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Abstract

This paper introduces a novel family of fourth-order hybrid beta polynomial kernels tailored for statistical analysis. The efficacy of these kernels
is evaluated using two principal performance metrics: asymptotic mean integrated squared error (AMISE) and kernel efficiency. Comprehensive
assessments were conducted using both simulated and real-world datasets, enabling a thorough comparison with conventional fourth-order poly-
nomial kernels. The evaluation process entailed computing AMISE and efficiency metrics for both the hybrid and classical kernels. Consistently,
the results illustrated the superior performance of the hybrid kernels over their classical counterparts across diverse datasets, underscoring the
robustness and effectiveness of the hybrid approach. By leveraging these performance metrics and conducting evaluations on simulated and real-
world data, this study furnishes compelling evidence supporting the superiority of the proposed hybrid beta polynomial kernels. The heightened
performance, evidenced by lower AMISE values and elevated efficiency scores, strongly advocates for the adoption of the proposed kernels in
statistical analysis tasks, presenting a marked improvement over traditional kernels.
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1. Introduction

In modern statistical practice, data visualization plays a cru-
cial role in creating visual representations of data sets [1, 2].
One technique that has gained significant attention is kernel
density estimation (KDE), which involves constructing a prob-
ability density estimate from observed data using parametric
or nonparametric methods, or a combination of both (semi-
parametric approach). Introduced by [3], and further develop-
ment through the subsequent contributions of [4–6], KDE has
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become widely used in the statistical and scientific communi-
ties.

The parametric approach in KDE relies on assuming a known
parametric family of distributions, requiring model building and
prior knowledge of the data’s underlying equations [7, 8]. How-
ever, this approach faces challenges when dealing with multi-
modal densities [9]. On the other hand, nonparametric methods,
such as the nonparametric kernel density estimator (NKDE), al-
low the data to determine the density estimate without relying
on specific assumptions. These methods are particularly useful
when the population data has an unknown distribution or when
the sample size is small. Nonparametric methods, including
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NKDE, are flexible and widely applicable, as they do not rely
on rigid assumptions [10, 11].

NKDE is a robust and elegant smoothing method used in
statistical and related problems [12, 13]. It finds applications
in various fields, such as econometrics [14], insurance [15], cli-
matology with emphasis on typhoon genesis [16], differential
equations [17], and several others. KDE is a widely employed
nonparametric technique used in statistics, data analysis, and
machine learning to estimate the probability density function
(PDF) of a random variable [6, 18]. The fundamental concept of
kernel density estimation involves placing a kernel function at
each data point and summing them up to approximate the PDF.
The choice of the kernel function and bandwidth parameters
significantly affects the quality of the density estimate [9, 18].

Commonly used kernel functions in KDE include the Gaus-
sian, Epanechnikov, and biweight kernels, each with its own
properties and impact on the estimated density [9, 18]. For in-
stance, the Gaussian kernel is smooth and bell-shaped, while
the Epanechnikov kernel has a flat central region and sharp tails
[19].

Although selecting the optimal bandwidth poses challenges
for the NKDE method, and there may be minor challenges as-
sociated with kernel functions, these factors do not diminish
the importance of choosing and developing appropriate kernel
functions [20]. In this context, this article proposes a family of
fourth-order hybrid beta polynomial kernels. These kernels aim
to address challenges related to higher AMISE in lower-order
kernels and strive to improve the performance of kernel density
estimation.

The subsequent sections of this article are organised as fol-
lows: Section 2 provides a comprehensive methodology, in-
cluding an introduction to KDE and a discussion on error and
efficiency criteria. This section covers both the second-order
classical kernels and the proposed hybrid kernels. Section 3 fo-
cuses on the development of higher-order kernels. It outlines
the construction process for both the fourth-order classical ker-
nels and the newly proposed fourth-order hybrid kernels. In
Section 4, we delve into the numerical verification of the re-
sults obtained. This section highlights the experimental pro-
cedures employed to evaluate the performance of the kernels,
including Monte Carlo simulations and real-life experiments.
Lastly, in Section 5, we present the discussion of the results and
draw conclusions based on the findings obtained from the eval-
uations conducted in the previous sections. This section serves
as a comprehensive summary of the article’s main outcomes
and their implications.

1.1. Preliminaries

To establish the foundation for this article, we introduce the
following definition and lemma:

Definition 1.1. For a given integer ℓ, let kℓ(t) be a user-chosen
real-valued function defined for t ∈ (−∞,∞) such that∫

kℓ(t) dt = 1. (1)

We define the function µ j(kℓ(t)) as follows:

µ j(kℓ(t)) =
∫

t jkℓ(t) dt, 0 ≤ j ≤ ℓ. (2)

The function µ j(kℓ(t)) has the following properties:

µ j(kℓ(t)) =


1, if j = 0,
0, if 1 ≤ j ≤ ℓ − 1,
µℓ , 0, if j = ℓ.

(3)

Remark 1. The function kℓ(t) that satisfies Eq. (3) is referred
to as an ℓ-th order symmetric kernel.

Remark 2. If ℓ = 2, k2(t) is called a second-order kernel, and
it is referred to as a lower-order kernel.

Remark 3. If ℓ ≥ 4, kℓ(t) is called a higher-order kernel, and it
is referred to as a bias-reducing kernel. In particular, if ℓ = 4,
k4(t) is called a fourth-order kernel.

Lemma 1.1. Let X1, X2, · · · , Xn be a random sample of size p
collected on a random variable X. If t ∈ R is a dummy variable,
then as p→ ∞, (1 − x2)p

→ e−
t2
2 .

Proof. Consider a random sample X1, X2, · · · , Xn of size p from
a random variable X with mean µ and variance σ2. We define
the random variable Zp as follows:

Zp =

x̄p−µ

σ
√

p
. (4)

where,

x̄p =
1
p

p∑
i=1

xi. (5)

As p tends to infinity, the distribution of Zp converges to a stan-
dard normal distribution, N(0, 1). Let’s define the random vari-
able Ui as:

Ui =
xi − µ

σ
. (6)

Since the sample X1, X2, · · · , Xn is independent and identically
distributed, the random variables Ui are also independent and
identically distributed. Thus, we have E(Ui) = 0 and Var(Ui) =
1. The moment-generating function (mgf) of Ui can be ex-
pressed as:

mUi (t) = 1 +
t2

2!
E(U2

i ) +
t3

3!
E(U3

i ) + · · · . (7)

Now, considering Eqs. (4) and (6), we can write Zp as:

Zp =
1
√

p

∑
i = 1pUi. (8)

Since the Xi’s are independent, the Ui’s are also independent.
Therefore, the mgf of Ui can be written as:

mUi (t) =
(
1 +

t2

2!
E(U2

i ) +
t3

3!
E(U3

i ) + · · ·
)p

. (9)
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Taking the natural logarithm of both sides of Eq. (9), we get:

ln mUi (t) = p ln


1 +

t2

2!
E(U2

i )+

t3

3!
E(U3

i ) + · · ·

 . (10)

We can rewrite Eq. (10) as:

ln mUi (t) = p ln


1 −

(
−

t2

2!
E(U2

i )

−
t3

3!
E(U3

i ) − · · ·
)
 . (11)

Now, let’s consider (1 − x2)p. By taking the natural logarithm
of this expression, we have:

ln (1 − x2)
p
= p ln(1 − x2). (12)

Expanding Eq. (12) using the Taylor series, we obtain:

ln (1 − x2)
p
= p

(
−x2 −

x4

2
− · · ·

)
. (13)

Now, let x2 = −( t2

2p +
t3

3!p
1
2

E(U3
i )). Substituting this into Eq.

(13), we get:
ln mUi (t) = p ln

(
1 − x2

)
.

This implies that:

ln (1 − x2)
p
= p

−
 t2

2!p
+

t3

3!p
3
2

E(U3
i


−−  t2

2!p +
t3

3!p
3
2

E(U3
i

2

2
− · · · .

(14)

Simplifying Eq.(14), we have:

ln (1 − x2)
p
= −

 t2

2!
+

t3

3!p
1
2

E(U3
i )

−−  t2

2!p
1
2
+ t3

3!p E(U3
i )

2

2
− · · · .

Thus, as p→ ∞, ln (1 − x2)p
→ − t2

2 , and therefore, (1 − x2)p
→

e−
t2
2 which completes the proof.

2. Methodology

2.1. Kernel Density Estimation

The KDE is a nonparametric method used to estimate the
PDF of a random variable based on a sample of observations.
Given a random sample X1, X2, · · · , Xn of size n collected from
a random variable X with probability distribution function F(x),

the KDE estimates the PDF f (x) at a point x using the following
formula:

f̂h(x) =
1
nh

n∑
i=1

k
( x − Xi

h

)
. (15)

where, h is the smoothing parameter, commonly referred to as
the bandwidth. The bandwidth controls the width of the kernel
function and influences the smoothness of the estimated den-
sity. A smaller bandwidth leads to a rougher estimate with more
variability, while a larger bandwidth produces a smoother esti-
mate with reduced variability.

The kernel function k(t) determines the shape of the density
estimation at each data point, and it must satisfy certain proper-
ties. Typically, the kernel function is chosen to be a symmetric
unimodal density function which is the desired properties of the
estimated density. Commonly used kernel functions include the
Gaussian, Epanechnikov, and biweight kernels [9, 18]. These
kernel functions must satisfy the following axioms:

i.
∫

k(t)dt = 1,

ii.
∫

tk(t)dt = 0,

iii.
∫

t2k(t)dt , 0.


(16)

These axioms guarantee that the kernel function integrates to
unity, has zero mean, and a non-zero second moment. These
properties enable accurate smoothing and preserve the essential
characteristics of the estimated density. By adjusting the band-
width parameter h and selecting an appropriate kernel function
k(t), the kernel density estimator provides a flexible and versa-
tile tool for estimating probability density functions from em-
pirical data.

2.2. Error Criterion
As mentioned earlier, the kernel function is typically chosen

to be a non-negative density function that is symmetric around
zero. However, recent research has shown that relaxing the con-
ditions for the kernel function can lead to better performance.
In this paper, we consider kernel functions that satisfy the fol-
lowing axioms, as discussed in Refs. [9, 20, 21] (building on
the arguments in Refs. [6, 18]):

i.
∫

k(t)dt = 1,

ii.
∫

tk(t)dt =
∫

t2k(t)dt =
∫

t3k(t)dt = 0,

iii.
∫

t4k(t)dt , 0.

(17)

Previous studies have mainly focused on reducing global errors,
as demonstrated in works [8, 22]. Thus, the primary objective
of this paper is to introduce a new set of kernel functions that
can significantly reduce global errors. We propose the use of
fourth-order hybrid beta polynomial kernels, which form a fam-
ily of kernel functions specifically designed to minimize global
errors. This shall be constructed in Subsection 3.1.2.

3
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Theorem 2.1. Let f be a sufficiently smooth and bounded den-
sity function, and let k(t) satisfy the conditions in Eq. (17).
If x is a point with f (x) > 0, and f is continuously differ-
entiable up to the fourth order in a neighbourhood of x, then
the asymptotic mean integrated squared error (AMISE) of any
fourth-order kernel can be expressed as:

AMISE f̂h(x) =

h8

(4!)2

∫
( f (4)(x))

2
dx

(∫
t4k(t)dt

)2

+
1

nh

∫
k2(t)dt.

Proof. See Ref. [8]

The foundation for our performance metrics lies in the the-
oretical framework established by Theorem 2.1. Building upon
this, we further develop a comprehensive and generalized AMISE,
as detailed and substantiated in the subsequent theoretical expo-
sition provided in Theorem 2.2.

Theorem 2.2. Expanding on Theorem 2.1, if we define k2m+2
as the (2m + 2)th-moment of any fourth-order kernel, and if f
is continuously differentiable up to the (2m + 2)th-order in a
neighborhood of x, then the generalized AMISE of any fourth-
order kernel can be formulated as follows:

AMISEE2m =

(
4m + 5
4m + 4

) (
4m + 4

((2m + 2)!)2

)
∫

( f (2m+2))
2
dx

1
4m+5 ((k2m+2)2)

1
4m+5 (

∫
k2(t)dt)

4m+4
4m+5

n−
4m+4
4m+5 .

Proof. The global error for evaluating the discrepancy between
the estimated density and the true density, as pointed out by [8],
is given by:

MISE f̂h(x) =
∫

bias2 f̂h(x)dx +
∫

var f̂h(x)dx. (18)

where

bias f̂h(x) = E f̂h(x) − f (x). (19)

and

var f̂h(x) = E2 f̂h(x) − (E f̂h(x))
2
. (20)

Assuming that the underlying density is smooth enough and the
kernel’s fourth moment is finite, it is possible to use Taylor’s
series expansion to obtain the global error scheme of the esti-
mator, which can be expressed as follows: Using Eq. (19), we
have:

bias f̂h(x) =
∫

f̂h(x) f (y)dy − f (x). (21)

Substituting Eq. (15) into Eq. (21), we have:

bias f̂h(x) =
1
h

∫
k
( x − y

h

)
f (y)dy − f (x). (22)

Let t = (x − y)/h, then Eq. (22) becomes:

bias f̂h(x) =
∫

k (t) f (x − th)dt − f (x). (23)

Using Taylor series expansion up to the (2m + 2)th - order on
Eq. (23), we have:

bias f̂h(x) =
∫

k (t)[ f (x) − th f (1)(x) +
1
2!

t2h2 f (2)(x)−

1
3!

t3h3 f (3)(x) + · · · −
1

(2m + 1)!
t2m+1h2m+1 f (2m+1)(x)+

1
(2m + 2)!

t2m+2h2m+2 f (2m+2)(x) + · · · − · · · ]dt − f (x).

Simplifying this, we have:

bias f̂h(x) = ( f (x)
∫

k (t) dt − h f (1)(x)
∫

tk(t)dt+

1
2!

h2 f (2)(x)
∫

t2k(t)dt −
1
3!

h3 f (3)(x)
∫

t3k(t)dt + · · ·

−
1

(2m + 1)!
h2m+1 f (2m+1)(x)

∫
t2m+1k(t)dt +

1
(2m + 2)!

×

h2m+2 f (2m+2)(x)
∫

t2m+2k(t)dt + · · · ) − f (x).

(24)

Applying the conditions in Eq. (17) and the (2m + 2)th - mo-
ment (k2m+2) in the statement of the theorem to Eq. (24), we
have:

bias f̂h(x) =
1

(2m + 2)!
h2m+2 f (2m+2)(x)(k2m+2)2 + o(h2m+2).

(25)

Similarly, we can derive the expression for the variance term.
From Eq. (20), var f̂h(x) is given as:

var f̂h(x) =
1

nh2

∫
k2

( x − y
h

)
f (y)dy. (26)

As in the case bias, let t = (x − y)/h, hence Eq. (26) becomes:

var f̂h(x) =
1

nh2

∫
k2 (t) f (x − th)dt. (27)

Thus, using the same Taylor’s series expansion as in bias term,
Eq. (27) becomes:

var f̂h(x) =
1

nh

∫
k2(t)[ f (x) − th f (1)(x) + o(h)]dt

=
1
nh

f (x)
∫

k2(t)dt + o
(

1
nh

)
.

Hence, the var f̂h(x) is given as:

var f̂h(x) =
1

nh
f (x)

∫
k2(t)dt + o

(
1
nh

)
. (28)

Substituting Eqs.(25) and (28) into Eq. (18), we have:

MISE f̂h(x) =
h4m+4

((2m + 2)!)2m+2×∫
(( f (2m+2)(x))

2
dx)(k2m+2)2 +

1
nh
×∫

k2(t)dt + o(h4m+4) + o
(

1
nh

)
.

(29)

4
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Simplifying further, we neglect the higher-order terms in Eq.
(29) and obtain the AMISE as follows:

AMISE f̂h(x) =
h4m+4

((2m + 2)!)2m+2×∫
(( f (2m+2)(x))

2
dx)(k2m+2)2 +

1
nh

∫
k2(t)dt.

(30)

We differentiate Eq. (30) with respect to h and solving for h by
setting the resultant differential equation to zero, we have:

h2m
AMISE =

(
((2m + 2)!)2

4m + 4
·

∫
( f (2m+2)(x))

2

dx
) 1

4m+5

× ((k2m+2)2)
1

4m+5 (
∫

k2(t)dt)
1

4m+5

n−
1

4m+5 .

(31)

Now, put Eq. (31) into Eq. (30) and simplify completely, then
we have the generalized AMISE that is free of h-the optimal
bandwidth. And thus the generalized AMISE is given by:

AMISE2m =

(
4m + 5
4m + 4

) (
4m + 4

((2m + 2)!)2

∫
( f (2m+2))

2
dx

) 1
4m+5

× ((k2m+2)2)
1

4m+5 (
∫

k2(t)dt)
4m+4
4m+5

n−
4m+4
4m+5 .

This completes the proof.

2.3. Efficiency Criterion

Past research has predominantly focused on investigating
the efficiency of univariate kernels [8, 23]. While [24] have
explored the efficiency of Gaussian and biweight kernels, their
emphasis was primarily on second-order univariate kernels.

In this article, our objective is twofold. First, we aim to
calculate the global error of the fourth-order beta polynomial
kernel. Second, we seek to examine its efficiency by comparing
it with the Epanechnikov kernel, known for yielding the mini-
mum asymptotic mean integrated squared error (AMISE) [18].

Efficiency in the context of symmetric kernels is denoted
as E f f (Ksk) and defined by Eq. (32). It represents the ratio
of the AMISE of the Epanechnikov kernel to that of any other
symmetric kernel.

Eff(Ksk) =
(

C(Ke)
C(Ksk)

) 5
4

. (32)

Here, C(Ksk) is a constant associated with the kernel under con-
sideration, determined by (

∫
t2k(t)dt)

2
5 (
∫

K2(t)dt)
4
5 . C(Ke) rep-

resents the Epanechnikov kernel constant. The general expres-
sion for the efficiency of such second-order univariate kernels
is defined by:

Eff2m(Ksk) =
(

C2m(Ke)
C2m(Ksk)

) 4m+1
4m

. (33)

where C2m(Ksk) = (
∫

t2mk(t)dt)
2

4m+1 (
∫

k2(t)dt)
4m

4m+1 is the general-
ized higher-order constant of any second-order beta polynomial
kernel. The expression

∫
k2(t)dt corresponds to the L2 norm,

whereas
∫

t2mk(t)dt signifies the 2mth moments of second-order

symmetric beta polynomial kernels, as defined in Eqs. (36) and
(48). C2m(Ke) in Eq. (33) denotes the generalized higher-order
constant of the second-order Epanechnikov kernel. However, if
we employ the regularity conditions in Eq. (17), the efficiency
equation becomes:

Eff(Ksk) =
(

C(Ke)
C(Ksk)

) 9
8

. (34)

Thus, the generalized efficiency scheme for evaluating the effi-
ciency of any fourth-order beta polynomial kernel, by extending
the efficiency equation in Eq. (34), is given by:

Eff2m+2(Ksk) =
(

C2m+2(Ke)
C2m+2(Ksk)

) 4m+5
4m+4

. (35)

where C2m+2(Ksk) = (
∫

t2m+2k(t)dt)
2

4m+5 (
∫

k2(t)dt)
4m+4
4m+5 is the gen-

eralized higher-order constant of any fourth-order beta polyno-
mial kernel. The L2-norm and (2m + 2)th moments are as de-
fined previously.

2.4. A Family of Second-Order Classical Beta Polynomial Ker-
nels

The family of second-order classical beta polynomial ker-
nels is an important family of kernel functions used in kernel
density estimation for data visualization [20]. These kernels
provide smoother estimates with more derivatives as the degree
of the function increases, and they have been widely used in
various applications of KDE [17, 25, 26]. They offer flexibility
in shaping the density estimate and can capture different pat-
terns and features in the data. The general form of second-order
classical beta polynomial kernels is given by the formula:

k[2,p](t) =

b1(1 − t2)
p
, |t| ≤ 1,

0, elsewhere.
(36)

where b1 =
(2p+1)!!
2p+1 p! , p is the power of the family and takes val-

ues p = 0, 1, 2, · · · . The range of integration is [−1, 1], and
the double factorial (2p + 1)!! = (2p + 1)(2p − 1) · 5 · 3 · 1.
Different values of p produce different kernel functions. For
example, p = 0 produces a uniform kernel, p = 1 produces a
second-order Epanechnikov kernel, p = 2 produces a biweight
kernel, p = 3 produces a triweight kernel, p = 4 produces
a quadriweight kernel, and so on. These kernel functions are
given in Eqs.(37), (38), (39), (40), and (41), respectively. As
p → ∞, Eq.(36) produces a second-order Gaussian kernel,
given by Eq.(42).

k[2,0](t) =
1
2

(1 − t2)0. (37)

k[2,1](t) =
3
4

(1 − t2)1. (38)

k[2,2](t) =
15
16

(1 − t2)2. (39)

k[2,3](t) =
35
32

(1 − t2)3. (40)

5
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k[2,4](t) =
315
256

(1 − t2)4. (41)

k[2,ϕ](t) =
1
√

2π
e−

1
2 t2
. (42)

Eq. (36) sets the foundation for the construction of fourth-order
classical beta polynomial kernels in Section 3.

2.5. A Family of Second-Order Hybrid Beta Polynomial Ker-
nels

In a previous work by Afere [27], a family of second-order
hybrid beta polynomial kernels was introduced using the fol-
lowing formula:

k[2,h](t) = ρ1k[2,p](t)+
ρ2k[2,p+1](t); 0 < ρ1 < 1, ρ1 + ρ2 = 1.

(43)

Here, k[2,p](t) is defined as in Eq. (36), and k[2,p+1](t) is the
(p + 1)st power of k[2,p](t). When we set ρ1 =

1
2 , Eq. (43)

simplifies to:

k[2,h](t) =
1
2

k[2,p](t) +
1
2

k[2,p+1](t). (44)

The (p + 1)st power of k[2,p](t) is defined as:

k[2,p+1](t) =

b2(1 − t2)
p+1
, |t| ≤ 1,

0, elsewhere.
(45)

where b2 =
(2p+3)!!

2p+2(p+1)! , (2p + 3)!! = (2p + 3)(2p + 1) · . . . · 3 · 1
denotes the double factorial. Substituting Eqs.(36) and (45) into
Eq. (44) and simplifying, we obtain:

k[2,h](t) = a1(t, p)
b1

4(p + 1)
(1 − t2)

p
. (46)

where a1(t, p) = [(4p + 5) − (2p + 3)t2]. By letting k[2,h](t) =
kh

[2,p](t), Eq. (46) becomes:

kh
[2,p](t) =


a1(t, p)b1

4(p + 1)
(1 − t2)

p
, |t| ≤ 1,

0, elsewhere.
(47)

The family of kernel functions in Eq.(47) can be further gener-
alized using arithmetic progression, leading to:

kh
[2,p](t) =


b1a2

(
1 − a3t2

)
×

(1 − t2)
p
, |t| ≤ 1,

0, elsewhere.

(48)

where a2 =
4+ 5

p

4+ 4
p

and a3 =
2+ 3

p

4+ 4
p
. The specific kernel functions

for p = 1, p = 2, p = 3, and p = 4 can be written as follows:

kh
[2,1](t) =

1
8

(9 − 5t2)k[2,1](t),

kh
[2,2](t) =

1
12

(13 − 7t2)k[2,2](t),

kh
[2,3](t) =

1
16

(17 − 9t2)k[2,3](t),

kh
[2,4](t) =

1
20

(21 − 11t2)k[2,4](t).

(49)

As p → ∞, we have b1 →
2
√

2π
, a2 → 1, a3 →

1
2 , and by

Lemma 1.1, (1 − t2)p → e−
1
2 t2

. Therefore, Eq. (48) tends to:

kh
[2,ϕ](t) =


(
2 − t2

)
k[2,ϕ](t), t ∈ (−∞,∞),

0, elsewhere.
(50)

Eq. (45) represents the family of second-order hybrid beta poly-
nomial kernels, which will be utilized in Section 3.1.2 to con-
struct the proposed family of fourth-order hybrid beta polyno-
mial kernels. When we combine Eqs.(48) and (50), we obtain
the following expression for kh

[2,p](t) as:

kh
[2,p](t) =

b1a2(1 − a3t2)(1 − t2)
p
, p < ∞,

(2 − t2)k[2,ϕ](t), p→ ∞.
(51)

On using the properties of second-order kernels in Eq. (16) on
Eq. (51), we have:∫

k(t)dt =


b1
√
π Γ(p+2)

(p+1)Γ(p+ 3
2 )
= 1, if p < ∞,

1, if p→ ∞.
(52)

∫
tk(t)dt =

0, if p < ∞,
0, if p→ ∞.

(53)

∫
t2k(t)dt =


b1
√
πΓ(p+3)

2(p+1)Γ(p+ 7
2 )
, 0, if p < ∞,

−1 , 0, if p→ ∞.
(54)

Eqs. (52)-(54) demonstrate that the family of second-order hy-
brid kernels exhibits the following characteristics: they inte-
grate to unity, possess a zero mean, and have a non-zero second
moment. This observation underscores that every kernel within
this family possesses symmetry, as it satisfies all the criteria out-
lined in Eq. (16). To provide a visual representation of the ker-
nels, Figure 1(a) and (b) present the graphs of the second-order
classical beta polynomial kernels and the second-order hybrid
beta polynomial kernels for p = 1, p = 2, p = 3, and p = 4.
Figure 1 consists of two panels that showcase the shapes of
the second-order classical beta polynomial kernels and the pro-
posed second-order hybrid beta polynomial kernels. In panel
(a), (Figure 1(a)), the curves represent the second-order clas-
sical beta polynomial kernels, where each curve corresponds
to a specific value of the parameter p. Analyzing these curves
allows us to observe the variations in the shape of the classi-
cal kernels as p changes. Thus, as p varies, the shape of the
kernel changes. The curves exhibit a characteristic bell-shaped
profile, which is a common feature of many kernel functions.
With increasing values of p, the kernels become narrower and
taller. This indicates that as p increases, the kernel concentrates
its mass around the central point, making it more peaked. This
visualization helps in comprehending the influence of different
p values on the kernel shape.

In Figure 1(b), we observe the second-order hybrid beta
polynomial kernels, each curve representing a specific value of
p. These hybrid kernels, akin to their classical counterparts, ex-
hibit varying shapes in response to changes in p. Notably, for

6
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Figure 1: Plot of shapes of: (a) second-order classical beta polynomial kernels and (b) proposed second-order hybrid beta polynomial kernels for different values
of p.

equivalent p values, the proposed hybrid kernels appear wider
and shorter compared to the classical ones. This indicates that
the hybrid approach tends to yield kernels with a broader spread
and flatter profile.

Comparing the curves in Figure 1(b) to those in Figure 1(a)
allows us to discern the distinct shapes introduced by the hy-
bridization process. The discernible differences in shape em-
phasize the influence of the hybridization on the behavior of
the kernels.

Overall, Figure 1 provides a concise visual comparison be-
tween the shapes of second-order classical and hybrid beta poly-
nomial kernels. This comparison aids in understanding how the
hybridization process affects the kernel shape, which, in turn,
assists in assessing their suitability for various applications, in-
cluding density estimation.

3. Higher-Order Kernels

In Simonoff’s investigation [13], the issue of bias contri-
bution to the mean integrated squared error was addressed by
introducing the concept of selecting a kernel function. Tradi-
tionally, kernel functions are required to have a second moment
greater than zero [8]. However, by relaxing this requirement
and setting the second moment of the kernel function to zero,
it becomes possible to construct a kernel function with a non-
zero fourth moment. This modification helps to reduce the bias
to the order of h4.

It is important to note that this approach is applicable under
certain conditions for the density function f . Firstly, f should
have a continuous distribution [5]. Additionally, f must possess
a squared integrable fourth moment, meaning that the integral
of f 2 over its entire range should converge [13]. Finally, the
density function f should be monotonic, indicating that it con-
sistently increases or decreases without fluctuations [28]. By

satisfying these conditions and adopting the modified kernel
function, the bias contribution to the mean integrated squared
error can be reduced significantly [13].

3.1. Construction of Higher-Order Kernels
To construct higher-order kernels, we can employ the con-

cept of bias-reducing kernels, which combine the characteris-
tics of both negative and nonnegative kernels and can lead to
faster convergence rates [21, 29]. Several rules for generat-
ing such kernels have been proposed in the literature, including
those presented by [30]. In this paper, we will revisit the rule
presented by [31], which involves starting with an ℓ-th order
Gaussian kernel k[ℓ](t) defined as:

k[ℓ](t) =
1
√

2π
e−

1
2 t2
. (55)

The first and second derivatives of k[ℓ](t) are given by:

k′[ℓ](t) = −t
1
√

2π
e−

1
2 t2
. (56)

k′′[ℓ](t) =
1
√

2π
(t2 − 1)e−

1
2 t2
. (57)

By evaluating these derivatives at t = 0, we obtain:

k[ℓ](0) =
1
√

2π
. (58)

k′[ℓ](0) = 0. (59)

k′′[ℓ](0) = −
1
√

2π
. (60)

Expanding k[ℓ](t) using the univariate Taylor series expansion
up to order 2, we have:

k̂[ℓ](t) =
1
0!

k[ℓ](0) +
1
1!

k′[ℓ](0) +
1
2!

k′′[ℓ](0). (61)
7
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Substituting Eqs. (58), (59), and (60) into Eq. (61), we have:

k̂[ℓ](t) = k[ℓ](0) −
1
2

k′′[ℓ](0),

=
1
√

2π
e−

1
2 t2
−

1
2

(t2 − 1)
1
√

2π
e−

1
2 t2
,

=
1
√

2π
e−

1
2 t2
−

1
2

t2 1
√

2π
e−

1
2 t2
+

1
2

1
√

2π
e−

1
2 t2
,

=

(
1 +

1
2

)
1
√

2π
e−

1
2 t2
−

1
2

t2 1
√

2π
e−

1
2 t2
,

=
3
2

k[ℓ](t) +
1
2

t(−tk[ℓ](t)),

=
3
2

k[ℓ](t) +
1
2

tk′[ℓ](t), where k′[ℓ](t) = −tk[ℓ](t).

Thus, using Definition 1.1, we obtain the generalized formula:

k[ℓ+2,p](t) =
3
2

k[ℓ,p](t) +
1
2

tk′[ℓ,p](t). (62)

Here, k[ℓ+2,p](t) = k̂[ℓ](t). Eq. (62) provides a generalized for-
mula for constructing (ℓ+2)nd order kernels with p as the power
of the kernel family. We will utilize this formula in Subsections
3.1.1 and 3.1.2 to construct the family of fourth-order classi-
cal polynomial kernels and the proposed family of fourth-order
hybrid polynomial kernels, respectively.

3.1.1. Construction of Fourth-Order Classical Beta Polynomial
Kernels

In this subsection, we will construct the family of fourth-
order classical beta polynomial kernels using the (p+1)st power
of Eq. (36). By taking ℓ = 2, Eq. (62) can be rewritten as:

k[4,p](t) =
3
2

k[2,p+1](t) +
1
2

tk′[2,p+1](t). (63)

To find k′[2,p+1](t), we differentiate the (p + 1)st power of Eq.
(36) with respect to t and obtain:

k′[2,p+1](t) = −t
(2p + 3)!
2p+1(p)!

(1 − t2)
p
. (64)

Substituting Eqs. (36) and (64) into Eq. (63), we have:

k[4,p](t) =
3
2

(
b2(1 − t2)

p+1
)
+

1
2

t
(
−

b2(1 − t2)p

p + 1

)
.

Simplifying this expression, we obtain:

k[4,p](t) =

 b2
2 a4(t, p)(1 − t2)p

, if |t| ≤ 1,
0, elsewhere.

(65)

where a4(t, p) = (3 − (2p + 5)t2). Furthermore, by simplifying
Eq. (65) and using arithmetic progression, the family of kernel
functions in Eq. (65) can be generalized as:

k[4,p](t) =


2p(p + 1)b1×

a5(3 − a6t2)(1 − t2)
p
,
|t| ≤ 1,

0, elsewhere.
(66)

where a5 =
2+ 3

p

4+ 4
p

and a6 =
2+ 5

p

2 . Eq. (66) represents the family

of fourth-order classical beta polynomial kernels. Setting ℓ = 2
and using the (p + 1)st power of Eq. (36) leads to this expres-
sion. When p takes on the values 1, 2, 3, and 4, Eq. (66) gives
rise to the fourth-order Epanechnikov, biweight, triweight, and
quadriweight kernels, respectively. These kernels are expressed
as follows:

k[4,1](t) =
5
8

(3 − 7t2)k[2,1](t). (67)

k[4,2](t) =
7
12

(3 − 9t2)k[2,2](t). (68)

k[4,3](t) =
9
16

(3 − 11t2)k[2,3](t). (69)

k[4,4](t) =
11
20

(3 − 13t2)k[2,4](t). (70)

As p → ∞, (2p+1)!!
2p(p−1)! →

1
√

2π
, a5 →

1
2 , a6 → 1, and by Lemma

1.1, (1 − t2)p
→ e−

1
2 t2

. Therefore, Eq. (63) tends to:

k[4,ϕ](t) =

 1
2

(
3 − t2

)
k[2,ϕ](t), if t ∈ (−∞,∞),

0, elsewhere.
(71)

For further details, see [32]. The graph of Eqs.(67), (68), (69),
and (70) is shown in Figure2(a).

3.1.2. Construction of the Proposed Family of Fourth-Order
Hybrid Beta Polynomial Kernels

In this subsection, we will construct the proposed family of
fourth-order hybrid beta polynomial kernels by using the ker-
nels previously constructed in Subsection 2.5. We begin by dif-
ferentiating the family of second-order hybrid beta polynomial
kernels in Eq. (45) to obtain:

(
kh

[2,p]

)′
(t) = −t

[(4p + 3)−

(2p + 3)t2](2p + 1)!!

2p+2(p)!
(1 − t2)

p−1
. (72)

Now, substituting Eqs.(48) and (72) into Eq. (63), we have:

kh
[4,p](t) =

3
2

(
a1(t, p)(2p + 1)!!

2p+3(p + 1)!
(1 − t2)

p
)
+

1
2

t

−t

[(4p + 3)−

(2p + 3)t2](2p + 1)!!

2p+2(p)!
(1 − t2)

p−1

 .
(73)

Simplifying this, the proposed family of fourth-order hybrid
beta polynomial kernels is given as:

kh
[4,p](t) =


b1

8(p + 1)
(α(t, p)−

β(t, p))(1 − t2)
p−1
, |t| ≤ 1,

0, elsewhere.

(74)

8



Afere / J. Nig. Soc. Phys. Sci. 6 (2024) 1631 9

where b1 is as given in Eq. (36), α(t, p) = 2(1+ 2p)!(1+ p)(3−
(3 + 2p)t2) and β(t, p) = (3 + 2p)(3 − (5 + 2p)t2)(1 − t2).

The kernel functions corresponding to the values of p = 1,
p = 2, p = 3, and p = 4 in Eq. (74) as given in Eqs.(75) through
(78) are respectively the fourth-order hybrid Epanechnikov, bi-
weight, triweight, and quadriweight kernels:

kh
[4,1](t) =

3
32

(27 − 70t2 + 35t4)k[2,0](t). (75)

kh
[4,2](t) =

5
32

(13 − 42t2 + 21t4)k[2,1](t). (76)

kh
[4,3](t) =

7
64

(17 − 66t2 + 33t4)k[2,2](t). (77)

kh
[4,4](t) =

9
320

(63 − 286t2 + 143t4)k[2,3](t). (78)

However, as p → ∞, and by using Lemma 1.1, Eq. (74) tends
to

kh
[4,ϕ](t) =


1
2

(6 − 7t2 + t4)k[2,ϕ](t), t ∈ (−∞,∞),

0, elsewhere.
(79)

Eq. (79) is thus the proposed fourth-order hybrid Gaussian ker-
nel. Just as with the second-order hybrid kernels, the suggested
fourth-order hybrid kernels, as presented in Eqs.(74) and (79),
can be merged in the following manner:

kh
[4,p](t) =



λ

8(p + 1)
(α(t, p)−

β(t, p))(1 − t2)
p−1
, p < ∞,

1
2

(6 − t2)(1 − t2)k[2,ϕ](t), p→ ∞,

(80)

where λ is as defined in Eq. (48). Eq.(80) can further be con-
firmed to adhere to the characteristics expected of fourth-order
kernels, as outlined in Eq. (17). This is demonstrated by:∫

k(t)dt =


(2p+1)!!

√
π

2p+1Γ(p+ 3
2 )
= 1, p < ∞,

1, p→ ∞.
(81)

∫
tk(t)dt = · · · =

∫
t3k(t)dt =

0, p < ∞,
0, p→ ∞.

(82)

∫
t4k(t)dt =


3(2p+1)!!

√
π

2p+2(2p+7)Γ(p+ 5
2 )
, 0, p < ∞,

9 , 0, p→ ∞.
(83)

Eqs.(81), (82), and (83), respectively, indicate that the proposed
family of fourth-order hybrid polynomial kernels exhibits the
following noteworthy properties: It functions as a PDF; all of its
odd moments, including the second moment, are equal to zero;
and it possesses a non-zero fourth moment. These characteris-
tics align precisely with the stipulated criteria for higher-order
kernels, as outlined in Eq. (17).

The graphs of the fourth-order classical beta polynomial
kernels and the proposed fourth-order beta kernels for differ-
ent values of p are presented in Figure 2(a) and (b). In the left

panel (Figure 2(a)), the curves represent the shapes of fourth-
order classical beta polynomial kernels, with each curve corre-
sponding to a specific value of the parameter p. By analyzing
these curves, we can observe the variations in the shape of the
classical kernels as p changes. Like the seccond-order kernel,
the curves exhibit a characteristic bell-shaped profile, which is a
common feature of many kernel functions. With increasing val-
ues of p, the kernels become narrower and taller. This indicates
that as p increases, the kernel concentrates its mass around the
central point, making it more peaked. This visualization helps
in understanding the impact of different p values on the kernel
shape.

In the right panel (Figure 2(b)), the shapes of proposed fourth-
order hybrid beta polynomial kernels are depicted. Similarly,
each curve in this panel represents a particular value of p. By
comparing the curves in Subfigure (b) to those in Subfigure (a),
we can observe the differences in shape introduced by the hy-
brid approach. The distinct shapes exhibited by the hybrid ker-
nels highlight the influence of the hybridization process on the
behavior of the kernels.

In a nutshell, Figure 2 provides a visual comparison be-
tween the shapes of fourth-order classical and hybrid beta poly-
nomial kernels for different values of p. It allows for a clear
comparison between the fourth-order classical and the proposed
fourth-order hybrid kernels, showing potential differences in
their behavior. This information can be valuable for selecting
an appropriate kernel for a specific application or dataset. This
comparison also aids in understanding how the hybridization
process affects the kernel shape and is valuable for evaluating
their suitability in various applications.

Table 1: The 4th - Moments and Roughness of Classical and Hybrid Fourth-
Order Beta Polynomial Kernels

Kernels 4th-Moments Roughness
Clas. Hybr. Clas. Hybr.

Epanechnikov − 1
21 − 1

15
5
4

37
32

Biweight − 1
33 − 3

77
805
572

3015
2288

Triweight − 3
143 − 1

39
3780
2431

5215
3536

Quadriweight − 1
65 − 1

55
28413
16796

74781
46189

Table 1 presents the fourth moments and roughness values
of classical and hybrid fourth-order beta polynomial kernels.
The fourth moment provides a measure of the shape and sym-
metry of the kernel, while roughness represents the oscillatory
behavior of the kernel. The values in the table reveal interest-
ing insights about the characteristics of the kernels. The hybrid
kernels consistently have more negative fourth moments com-
pared to their classical counterparts. This indicates that the tails
of the hybrid kernels spread out more than those of the classical
kernels. However, the roughness values for the hybrid kernels
are higher than those for the classical kernels across all kernel
types. This implies that the hybrid kernels provide rougher den-
sity estimates, capturing more local variations in the data.

In a nutshell, the table shows that the proposed hybrid ker-
nels tend to have less heavy tails and smoother shapes com-
pared to their classical versions. This could have implications

9
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Figure 2: Plot of shapes of: (a) fourth-order classical beta polynomial kernels and (b) proposed fourth-order hybrid beta polynomial kernels for different values of
p.

for applications where a smoother kernel with lighter tails is
preferred. The specific numerical values provide a quantitative
measure of these properties for each type of kernel.

4. Numerical Verification of Results

In this section, we will assess the performance of the pro-
posed hybrid kernels in comparison to their classical kernel
counterparts. To evaluate their effectiveness, we employ two
numerical verification methods: Monte Carlo simulation ex-
periments and real-life experiments using the AMISE measure
in Theorem 2.2. Additionally, we compute the efficiencies of
the kernels by using the generalized efficiency criterion in Eq.
(33) to further analyze their performance. By employing these
numerical verification methods, we aim to provide evidence
and demonstrate the effectiveness of the proposed hybrid ker-
nels in practical scenarios. The evaluation of their performance
through Monte Carlo simulation experiments, real-life experi-
ments, and efficiency computations will contribute to the vali-
dation of their superiority over the classical kernels.

4.1. Monte Carlo Experiment

To investigate the performance of the proposed fourth-order
hybrid beta polynomial kernels in both small and large sample
sizes, we conducted a series of simulation experiments. We
employed a Monte Carlo approach with sample sizes of n = 10,
n = 25, n = 75, and n = 300.

In these experiments, we considered a normal mixture den-
sity model defined as X = 1

5 X1 +
1
5 X2 +

3
5 X3, where X1, X2,

and X3 follow normal distributions with means and variances
N(0, 1), N

(
1
4 ,

4
9

)
, and N

(
13
12 ,

25
81

)
respectively.

To estimate the density, we generated a univariate random
sample (X) and calculated its standard deviation. Then, we per-
formed a repeated operation for r = 1000 iterations, using the

AMISE in Theorem 2.2 to evaluate the performance. The aver-
age of the AMISE values (AMISE∗) is computed as:

AMISE∗ =
1
r

r∑
j=1

AMISE2m
j . (84)

where m = 1, 2, · · · . To compute the average AMISE for the
various classical and hybrid fourth-order kernels considered,
we employed Eq. (84). By conducting these simulation exper-
iments and calculating the AMISE, we can assess and compare
the performance of the proposed hybrid beta polynomial ker-
nels in different sample sizes. The results of these experiments
are presented in Table 2, which includes the values for different
simulated data sets.

Table 2: AMISE of Classical and Hybrid Fourth-Order Beta Polynomial Ker-
nels

n Kernels Average AMISE
Classical Hybrid

10
Epanechnikov 0.008915 0.008365

Biweight 0.009874 0.009357
Triweight 0.010754 0.010307

Quadriweight 0.011550 0.011157

25
Epanechnikov 0.004438 0.004165

Biweight 0.004915 0.004658
Triweight 0.005352 0.005130

Quadriweight 0.005747 0.005552

75
Epanechnikov 0.001515 0.001422

Biweight 0.001677 0.001590
Triweight 0.001826 0.001751

Quadriweight 0.001961 0.001894

300
Epanechnikov 0.000387 0.000362

Biweight 0.000427 0.000405
Triweight 0.000465 0.000445

Quadriweight 0.000499 0.000482

Table 2 compares the AMISE values between classical and
hybrid fourth-order beta polynomial kernels for various sam-
ple sizes (n). Across all kernel types (Epanechnikov, biweight,
triweight, and quadriweight) and sample sizes, hybrid kernels

10
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Figure 3: Histogram and kernel density estimates of: (a) fourth-order classical and hybrid Epanechnikov kernels; (b) fourth-order classical and hybrid Biweight
kernels, (c) fourth-order classical and hybrid Triweight kernels and (d) fourth-order classical and hybrid quadriweight kernels using the lifespan of car battery data
[24].

consistently exhibit lower AMISE values, indicating superior
accuracy in density estimation.

Additionally, as sample size increases, AMISE values de-
crease, signifying improved accuracy with larger datasets. Over-
all, the table highlights the superior performance of hybrid ker-
nels in achieving more accurate density estimates compared to
classical kernels.

4.2. Real-Life Experiment

In this subsection, we assess the performance of the ker-
nels embedded in the proposed fourth-order hybrid polynomial
kernels’ family using two real-life datasets. The first dataset
represents the lifespan of car batteries in years, while the sec-
ond dataset corresponds to the Old Faithful geyser eruptions.
The first dataset is a unimodal asymmetrical dataset with a size
of forty (40), obtained from [24], while the second dataset is

a bimodal dataset with a size of two hundred and seventy-two
(272), obtained from [33].

To evaluate the performance of the classical and hybrid fourth-
order kernels on these real-life datasets, we constructed his-
tograms for each dataset. Additionally, we overlaid the kernel
density estimates using the four fourth-order kernels presented
in this article. The resulting visualizations for the n = 40 and
n = 272 datasets are presented in Figures 3 and 4, respectively.
These data visualizations, analyses, and graphics were gener-
ated using Mathematica 11.3 and R Studio software.

Figure 3a shows the histogram and kernel density estimates
for both fourth-order classical and hybrid Epanechnikov ker-
nels. The histogram provides a visual representation of the
distribution of lifespan data for car batteries, while the kernel
density estimates provide smoothed probability density func-
tions using either the classical or hybrid Epanechnikov ker-
nels. These estimates serve as approximations of the under-
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Figure 4: Histogram and kernel density estimates of: (a) fourth-order classical and hybrid Epanechnikov kernels; (b) fourth-order classical and hybrid Biweight
kernels, (c) fourth-order classical and hybrid Triweight kernels and (d) fourth-order classical and hybrid Quadriweight kernels using Old Faithful eruption data [33].

lying probability density function of the data. Also, Figure
3b displays the histogram and kernel density estimates, but for
fourth-order classical and hybrid biweight kernels. In addition,
Figure 3c presents the histogram and kernel density estimates
for fourth-order classical and hybrid triweight kernels, while
Figure 3d showcases the histogram and kernel density estimates
for fourth-order classical and hybrid quadriweight kernels.

In summary, Figure 3 assesses the suitability of the classical
and hybrid kernels for modeling the car battery lifespan data. It
can be seen that all the hybrid kernels fit the data better than
their classical counterparts, most especially the Epanechnikov
kernel. Thus, the quality of the fourth-order hybrid beta poly-
nomial kernel density estimates is noteworthy, considering both
their smoothness and accuracy. These kernel density estimates
provide valuable insights into how well the kernels capture the
distribution characteristics of the car battery lifespan data.

Like in Figure 3, we can equally assess the suitability of
the classical and hybrid kernels for modeling the Old Faith-

ful eruption data in Figure 4. This figure presents a detailed
comparison of the histogram and kernel density estimates using
different types of kernels on the Old Faithful eruption data. Fig-
ures 4a and 4b in the top panel, respectively, display the results
for both fourth-order classical and hybrid Epanechnikov and bi-
weight kernels. While in the bottom panel, Figures 4c and 4d,
respectively, show the outcomes for fourth-order classical and
hybrid triweight and quadriweight kernels.

It can be seen here that all the hybrid kernels fit the data bet-
ter than their classical counterparts, most especially the Epanech-
nikov kernel. Hence, the quality of the fourth-order hybrid beta
polynomial kernel density estimates, including their smooth-
ness and accuracy, provides insights into how well the kernels
capture the distribution patterns within the data.

Similar to the Monte Carlo study, we conducted a repeated
operation for r = 1000 iterations using Eq. (84). This process
allowed us to gather comprehensive results for the performance
evaluation of the kernels. The obtained results, including per-
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Table 3: AMISE of Classical and Hybrid Fourth-Order Beta Polynomial Ker-
nels for real-life data.

n Kernels Average AMISE
Classical Hybrid

40
Epanechnikov 0.003014 0.002829

Biweight 0.003338 0.003164
Triweight 0.003636 0.003485

Quadriweight 0.003905 0.003772

272
Epanechnikov 0.000276 0.000259

Biweight 0.000305 0.000289
Triweight 0.000332 0.000318

Quadriweight 0.000357 0.000344

Table 4: Efficiencies of Classical and Hybrid Fourth-Order Beta Polynomial
Kernels.

Kernels Efficiencies
Classical Hybrid

Epanechnikov 1.0000 (100%) 1.0000 (100%)
Biweight 0.9969 (99.69%) 1.0020 (100.2%)
Triweight 0.9926 (99.26%) 0.9975 (99.75%)

Quadriweight 0.9889 (98.89%) 0.9935 (99.35%)

formance metrics and comparisons of the classical and hybrid
fourth-order kernels, are presented in Table 3. This table serves
as a summary of the analysis, presenting key findings from the
evaluation process. Table 3 compares the AMISE for classi-
cal and hybrid fourth-order beta polynomial kernels applied to
real-life data. For a sample size of 40, the hybrid kernels con-
sistently outperform their classical counterparts, with improve-
ments observed across all kernel types. The AMISE values for
the hybrid kernels are lower compared to the classical kernels.

For a larger sample size of 272, similar trends are observed,
with the hybrid kernels continuing to demonstrate superior per-
formance in terms of lower AMISE values. In all, the hybrid
kernels consistently provide more accurate density estimates
compared to classical kernels, showcasing their effectiveness
in real-life data scenarios.

4.3. Computation of Efficiencies

Table 4 presents the computation of the efficiencies of clas-
sical and hybrid fourth-order beta polynomial kernels. The ef-
ficiency values provide an indication of how well the different
kernels perform in capturing the characteristics of the data. A
higher efficiency value suggests a better fit to the underlying
data distribution. Table 4 compares the efficiencies of classical
and hybrid fourth-order beta polynomial kernels. Both types
of Epanechnikov kernels achieve perfect efficiency (1.0000 or
100%), indicating optimal performance. The hybrid biweight
and triweight kernels show slight improvements over their clas-
sical counterparts, with efficiencies of 1.002 (100.2%) and 0.9975
(99.75%), respectively. The hybrid quadriweight kernel also
outperforms its classical counterpart with an efficiency of 0.9935
(99.35%).

This table clearly demonstrates that the hybrid approach en-
hances the performance of the kernels when compared to their
classical counterparts. This improvement is evident as the ef-
ficiency values of the hybrid-biweight, hybrid-triweight, and
hybrid-quadriweight kernels surpass those of their classical ker-
nel counterparts.

5. Discussion of Results and Conclusion

In the field of statistics, a well-established principle dictates
that as the error (AMISE) decreases, the estimator or kernel
demonstrates higher accuracy. Consequently, a kernel function
with a lower AMISE is deemed superior to one with a higher
AMISE. This principle provides the foundation for our exami-
nation of Tables 2 and 3.

In addition to the aforementioned, the choice of kernel in
relation to sample size is closely tied to the bias-variance trade-
off. When dealing with a small sample size, employing a more
complex kernel, such as a high-degree polynomial or a com-
plex non-linear kernel, can lead to overfitting. This means that
the model may become overly specialized for the training data,
capturing noise and idiosyncrasies that fail to generalize well
to unseen data. As the sample size increases (referred to as
the medium sample size), the risk of overfitting diminishes.
This makes higher-order kernels more valuable, as they can
capture more intricate relationships in the data. In the case of
large sample sizes, where there is an abundance of data to es-
timate complex relationships, higher-order kernels become in-
creasingly advantageous. They enable the model to capture nu-
anced patterns that lower-order kernels might overlook [34, 35].

Table 2 furnishes average AMISE values for classical and
hybrid fourth-order beta polynomial kernels in a Monte Carlo
study. These values offer crucial insights into the accuracy of
kernel density estimates, with lower AMISE values indicating
superior fits to the underlying data distribution. Notably, the
results consistently demonstrate the superior performance of
the hybrid kernels over their classical counterparts in terms of
AMISE values, regardless of sample size. This underscores the
enhanced accuracy of the hybrid approach in estimating kernel
densities. Additionally, as sample size increases, both classical
and hybrid fourth-order kernels tend to achieve lower AMISE
values, owing to the increased information available about the
underlying distribution.

These findings are further corroborated by the analysis of
real-life experiments presented in Table 3. In these experi-
ments, both classical and hybrid kernels are evaluated across
different sample sizes. The results consistently show that the
hybrid kernels yield lower AMISE values compared to their
classical counterparts, confirming the enhanced accuracy of the
hybrid approach in estimating kernel densities for real-life datasets.

Turning to Table 4, the focus shifts to the computation of
the efficiencies of classical and hybrid fourth-order beta poly-
nomial kernels. Efficiency values offer insights into how well
the kernels capture the characteristics of the data, with higher
values indicating better fits to the underlying data distribution.

Table 4 provides a comparison of the efficiencies of clas-
sical and hybrid fourth-order beta polynomial kernels. Both
classical and hybrid Epanechnikov kernels exhibit perfect effi-
ciency, with a value of 1.0000 (100%). This indicates that both
types of kernels perform optimally in capturing the characteris-
tics of the data distribution.

The classical biweight kernel shows a high efficiency of
99.69%, indicating that it is very effective in capturing the char-
acteristics of the data. On the other hand, the hybrid biweight
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kernel demonstrates even higher efficiency, with a value of 1.0020
(100.2%). This suggests that the hybrid approach slightly out-
performs the classical biweight kernel. Similar to the biweight
kernels, the classical triweight kernel exhibits a high efficiency
of 99.26%, indicating its effectiveness in capturing data charac-
teristics. The hybrid triweight kernel also performs slightly bet-
ter, with an efficiency of 99.75%. This again suggests a slight
advantage for the hybrid approach.

The classical quadriweight kernel shows an efficiency of
98.89%, indicating it is effective but slightly less so compared
to the other kernels. The hybrid quadriweight kernel demon-
strates a higher efficiency of 99.35%, indicating that it is more
effective in capturing the data characteristics compared to its
classical counterpart.

This table highlights that, across various scenarios, the hy-
brid kernels generally exhibit a modest increase in efficiency
compared to their classical counterparts. This observation un-
derscores the potential advantages of employing the hybrid ap-
proach for density estimation, especially in situations where ac-
curately capturing the characteristics of the data distribution is
of paramount importance.

In conclusion, this article introduces a family of fourth-
order hybrid beta polynomial kernels and evaluates their per-
formance using average AMISE values and efficiency compu-
tations. The results from both Monte Carlo experiments and
real-life experiments consistently demonstrate the superiority
of the proposed hybrid kernels over their classical counterparts.
The hybrid kernels exhibit improved accuracy and efficiency
in estimating kernel densities, showcasing their effectiveness in
capturing the characteristics of the data. These findings suggest
that the hybrid approach holds promise for enhancing statistical
analysis tasks compared to traditional kernels.
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Appendix: Symbols and acronyms

This appendix presents the symbols and acronyms used through-
out this article.

• KDE = Kernel density estimation

• NKDE = Nonparametric kernel density estimation

• AMISE = Asymptotic mean integrated squared error

• MISE =Mean integrated squared error

• PDF = Probability density function

• E f f (ksk) = Efficiency of symmetric kernel

• C(ksk) = Constant associated with symmetric kernel

• C(ke) = Constant associated with Epanechnikov kernel

•
∫

k2(t)dt = L2 − Norm

•
∫

t2k(t)dt = Second moment or variance

• k(t) = kernel function

• h = optimal bandwidth

• kh
[2,p](t) = Second-order hybrid kernel

• kh
[4,p](t) = Fourth-order hybrid kernel

• k[2,p](t) = Second-order classical (traditional) kernel

• k[4,p](t) = Fourth-order classical (traditional) kernel

• Clas = Classical kernel

• Hybr = hybrid kernel

• p = Power of the family of kernels
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