1,N−1 −θ f1,N +2(θ−1) f2,N−1 +2(θ+1) f2,N

−θ f3,N−1 −θ f3,N = 0 for 0 ≤ j ≤ N −1. (20)

The matrix equation for eqns. (17) to (20) is then given as,

LF1 +ĜF2 +LF3 = 0. (21)
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For i = 2,3, · · · ,n −2 and 1 ≤ j ≤ N −1 will then be expressed

below as:

LFi−1 +ĜFi +LFi+1 = 0 (22)

For i = n −1, 1 ≤ j ≤ N −1 and setting U2 = Fn gives;

LFn−2 +ĜFn−1 +LU2 = 0. (23)

Where Fi =
[

fi ,1, fi ,2, · · · , fi ,N
]T ∈ RN×1, U2 = [u2,1,u2,2...,u2,N ]T ∈

RN×1, L and Ĝ are described in eqns. (14) and (15) respec-

tively. Combining eqns. (13), (22) and (23) gives the matrix

formulation below: 

L 0

0 0
...

...
...

...

0 L





U1

U2


+



Ĝ L 0 . . . 0

L Ĝ L
. . .

...

0
. . .

. . .
. . . 0

...
. . . . . .

. . . L

0 . . . 0 L Ĝ





F1

F2
...
...

Fn−1


=



0

0
...
...

0


, (24)

compactly written as,

CU +DF = 0, (25)

where C is a block-matrix of dimension (n − 1)N × 2N , D is

a square block-matrix of dimension (n − 1)N × (n − 1)N , U

is a column vector of dimension 2N × 1 while F and 0 are

column vectors of dimension (n −1)N ×1. u1(t j ) and u2(t j )

are the control variables for which gives access to the heating

(cooling) resources, while the temperature variables f (xi , t j )

of the other parts of the bar are computed based on the heat-

transfer equations.

3.2. Discretization of the Boundaries

Given

fi , j ≥ g (xi , t j ) for i = 1,2, · · · ,n −1 and j = 1, · · · , N ,

then

u1, j ≥ g (l1, t j ) and u2, j ≥ g (l2, t j ) for j = 1,2, · · · , N .

Therefore,

u1, j +u2, j ≥ g (l1, t j )− g (l2, t j ) for j = 1,2, · · · , N . (26)

For j = 1;

(u1,1 +u2,1)− z1 = g (l1, t1)+ g (l2, t1) = g1 (27)

For j = 2;

(u1,2 +u2,2)− z2 = g (l1, t2)+ g (l2, t2) = g2 (28)

...
...

...
...

...
...

...
...

...
...

For j = N ;

(u1,N +u2,N )− zN = g (l1, tN )+ g (l2, tN ) = gN (29)

Combining eqns. (27) to (28) generates the matrix-structure

below:




1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1




1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1







u1,1
...

u1,N

u2,1
...

u2,N



−



z1

z2
...
...

zN


=



g1

g2
...
...

gN


. (30)

Equation (30) is compactly written as;

MU −Z =G , (31)

where I ∈ RN×N is the identity matrix, M = [I , I ] ∈ RN×2N is

the augmented double identity matrices, Z = [z1, z2, · · · , zN ]T ∈
RN×1 is the positive slack-variable vector, U = [U1,U2]T

= [u11,u12, ..,u1N , u21,u22, ..,u2N ]T ∈ R2N×1 is the unknown

control-variable vector and G = [g1, g2, · · · , gN ]T ∈ RN×1 is the

known coefficient vector.

3.3. Discretization of Objective Function

In the discretization of the continuous-time objective func-

tion(performance measure) both in space and time, the com-

posite Simpson’s rule and the right-Riemann rule will be used

respectively as stated below:∫ l2

l1

f (x, t )d x ' 2δ

3

[
n/2−1∑

i=1
f (x2i , t )+2

n/2∑
i=1

f (x2i−1, t )

]

+ δ

3

[
f (x0, t )+ f (xi , t )

]
(32)∫ T

0
f (x, t )d t ' h

N∑
j=1

f (x, t j ) (33)

Then the discretized objective function of the optimal control

problem in eqn. (3) using eqns. (32) and (32) is expressed

below as;

min
u, f

∫ T

0

[2δ

3
J1 + δ

3
J2 + J3

]
d t (34)
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where,

J1 =
n/2−1∑

i=1
f (x2i , t )+2

n/2∑
i=1

f (x2i−1, t ), (35)

J2 = f (x0, t )+ f (xn , t ), (36)

J3 = pu2
1(t )+qu2

2(t ). (37)

Discretizing eqn. (34) using (32) and collecting like-terms gives;

' min
u, f

[4hδ

3

N∑
j=1

n/2∑
i=1

f 2
2i−1, j +

2hδ

3

N∑
j=1

n/2−1∑
i=1

f 2
2i , j

+
(

p + δh

3

) N∑
j=1

u2
1, j +

(
q + δh

3

) N∑
j=1

u2
2, j

]
,

' min
u, f

[ N∑
j=1

[4hδ

3
( f 2

1, j + f 2
3, j + ..+ f 2

n−1, j ) +

2hδ

3
( f 2

2, j + f 2
4, j + ..+ f 2

n−2, j )+m1u2
1, j +m2u2

2, j

]]
(38)

where m1 =
(
p + δh

3

)
and m2 =

(
q + δh

3

)
. Recall that f 2

0, j =
f 2(l1, j ) = u2

1(t j ) = u2
i , j and f 2

n, j = f 2(l2, j ) = u2
2(t j ) = u2

2, j , set-

ting the values of j = 1,2, ..., N in eqn. (38) yields the matrix

operator.

For j = 1;

4hδ

3
( f 2

1,1 + f 2
3,1 + ..+ f 2

n−1,1)

+ 2hδ

3
( f 2

2,1 + f 2
4,1 + ..+ f 2

n−2,1)

+m1u2
1,1 +m2u2

2,1

for j = 2;

4hδ

3
( f 2

1,2 + f 2
3,2 + ..+ f 2

n−1,2)

+ 2hδ

3
( f 2

2,2 + f 2
4,2 + ..+ f 2

n−2,2)

+m1u2
1,2 +m2u2

2,2

...
...

...
...

...
...

...
...

for j = N ;

4hδ

3
( f 2

1,N + f 2
3,N + ..+ f 2

n−1,N )

+ 2hδ

3
( f 2

2,N + f 2
4,N + ..+ f 2

n−2,N )

+m1u2
1,N +m2u2

2,N .

The matrix formation of the above equations is then written

as follows:

J (F,U ) = 1

2
F T QF + 1

2
U T HU , (39)

where,

Q =



8
3 hδI 0 0 . . . 0

0 4
3 hδI 0 . . .

...
...

. . .
... 0

...
... 0

...
. . .

...

0 . . .
...

. . . 8
3 hδI


, (40)

H =
(

2m1I 0

0 2m2I

)
(41)

F T
i = [

fi ,1, fi ,2, · · · , fi ,N
] ∈ R1×N for i = 1,2, ..., (n−1) with F T =[

F T
1 ,F T

2 , · · · ,F T
n−1

] ∈ R1×(n−1)N . Similarly, U T
k = [

uk,1,uk,2, · · · ,uk,N
] ∈

R1×N for k = 1,2 with U T = [
U T

1 ,U T
2

] ∈ R1×2N . However, the

matrices Q ∈ R(n−1)N×(n−1)N and H ∈ R2N×2N in the compact-

ified convex quadratic eqn. (39) are real, symmetric and positive-

definite with the diagonal coefficients described below as fol-

lows:

Q =



8
3 hδI : (k −1)N +1 ≤ i ≤ kN and j = i ,

for k = 1,3, ..., (n −1)
4
3 hδI : (k −1)N +1 ≤ i ≤ kN and j = i ,

for k = 2,3, ..., (n −2)

0 : otherwise

(42)

and

H =


2m1 : 1 ≤ i ≤ N and j = i

2m2 : N +1 ≤ i ≤ 2N and j = i

0 : otherwise

(43)

Combining eqns. (25), (31) and (39) gives, in a matrix form,

the compact convex quadratic optimization problem with lin-

ear constraints as expressed below:-
Min J = 1

2U T HU + 1
2 F T QF

s.t : CU +DF = 0,

MU ≥G .

(44)

The above re-formulated discrete model is a well-structured,

quadratic optimization problem whose objective function is

convex and separable. While the constraint function is linear

and coupled which made the model amenable to the ADMM.

However, the mixed-inequality constraint model is re-formulated

into an equality constraint form by introducing non-negative

slack variables Z (º 0) into the model.

3.4. Stability and Feasibility of the Model

With the assumption that the solution of the PDE satis-

fies the usual differentiability conditions, the second order

Crank Nicholson implicit scheme, with local truncation er-

ror of order O(h +δ2), was deplored for the discretization of
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the PDE constraint to avoid the conditional stability and fea-

sibility associated with explicit discretization methods. This

stability of the implicit discretization method reflects in the

consistency and statbility of the coefficient matrix operators.

However, the composite simpson’s scheme, used for the dis-

cretization of the objective function, has truncation error of

order O(h4) with degree of accuracy (precision) of three. This

helps to improve the accuracy and rate of convergence of the

model, hence an improvement over the trapezoidal used in

[1].

3.5. Sparsity of the Model

The very suitable approach for ascertaining the sparsity

of the model is to compactify it as studied by Kameswaran

and Biegler in [8]. The set of optimization eqns. (45) was then

re-structured in a compact form as stated below.

min J (U ,F ) =
(

U T F T
)(

H 0̂

0̂T Q

)(
U

F

)

s.t (
C D

M 0̄

)(
U

F

)
≥

(
0∗

G

)
,

compactly written as,

min J (W ) =W T PW s.t V W ≥ Ḡ , (45)

where, W = (U F )T , P =
(

H 0̂

0̂T Q

)
,

V =
(

C D

M 0̄

)
and Ḡ =

(
0∗

G

)
.

The matrices H and Q are the two coefficient sub-matrices

of the objective functions while C and D are the two sub-

matrices of the constraint; both correspondent to those of

the variables U and F . The sizes of the augmented matri-

ces, showing the number of zero and non-zero entries are ex-

pressed in the table 1 below. The sparsity ratio is defined here

as the proportion of the zero entries in comparison with the

size of the matrix.

Obj. Coef. Constr. Coef.
J W

size (n +3)N × (n +3)N nN × (n +1)N

zeros (n +3)N 3n(2N −1)+3−4N

Non- (n +3)N + nN (nN +N −6)+
zeros (nN +3N −1) (3n −3+4N )

Table 1: Sparsity Table for the Compactified Model

3.6. Positive definiteness and Convexity of the Matrix oper-
ator

Definition 1. (Sylvester criterion): A square (n ×n) matrix is
positive definite if it is real, symmetric with all the eigenvalues
(λi > 0; i = 1,2 · · · ,n) or the leading principal minors (Mi >
0; i = 1,2 · · · ,n) strictly positive.

Definition 2. (Corollary to Sylvester criterion): If the princi-
pal diagonal entries ai i are the only nonzero entries of a square
(n×n) matrix such that ai j = 0 for i , j ; then the leading prin-
cipal minors (Mi > 0; i = 1,2 · · · ,n) are given by Mi =∏i

j=1 a j j

for i = 1,2, · · · ,n.

The constructed matrix-operator P for the derived quadratic

function (45) is an augmentation of the real symmetric ma-

trices Q and H in (40) and (41) respectively whose principal

diagonal entries are all strictly positive. Therefore, P is sym-

metric and positive definite by definitions 2 and 3 since all the

leading principal minors are all strictly positive. This prop-

erty is pertinent to guarantee convexity and minimal solution

of the quadratic function.

4. ADMM Algorithm Formulation

In the formulation of the ADMM, the derived update for-

mulas will be accelerated with an accelerator variant referred

to as the relaxation factor. The results will then be extend-

able to the discretized PDE governed OCP (44). The associ-

ated augmented Lagrangian functional is expressed as

Lρ(U ,F, Z ,ξ1,ξ2) = 1

2
U T HU + 1

2
F T QF + l+(Z )+

ρ

2
∥CU +DF +ξ1 ∥2

2 +
ρ

2
∥ MU −G −Z +ξ2 ∥2

2 (46)

with the M-ADMM iterations stated thus:

U k+1 ← argmin
U

{1

2
U T HU + ρ

2
∥CU +DF +ξk

1 ∥2
2

+ ρ

2
∥ MU −G −Z +ξ2 ∥2

2

}
, (47)

F k+1 ← argmin
F

{1

2
F T QF ++ρ

2
∥CU +DF

+ξk
1 ∥2

2

}
, (48)

Z k+1 ← argmin
Z

{ρ
2
∥ MU −G −Z +ξ2 ∥2

2

}
(49)

s.t Z ≥ 0,

ξk+1
1 = ∂ξ1 L(U k+1,F k+1, Z k+1,ξk

1 ) (50)

ξk+1
2 = ∂ξ2 L(U k+1,F k+1, Z k+1,ξk

2 ) (51)

where µ ∈ R(n−1)N and λ ∈ RN are Lagrange multipliers, ρ > 0

is the penalty parameter, ‖.‖2 denotes the euclidean (spec-

tral) norm of a vector (matrix) argument, ξ1 = µ/ρ ∈ R(n−1)N

and ξ2 =λ/ρ ∈ RN are the scaled dual variables, Z ∈ RN is the
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introduced slack vector and l+(Z ) is the indicator function

for the non-negative orthants defined as l+(Z ) = 0 for z ≥ 0

and l+(Z ) = +∞ otherwise. As the algorithm runs through

the (k+1)-th iteration, the primal variables U k and F k as well

as the dual variables µk and λk are updated, hence the need

to derive the update formulas. Applying the Karush-Kuhn-

Tucker (KKT) optimality conditions on the Augmented La-

grangian Functional (46) for the sequential minimization of

the variables requires updating all the critical variables as in-

dicated in the ADMM iterations. Moreover the update formu-

las of the variables U k and F k will be accelerated using the

Gauss-seidel relaxation factor α ∈ [0,2] as clearly illustrated

in the works of Nesterov [9] and Ghadimi et. al [10].

4.1. Derivations of the update formulas

Applying the Karush-Kuhn-Tucker (KKT) optimality con-

ditions on the Augmented Lagrangian Function in eqn. (46)

for the sequential minimization of the variables requires up-

dating all the critical variables as indicated in the ADMM it-

erations.

U-Update: Setting ∂U L(U , .k ) = 0 yields;

U k+1 = ρB1M T B2 (U −Update). (52)

where,

B1 =
[

H +ρ(C T C +M T M)
]−1

B2 = (G +Z k −ξk
2 )−C T (DF k +ξk

1 )

F-Update: Setting ∂F L(U k+1,F, .k ) = 0 and replacing CU k+1,

to relax the algorithm, with

h(U k+1,F k ,α) =αCU k+1 + (1−α)DF k (53)

to yield

F k+1 =−ρB3B4 (F −Update). (54)

where,

B3 =
[
Q +ρ(DT D)

]−1

B4 =
[
αCU k+1 + (1−α)DF k +ξk

1

]
Z-Update: - Setting ∂Z L(.k+1, Z , .k ) = 0 and relaxing it with

h(U k+1,F k+1,α) yields;

Z k+1 = max
{

0,−Z∗
}

(55)

where

Z∗ =
[
αCU k+1 + (1−α)DF k+1 −G

]
(56)

Updating the Scaled-Dual variables - ξ1, ξ2 yields

ξk+1
1 = ξk

1 +CU k+1 +DF k+1, (57)

ξk+1
2 = ξk

2 +MU k+1 −G −Z k+1, (58)

4.2. Convergence Analysis

Considering an optimization problem analogous to the

form in (45) above;
Min
u,y

f1(u)+ f2(y)+ l+(z)

s.t h1(u)+h2(y) = 0

g1(u)− z = 0

(59)

where x ∈ Rn , u ∈ Rm while f1 : Rn → R ∪ {∞}, f2 : Rm →
R∪ {∞} and f3 : Rn → R∪ {∞} are convex functions. The aug-

mented lagrangian formulation is then stated thus:

Lρ(u, y,µ,λ) = f1(u)+ f2(y)+ l+(z)+µT (
h1(u)

+ h2(y)
)+ ρ

2
∥ h1(u)+h2(y) ∥2

2 +

λT (
g1(u)− z

)+ ρ

2
∥ g1(u)− z ∥2

2 (60)

where µ ∈ Rn and λ ∈ Rm are Lagrange multipliers, ρ > 0 is

the penalty parameter, ‖.‖2 denotes the euclidean (spectral)

norm of a vector (matrix) argument, ξ1 = µ/ρ ∈ Rn and ξ2 =
λ/ρ ∈ Rm are the scaled dual variables, z is the introduced

slack vector and l+(z) is the indicator function for the non-

negative orthants.

From duality theory, it is well-known that if u∗, y∗,µ∗ and

λ∗ are the primal and dual variables that minimize the La-

grangian function Lρ , then every pair (uk , yk ) in the convex

set,

Lρ(u∗, y∗,µ∗λ∗) ≤ Lρ(xk , yk ,µ∗λ∗) (61)

. Let f k = f1(xk )+ f2(yk ) be the objective function value at the

k-th iterate (xk , yk ) and f ∗ = f1(x∗)+ f2(y∗) be the optimal

function value. Let r k+1
1 = h1(uk )+h2(yk ) and r k+1

2 = g1(uk )−
zk be the residuals of the convex equality constraints in the k-

th iteration. The objective of this research is now to prove the

following theorems.

Definition 3. (Dual Updates): At optimality, the update equa-
tions for the dual variables from the augmented Lagrangian in
(60) are given as

µk+1 =µk + ρ
[

h1(uk+1) + h2(yk+1)
]

, (62)

λk+1 =λk + ρ
[

g1(uk+1) − zk+1
]

, (63)

Definition 4. (Lyapunov function): Let V k be a non-negative
quantity for the algorithm such that V k −V k+1 decreases in
each iteration by an amount that depends on the sum of the
norms of the residuals and on the change in slack variable z
over one iteration. Then the quantities are defined as;

(i ) V k = 1

ρ
||µk −µ∗||22 + 1

ρ
||λk −λ∗||22

+ ρ||zk+1 − z∗||22 (64)

(i i ) ρVq ≤V k −V k+1 ≤V 0 (65)
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where

Vq =
∞∑

k=0
(||r k+1

1 ||22 + ||r k+1
2 ||22) + ||zk+1 − zk ||22

See proof in Boyd and Vandenberghe [11].

Theorem 1. Given the convex linearly constrained control prob-
lem (59) with the optimal dual and primal variables for the
problem µ∗, λ∗, u∗, y∗ and z∗. Then the following residual
terms

(i ) sk
1 = ρ

[
∂hT

1 (u∗)
(
h2(y∗)−h2(yk )

)
−

∂g T
1 (y∗)

(
z∗− zk

)]
(66)

(i i ) sk
2 = ∂ f T

2 (y∗) + ∂h2(y∗)µ∗ (67)

that converge to zero for a given penalty parameter ρ > 0.

Proof : From the augmented Lagrangian function (60), uk+1

minimizes the sub-differential Lρ(u, yk ,µk ,λk ) with respect

to u. Hence Lρ(u, yk ,µk ,λk ) with respect to u at uk is ex-

pressed as

0 ∈∂ f1(uk+1) + ∂hT
1 (uk+1)µk

+ ∂hT
1 (uk+1)

(
h1(uk )+h2(yk )

)
+ ∂g T

1 (uk+1)λk

+ ∂g T
1 (uk+1)

(
g1(uk+1)− zk

)
(68)

Substituting for µk and λk from eqns. (62) and (63) into (68)

yields,

0 ∈∂ f1(uk+1)

+ ∂hT
1 (uk+1)

[
µk+1 − ρ

[
h1(uk+1) + h2(yk+1)

]]
︸                                         ︷︷                                         ︸

µk

+ ∂hT
1 (uk+1)

(
h1(uk )+h2(yk )

)
+ ∂g T

1 (uk+1)
[
λk+1 − ρ

[
g1(uk+1) − zk+1]]︸                                   ︷︷                                   ︸

λk

+∂g T
1 (uk+1)

(
g1(uk+1)− zk

)
(69)

∂ f1(uk+1)+ ∂hT
1 (uk+1)µk+1 + ∂g T

1 (uk+1)λk+1

= ρ
[
∂hT

1 (uk+1)
(
h2(yk+1)−h2(yk )

)
−∂g T

1 (yk+1)
(
zk+1 − zk

)]
. (70)

If uk+1 = u∗ minimizes the Lagrangian functional, then eqn.

(70) becomes

Lρ(x∗, y∗,µ∗λ∗) =ρ
[
∂hT

1 (u∗)
(
h2(y∗)−h2(yk )

)
−∂g T

1 (y∗)
(
z∗− zk

)]
,

and converges to zero for any u ∈ Ω (convex) which com-

pletes the proof for (i). QED �
Similarly, yk+1 minimizes the sub-differential Lρ(uk+1, y,µk ,λk )

with respect to y such that

0 ∈ ∂ f2(yk+1) + ∂hT
2 (yk+1)µk

+ ∂hT
2 (yk+1)

(
h1(uk+1)+h2(yk+1)

)
,

0 ∈ ∂ f2(yk+1) +
+ ∂hT

2 (yk+1)
[
µk+1 − ρ

[
h1(uk+1)+ h2(yk+1)

]]
︸                                        ︷︷                                        ︸

µk

+ ∂hT
2 (yk+1)

(
h1(uk+1)+h2(yk+1)

)
.

This yields the equation below and completes the proof for

(ii)

∂ f2(yk+1) + ∂hT
2 (yk+1)µk+1. (71)

Hence, yk+1 minimizes the convex function

y 7→ f2(y) + ∂hT
2 (y)µk+1. (72)

The alternating direction method of multipliers algorithm can

now be applied to the derived optimization problem that was

obtained from the discretized PDE. By extension, the follow-

ing vanishing dual residual obtained as the iterations get to

optimality is stated below.

sk
1 = ρ

[
C T D(F k+1 −F k ) − M T (Z k+1 −Z k )

]
. (73)

Algorithm: Extension of ADMM Algorithm in

Solving PDE Constrained Optimal Control Problem

Input parameters and operators ρ, α, M , G , C , D

Initialize U 0, F 0, Z 0, ξ0
1 =µ0/ρ, ξ0

2 =λ0/ρ

Set H º 0, Q º 0 (symmetric and positive definite)

For k = 0,1,2, · · · ,do
| Compute U k+1 using eqn. (52)

| Compute F k+1 using eqn. (53)

| Compute Z k+1 using eqn. (54)

| Update ξk+1
1 and ξk+1

2 using eqns. (57) and

(58) respectively.

| Until Convergence according to eqn. (73)

End (for)
Return U k+1, F k+1, Z k+1, J∗, ξk+1

1 , ξk+1
2
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5. Numerical Experiments

Considering a PDE constrained optimal control described

heat transfer model written as follows:

min
u, f

∫ 5

0

∫ π

0
f 2(x, t )d xd t +

∫ 5

0
[u2

1(t )+2u2
2(t )]d t ,

s.t
∂2 f (x, t )

∂x2 = ∂ f (x, t )

∂t
,

f (x, t ) > sin(x)sin(
πt

5
) − 0.7,

f (x,0) = sin(x) − 0.7,

f (0, t ) = u1(t ),

f (π, t ) = u2(t ),

t ∈ [0,5], x ∈ [0,π],

This section illiterates, via a number of computational exper-

iments, the effects of different penalty parameter selection

on the number of iterations required to reach the stopping

criteria on the above problem as posed by Ghobadi et. al in

[2] and Betts and Campbell in [1]. The experiment involves

selecting the termination (stopping) criteria εr el = 10−k and

εabs = 10−k , k = 3,4,5, as relative and absolute tolerances re-

spectively for the convergence of the algorithm. The algo-

rithm was implemented with a MATLAB subroutine running

on a Pentium V Computer with 4.0 GB RAM and 1.7 GHz CPU.

The discretization step in time is largely smaller that of the

spacial step to keep it feasible; though the implicit Crank-

Nicholson numerical scheme used for the discretization of

the PDE keeps it unconditionally stable. Below are the results

of the experiment; Table 2 above shows the numbers of iter-
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Figure 1: The effects of tolerance on varying relaxation factors
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Figure 2: The effects of tolerance on varying penalty parameters
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h = 0.20 h = 0.10 h = 0.05

α 10−4 10−5 10−4 10−5 10−4 10−5

1.20 235 294 192 240 164 210

1.40 86 128 669 107 56 93

1.60 52 82 41 67 32 58

1.80 37 60 28 49 22 41

2.00 28 47 21 38 16 32

Table 2: Effects of tolerance & time-steps h on varying relaxation factors (ρ =
0.1, δ= 1/3)

ations for the varying relaxation parameters α when the tol-

erance is fixed for a particular step size in time h and penalty

parameter ρ. The step sizes were only kept for h = 0.20, h =
0.10 and h = 0.05. For a fixed choice of the relaxation fac-

tor α = 2.0, Tolerance Tol . = 10−3 and step-size ρ = 0.1, the

dual sum ||r k+1
3 ||2 = ||r k+1

1 + r k+1
2 ||2, the distances ||r k+1

1 ||2 =
||µk −µ∗||2 and ||r k+1

2 ||2 = ||λk −λ∗||2 were plotted against the

iteration as shown below in figures 4, 5 and 6 respectively.

The convergence of the dual residual sum follows same as the

monotonically decreasing quantity; that is ||r k+1
3 ||2 ≤ V k .
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Figure 4: The response of dual residual sum to iteration

Table 3 above shows the varying penalty parameters ρ for

same fixed α and various values of time step size h. The iter-

ation was plotted against the dual residual ||sk ||2 and the pri-

mal variables (||U k+1||2, ||F k+1||2, pk ) and the distance ||Z k −
Z∗||2 for a fixed choice of the relaxation factor α= 2.0, Toler-

ance Tol . = 10−3 and step-size ρ = 0.1. It was however ob-

served, as expressed in figures 7, 8 and 9 respectively that

the residuals of the algorithms decrease after subsequent it-
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erations. This then indicates convergence of the algorithm.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

iterations

s
k

 

 

||sk||2(dual)
α = 2.0
ρ = 0.1
Tol. = 10−3

Figure 7: The response of dual residuals (sk ) to iteration

Table 4 below shows the sparsity of the compact form of the

model for varying and fixed step-sizes in time and space re-

spectively; with the optimal results obtained at few iterations

of the ADMM. It was observed that the level of sparsity in-

creases for reducing step sized which consequently reduces

the computational burden in the iterative process. Table 5

h = 0.20 h = 0.10 h = 0.05

ρ 10−4 10−5 10−4 10−5 10−4 10−5

0.10 91 124 111 149 184 245

0.20 39 85 48 66 79 107

0.40 19 30 25 38 43 65

0.60 15 22 18 29 32 51

0.80 20 38 13 23 25 43

1.00 84 156 13 20 19 35

Table 3: Effects of tolerance & time-steps h on varying penalty parameters
(α= 1.6, δ= 1/3)
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Figure 8: The response of primal variables to iteration

Figure 9: The effects of iterations on the distance norm ||Z k −Z∗||2

shows the results of the problem for the varying values of the

parameters and step size with the optimal results obtained at

few iterations of the ADMM. The results obtained on MAT-

LAB subroutine were compared with those of Ghobadi et al.

in [2] for various time grid points (N ) ranging from N = 1000

to 8000 ran on MOSEK software. Table 6 below shows the op-

timal objective functional values generated at varying num-

bers N of time grid points (TGP) for fixed number of grid-

points in space kept at n = 10. The results in [2] when im-

plemented on MOSEK is same as that obtained by the ADMM

at a shorter Central Processing Unit (CPU) time though with

higher iteration cycles due to high rate of convergence; using

the tolerance of tol . = 10−4. This clearly shows that the rate

of convergence of the proposed algorithm is higher than that

of MOSEK.

6. Conclusions

The extension of the ADMM to solving heat transfer prob-

lem as an example of PDE-based optimal control problems

(OCP) with equality-Inequality constraints was well studied.

The PDE-based OCP was transformed into a discretized con-

vex quadratic optimization problem amenable to the ADMM.

h = 0.20 h = 0.10 h = 0.05

(N,n) (25,10) (50,10) (100,10)

Non-zero 325 650 1300

Zero 105300 421850 1688700

Size 105625 422500 1690000

Sparsity 99.69% 99.85% 99.92%

Non-zero 883 1783 3583

Zero 67867 273217 1096417

Size 68730 275000 1100000

Sparsity 98.74% 99.35% 99.67%

Table 4: Sparsity from the Compactification of the problem Model with δ =
1/3
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h = 0.50 h = 0.10

10−4 10−5 10−4 10−5

||U || 0.476610 0.476655 0.476600 0.476627

||F || 0.245101 0.245661 0.239198 0.239730

||J∗|| 0.476611 0.476713 0.476611 0.476659

Iter.(k) 70 96 33 49

Time 0.09282 0.11094 0.08385 0.11052

(N ,n) (10,4) (10,4) (25,4) (25,4)

Table 5: Summary of Computational results at optimum parameters (ρ∗ =
1.60, α∗ = 2.00, δ= 1/3)

Obj. values iterations k (time/sec)

N [2] proposed [2] proposed

1000 0.4741987 0.475758 16(0.26) 112(0.11)

2000 0.4741986 0.475781 18(0.43) 120(0.32)

4000 0.4744534 0.476010 18(0.84) 132(0.47)

8000 0.4745807 0.476620 24(2.04) 140(1.02)

Table 6: Comparison of Computational results at optimum

The implicit Crank Nicolson method and the 3rd order Simp-

sons rule were used for the discretization of the constraints

and cost functional respectively with high feasibility, uncon-

ditionally stability and well-conditioned matrices. The ADMM

algorithm converges faster with higher level of accuracy, low

processing time and low memory requirements, when com-

pared with that of Ghobadi et. al [2]. Moreover, this approach

can as well be applied to other PDE-based optimization prob-

lems like that of wave equations or problems involving inte-

gral (entropy) functions.
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