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Abstract

The application of graph theory has gained significant traction within the realm of the algebraic theory of semigroups. This study delves into
exploring the geometric properties of the star-like transformation semigroup αω∗n, a distinctive category of transformation, and delineates a
tropical graph (curve) by elucidating its algebraic and tropical structure. Through this investigation, various tropical properties are established,
offering insights into the graph theory aspects of star-like spinnable Tω∗n transformation semigroups. Consequently, the objective of this research
is to delineate and characterize several tropical and combinatorial functions applicable to Tω∗n.
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1. Introduction

In the course of studying the algebraic and combinato-
rial features of transformation semigroups, eminent mathemati-
cians like [1–4], have produced several intriguing findings.
Their studies have resulted in useful tools that have been ap-
plied to various aspects of combinatorial mathematics. In fact,
the study of semigroups of full Tn, partial Pn and partial one-
one In has been fruitful over the years. It is worth nothing that
this research work was inspired by the study of Akinwunmi et
al. [5].

∗Corresponding author: Tel.: +2348066148496;
Email address: molakinkanju@gmail.com (Sulaiman Awwal

Akinwunmi )

In the last fifteen years, there have been increasing connec-
tions to algebraic geometry and related fields [6]. Algebraic
geometry is defined by Maclagan [7] as a branch of geometry
spaces defined by polynomial equations. We distinguished star-
like tropical algebraic expressions and their operations from
the general (known) algebraic expressions by enclosing them
in quotes, as tropical geometry, by its very nature, necessitates
sound algebraic definitions before any form of forward math-
ematical motion can occur. This is the convention used by
Mikhalkin [8].

Tropical geometry is a relatively young area that bridges
algebraic and combinatorial geometry and has links to many
other disciplines. It is, in turn, a piecewise-linear variation of
algebraic geometry in which polynomial zero sets are turned
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into polynomial complexes [9]. Recently, Brugalle et al. [10]
made a significant contribution to the theory, especially in the
paper that serves as the basis for enumerative algebraic geome-
try. The tropical geometry is named in honor of Protrka [11], a
Brazilian computer scientist.

The primary distinction between tropical geometry and
classical geometry is the absence of an identity element in R
in tropical addition, which results in Max[ f , n] = f for every
f , n ∈ R. Furthermore, there is no additive ”inverse” for f ∈ R,
ruling out the possibility of tropical subtraction. As a result, it
is appropriate to investigate tropical geometry using combina-
torial methods. It has been demonstrated that numerous alge-
braically challenging procedures become simpler in a tropical
environment because the objects’ structures appear to be more
straightforward. Due to this, tropical geometry has been widely
used, particularly in dynamic programming and physics (string
theory) [9].

Star-like polynomials and the geometric positions of their
roots, denoted by the notations Min[ f , n] and Max[ f , n], are
the primary subjects of study in tropical geometry. Two inte-
gers are tropically added when their tropical products are equal.
If the set αω∗n is commutative, associative, and admits the iden-
tity element 0Tω

∗
n = −∞, it will be a star-like spinnable Tω∗n

transformation transformation with reference to tropical sum.
Geogebra 5.0 was used to display the tropical curves of the new
spinnable star-like Tω∗n semigroup, find the roots and multi-
plicities of the star-like Tω∗n elements, and gain certain com-
binatorial results and the algebraic structure of the new Tω∗n
semigroup.

Finding the universal relation is necessary due to the star-
like sequence’s pascal organization and combinatorial charac-
ter, which in turn underlines the generality of its relevance
to both mathematics and science. The study of Mikhalkin
[12] shows the relationship of star-like transformation with
geometry by generating structure for cyclicpoid transforma-
tion. Hence, some combinatorial and tropical star-like func-
tions were characterized on Tω∗n in this work. When the trop-
ical space is smooth, the tropical star-like graph (curve) cn∗,
which has dimension one, is connected. When cn∗ is smooth,
the tropical star-like curve is described; otherwise, it is asym-
metric.

In the theory of transformation semigroups, the base set Xn

needs to be completely ordered in order to define the tropi-
cal and combinatorial functions of a star-like transformation.
Semigroup theory must be connected to algebraic and discrete
mathematics by breaking down a complex transformation into a
simpler tropical polynomial, where the composition occurs in a
fixed ordered space. In the semigroup CPn, [13] produced some
insightful conclusions. Similarly, [6] examined the combinato-
rial functions of specific Pn subsemigroups and discovered sim-
ilar outcomes. Nevertheless, comparable results for the star-like
spinnable transformation characterizing the tropical and com-
binatorial functions on Tω∗n have not kept pace with all these
discoveries.

2. Preliminary Notes

For completeness, the basic definitions needed are below.

2.1. Star-like Semigroup

A finite semigroup is said to be star-like if |α∗ f −g| ≤ |α∗g−
f | such that N ∪ 0 ∈ R for every f , g ∈ αω∗n, then αω∗n must
satisfy the following axioms:

(i) 0α∗ = 0

(ii) α∗1∗ = 1∗α∗

(iii) α( f + g)∗ = fα∗ + α∗g for every g ∈ D(α∗)

(iv) k−1∗(β∗) = α∗, for every α∗, β∗ ∈ αω∗n

(v) F(α∗) ≤ I(α∗), for every α∗ ∈ αω∗n

2.2. Tropical semi-field [αωt∗
n ] with star-like properties

Contains the set (αωt∗
n ). The following axioms are true if

[αωt∗
n ] is equipped with the binary operations ′′·′′ and ′′+′′ :

(i) The operations are closed for every pair f , n ∈ (αωt∗
n )

to the extent that both f · n and f + n are in (αωt∗
n ).

(ii) The operations are associative for every pair f , n ∈
(αωt∗

n ) and the equations ( f + n) + g = f + (n + g) and
( f + n) + g = f + (n + g) hold for all f , n, and g ∈ (αωt∗

n ).

(iii) Every operation has an identity element 1 ∈ αωt∗
n

such a way that it exists and f · 1 = f (αωt∗
n ).

(iv) The operation commute: f ·n = n · f and f +n = n+ f
hold for any f , n ∈ αωt∗

n .

(v) There exist multiplicative inverses: for every element
f ∈ (αωt∗

n ) other than zero, exists f (−1) ∈ (αωt∗
n ) such

that f · f (−1) = 1.

(vi) Multiplication distributes over addition: ∀ f , n, g ∈
(αωt∗

n ); f · (n + g) = f · n + f · g.

2.3. Star-like Curve (c∗n)
Let P(T )∗( f , n)n =

∑
i, jai, j f in j be a tropical star-like poly-

nomial, such that c∗n defined by P(T )∗( f , n)n is the set of points
( f0, n0) ∈ R2 such that there exists pairs (i, j) , (k, l) satisfying
P(T )∗( f0, n0)n = ai, j + i f0 + jn0 = ak,l + k f0 + ln0.

2.4. Star-like Root (R∗n)
A spinnable root of a star-like polynomial P(T )∗( f )n ex-

ists if there exists a star-like polynomial Q(T )∗( f )n such that
P(T )∗( f )n = ( f − f0),Q(T )∗( f )n. All points f ∗0 ∈ Tω∗n for which
the curve of P(T )∗( f )n has an angle at f0 are star-like roots R∗n
of star-like polynomials P(T )∗( f )n.
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2.5. Star-like Multiplicity Order (Uα∗ )
Suppose that c∗1 and c∗2 are two tropical star-like graphs

(curves) that cross in a countable number of places, all of which
are far from the star-like vertices of the two curves. If c∗1 and c∗2
intersect at k, then k is the tropical star-like multiplicity (Uα∗ )
with c∗1

⋂
c∗2, as well as the area of the star-like triangle opposite

k in the double sub-segment of c∗1
⋃

c∗2.

2.6. Star-like Faces H∗

This is a star-like flat or curving surface of a star-like trans-
formation semigroup.

2.7. Star-like Edges G∗

This is a star-like disk point where two or more star-like
faces meet.

2.8. Star-like Vertices V∗

This is a star-like transformation corner where two or more
star-like edges meet.

2.9. Star-like Spinnable

Any transformation α∗i, j ∈ Tω∗n is defined as a star-like
spinnable if it adheres to the star-like operator and star-like fold-
ing principle. This classification is assigned when the faces H∗,
edges G∗, and vertices V∗ converge at a star-like disk point with
a 360-degree angular measure, and the transformation satisfies
both combinatorial and tropical properties.

3. Methoology

Since not all transformation semigroups fulfill the star-like
operator, it would be more reproducible to apply the new opera-
tor to additional transformation semigroup areas. The following
outlines the methodical process used to create the tropical graph
and the methodology portion of the work:

(i) Decompose any star-like transformation α∗i, j ∈ Tω∗n to
a linear or quaratic algebraic equation such that

αi, j + α
2
i, j + α

3
i, j + . . . + α

n
i, j = |Tω

∗
n|.

(ii) Obtain the maximum and minimum values of αi, j.

(iii) Factorize the values obtained in (ii) to obtain the
tropical equation.

(iv) Compute the tropical equations in (iii) using Geoge-
bra 5.0 to derive the tropical root and multiplicity.

(v) Use the star-like operator to analyze the roots and
multiplicities in (iv) to generate the star-like tropical
graph of α∗i, j ∈ Tω∗n in each order of transformation.

Figure 1. Tropical graph of α∗ ∈ Tω∗n.

4. Main Results

The results obtained in this work show spinnable features in
the application of transformation semigroups to tropical algebra
with some tropical and combinatorial properties.

Let Tω∗n be a star-like spinnable transformation semigroup
and Xn = 1, 2, 3, . . . be a separate finite n-element set:

|α∗ f − g| ≤ |α∗g − f |. (1)

For every f ∈ D(α∗) and g ∈ I(α∗) where i ≥ n ≥ 1; n ∈ N.
A −→ Xn, where A = f1, f2, f3, . . . fn is a subset of Tω∗n, and the
element of α∗ was acquired, is then transformed into an array,
which is

α∗ =

(
f1 f2 f3 . . . fn
α f1 α f2 α f3 . . . α fn

)
. (2)

The tropical star-like polynomial P(T )∗( f ) =
∑d

i=0 a∗i f where
ai ∈ P(T )∗ from the structure of Tω∗n star-like transformation
semigroup was given in equation (3):

′′a + f + 3 f a+1 + . . . + ai f ai+1′′ = Max [a, f , (a + 1) f + 3,

. . . , (ai + 1) f + ai]. (3)

The tropical curve of a star-like transformation α∗ : A −→ Xn
was generated using Geogebra 5.0 and is shown in Figure 1.
The tropical lines reflect some of the well-known geometric fea-
tures of ’classical’ lines in the plane. Suppose α∗ ∈ Tω∗n is a
star-like spinnable transformation, and if D(α∗) = I(α∗) under
the composition of mapping, equation (4) lists all the elements
of Tω∗3:

|Tω∗3| =



(
1
1

)
(

1 2
1 2

)
,

(
1 2
2 1

)
,

(
1 2
2 2

)
(

1 2 3
1 3 3

)
,

(
1 2 3
1 2 3

)
,

(
1 2 3
2 2 3

)
,(

1 2 3
2 3 2

)
,

(
1 2 3
2 3 3

)
,

(
1 2 3
3 2 1

)
,(

1 2 3
3 2 3

)
,

(
1 2 3
3 3 1

)
,

(
1 2 3
3 3 2

)
,

(
1 2 3
3 3 3

)
.

(4)
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The classical and tropical polynomial of equation (4) was ob-
tained in each case:

α∗1 =
f
1

f(
1
1

)
= f 2 + f

= ′′ f 2 + f ′′

P(T )∗(α∗1) = Max [2 f , f ].

α∗2 =
f
1

f 1(
1 2
1 2

)
= f 2 + 2 f + f + 2
= ′′ f 2 + 3 f + 2′′

P(T )∗(α∗2) = Max [2 f , 3 + f , 2].

α∗3 =
f
1

f 1(
1 2
2 1

)
= f 2 + 2 f + 2 f + 1
= ′′ f 2 + 4 f + 1′′

P(T )∗(α∗3) = Max [2 f , 4 + f , 1].

α∗4 =
f
1

f 1(
1 2
2 2

)
= f 2 + 2 f + 2 f + 2
= ′′ f 2 + 4 f + 2′′

P(T )∗(α∗4) = Min [2 f , 4 + f , 2].

α∗5 =
f
1

f 2 f 1(
1 2 3
1 3 3

)
= f 3 + 2 f 2 + 3 f + f 2 + 3 f + 3
= ′′ f 3 + 3 f 2 + 6 f + 3′′

P(T )∗(α∗5) = Min [3 f , 3 + 2 f , 6 + f , 3].

α∗6 =
f
1

f 2 f 1(
1 2 3
1 2 3

)
= f 3 + 2 f 2 + 3 f + f 2 + 2 f + 3
= ′′ f 3 + 3 f 2 + 5 f + 3′′

P(T )∗(α∗6) = Max [3 f , 3 + 2 f , 5 + f , 3].

α∗7 =
f
1

f 2 f 1(
1 2 3
2 2 3

)
= f 3 + 2 f 2 + 3 f + 2 f 2 + 2 f + 3
= ′′ f 3 + 4 f 2 + 5 f + 3′′

P(T )∗(α∗7) = Min [3 f , 4 + 2 f , 5 + f , 3].

α∗8 =
f
1

f 2 f 1(
1 2 3
2 3 2

)
= f 3 + 2 f 2 + 3 f + 2 f 2 + 3 f + 2
= ′′ f 3 + 4 f 2 + 6 f + 2′′

P(T )∗(α∗8) = Min [3 f , 4 + 2 f , 6 + f , 2].

α∗9 =
f
1

f 2 f 1(
1 2 3
2 3 3

)
= f 3 + 2 f 2 + 3 f + 2 f 2 + 3 f + 3
= ′′ f 3 + 4 f 2 + 6 f + 3′′

P(T )∗(α∗9) = Min [3 f , 4 + 2 f , 6 + f , 3].

α∗10 =
f
1

f 2 f 1(
1 2 3
3 2 1

)
= f 3 + 2 f 2 + 3 f + 3 f 2 + 2 f + 1
= ′′ f 3 + 5 f 2 + 5 f + 1′′

P(T )∗(α∗10) = Max [3 f , 5 + 2 f , 5 + f , 1].

α∗11 =
f
1

f 2 f 1(
1 2 3
3 2 3

)
= f 3 + 2 f 2 + 3 f + 3 f 2 + 2 f + 3
= ′′ f 3 + 5 f 2 + 5 f + 3′′

P(T )∗(α∗11) = Min [3 f , 5 + 2 f , 5 + f , 3].

α∗12 =
f
1

f 2 f 1(
1 2 3
3 3 1

)
= f 3 + 2 f 2 + 3 f + 3 f 2 + 3 f + 1
= ′′ f 3 + 5 f 2 + 6 f + 1′′

P(T )∗(α∗12) = Min [3 f , 5 + 2 f , 6 + f , 1].

4
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α∗13 =
f
1

f 2 f 1(
1 2 3
3 3 2

)
= f 3 + 2 f 2 + 3 f + 3 f 2 + 3 f + 2
= ′′ f 3 + 5 f 2 + 6 f + 2′′

P(T )∗(α∗13) = Min [3 f , 5 + 2 f , 6 + f , 2].

α∗14 =
f
1

f 2 f 1(
1 2 3
3 3 3

)
= f 3 + 2 f 2 + 3 f + 3 f 2 + 3 f + 3
= ′′ f 3 + 5 f 2 + 6 f + 3′′

P(T )∗(α∗14) = Min [3 f , 5 + 2 f , 6 + f , 3].

All points R∗n of Tωn∗ for which the graph (curve) of P(T )∗( f )
has a diagonal at R∗n are the star-like roots of a tropical poly-
nomial P(T )∗( f ). Given the multiplicity U∗α of P(T )∗( f ) as the
difference in slope between any two segments meeting at roots
Ri(n)∗ corresponding corners, thus, the tropical graph (curve) of
|Tω∗3| was created using the roots R∗n and multiplicities U∗α in

M(r∗i ) = |r∗i − u∗αi+1| ≤ |α
∗ f − g| ≤ |α∗g − f | = |u∗αi

− u∗αi+1|,

where r∗i is ∈ R∗n and u∗i is ∈ U∗α of Tω∗n. Since multiplicity

order of tropical properties for small size of n, where
(

n
U∗α

)
is

the number of U∗α subsets of a n-dimensional set; n ≥ 0, then(
n

U∗α

)
= 0 if U∗α ≥ n, or For any n ≥ 1, the star-like recurrence

relation for U∗α of Tω∗n is given as:(
n

U∗α

)
=

(
n − 1
U∗α

)
+

(
n − 1

U∗α − 1

)
,

with initial conditions
(

0
U∗α

)
= 0 if U∗α , 0 and

(
0
0

)
= 1.

The star-like recurrence relation allows for efficient calculation
of minuscule multiplicities through the tropical route, such that
the zeroth row of the tropical path has height one and only con-
tains the number 1. Below that, the first row has two 1, one
below and to the left of the 1 in the zeroth row. The second row
has three entries: a 1 below and to the left of the leftmost 1 in
the first row, a 1 below and to the right of the rightmost 1 in the
first row, and a 2 in the center. Each successive row comprises
a constant element of 1 and one more item than the former row,
beginning with a 1 below and to the left of the leftmost with
U∗α ∈ Tω∗n. see Figure 2.

Consider U∗α ≥ 0 sing the factorial star-like operator,
defined combinatorially as the number of ways to arrange n
distinct values of U∗α and algebraically by n! = n(n − 1)(n −
2) . . . (3)(2)(1) for n ≥ 1 with 0! = 1

(
n

U∗α

)
=

n(n − 1) . . . (n − (U∗α − 1))
U∗α!

=
n!

U∗α!
(n − U∗α)!.

Figure 2. Multiplicity order: U∗α ∈ Tω∗n.

Figure 3. Pascal combinatorial sequence: U∗α ∈ Tω∗n.

see Figure 3.
As a result, n(n − 1) . . . n(U∗α − 1) is clearly the number of

ordered lists of U∗α with star-like identity difference 1 occurring
in multiplicity order for all n ∈ N.

Lemma 1:
Suppose αω∗n = Tω∗n, then

| Tω∗n |=
X[(x3) − 91(x2 + 292(x) − 389] + 183

3
.

for all x, n ∈ Ni ⩾ 2.

Proof
Let Tω∗n ⊂ αω

∗
n be star-like spinnable transformation, there ex-

ist maximum degree k ∈ Tω∗n such that αωn
∗k = ∅ whenever

| Tω∗n |= ∅. By the star-like operator,

|Tω∗n| ≤ |U
∗
α|

such that α∗u ∈ Tω∗u (star-like transformation with finite multi-
plicity order) is bijective. Adopting star-like folding principle,
it was observed that nth order of D(α∗) can be selected from the

Xn in
(
n
u

)
ways where multiplicity relation Uα∗ ⩾ 2 such that

U∗α = ω0(x)4 + ω1(x)3 + ω2(x)2 + ω3(x) + ω4. (5)

generate star-like algebraic system
1 1 1 1 1

16 8 4 2 1
81 27 9 3 1
256 64 16 4 1
625 125 25 5 1



ω0
ω1
ω2
ω3
ω4

 =


2
7

28
97

346

 , (6)
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to obtain

ω0 =
11
3
, ω1 = −

19
3
, ω2 =

292
3
, ω3 = −

389
3
, ω4 = 61.

Substitute the values of ω∗n in equation (6) to get

Tω∗n |=
u[(u)3 − 91(u)2 + 292(u) − 389] + 183

3
, (7)

Where U∗α =| Tω
∗
n |, (n − 1) = u for all u, n ∈ Xn, n ⩾ 2.

Lemma 2:
Suppose U∗α = Tω∗n then | Tω∗n | =

(
2 f

f − n + 1

)
n, f ∈ Tω∗n for

all n, f ≤ 1.
Proof:
Assume there is
α∗ ∈ Tω∗n, then a star-like multiplicity disk operator can be

selected from Xn in
(

2 f
f − n + 1

)
ways in a one-to-one model.

According to Lemma(1), the order of multiplicity class of Tω∗n
is

f [( f 3) − 6( f )2 + 3( f ) − 18] + 24
β3 + β2 .

with ω0 = −
1
2
, ω1 = −

1
2
, ω2 =

23
12
, ω3 = −

3
2

and ω4 = 2
which equivalent to (

2 f
f − n + 1

)
.

Lemma 3:
If L(p, q) denote number of sequence path from (0, 0), to (p, q)
with row-p and column-q, any given α∗ ∈ Tω∗n form pascal
combinatorial array of sequence.
Proof:
Suppose α∗ ∈ Tω∗n, with x-row and y-column of sequence, for
all Ni = {i, i + 1, i + 3, ...}, (i = {0, 1, 2, ...}). Then if L(p,0)=K,
L(0,q)= K where (0,0) is the Star-like origin of all path of the
pascal combinatorial sequence obtained by α∗ ∈ Tω∗n, gives

L(p, q) = L(p, q − k) + L(p − k, q).

such that,(
p + q

p

)
+

(
p + q

q

)
=

p + q
p!q!
, (8)

Where k is the star-like arbitrary constant.

Theorem 4:
The following statement is true for any star-like transformation
α∗ in Tω∗n:

(i) Any α∗ ∈ Tω∗n has a maximum element k(α∗).

(ii) | Tω∗n |=
⋃n

q∗=2

(
n + 2q∗

3q∗

)
.

(iii) F(n, q∗, k∗) =
(
2(n−q∗)+k∗ − 1

)
: n, k∗ ⩾ q∗ ⩾ 2.

Proof:
(i) =⇒ (ii)
Suppose F(n, q∗, k∗) are a star-like function with a distinct non
negative integer Xi = {i, i+ 1, i+ 2, ...}, i = {0, 1, 2, ...} such that
Tω∗n contains a transformation α∗ ∈ Tω∗n. Then i ∈ Xi of I(α∗)

can be chosen in
(

q∗

n

)
ways.

Since α∗ is a star-like bijective map, Tω∗n is replaceable. If
I(α∗) = 0 | q∗(α∗) |= 1 but if n = q∗ = k∗; | q∗(α∗) |= q∗ + 1 for
each value of α∗ ∈ Tω∗n such that

| Tω∗n |=
(
n + 2q∗

3q∗

)
. (9)

(ii) =⇒ (iii) If α ∈ Tω∗n is star-like, there exist finitely many
elements such that D(α∗) = I(α∗) where λ∗n

⋂
rn form a total

of

k⋃
n=1

(
2(n−q∗)+1

2(n−k∗)+1 − 1

) (
n + 2q∗

3q∗

)
= F(n, q∗, k∗). (10)

(iii) =⇒ (i)
Suppose k(α∗) denote maximum element in I(α∗) and Tω∗n ⊆
αω∗n with the composition of a star-like transformation.

r∗ =
(
u1 u2 u0
k1 k2 k0

)
∈ k(α∗). (11)

Such that there exists another element γ∗ ∈ k(α with r∗ ≤
γ∗andI0 < γ

∗. Obviously, r∗ and γ∗ are bijective, then

(r∗Iω∗n)
⋂

(γ∗Iω∗n) = k(α∗).

Theorem 5:
Let U∗αi be a set of star-like multiplicity order and α∗ ∈ Tω∗n
such that D(α∗) ⊆ I(α∗), then V∗(Tω∗n) is

1
2

V∗ =
G∗ − H∗

2
+

β∗; G∗ ∈ D(Tω∗n),H∗ ∈ I(Tω∗n).
Proof:
Suppose Tω∗n is a star-like spinnable transformation with a
composite relation,

x∗i + y∗j + z∗k = Tω∗n,

such that for any star-like multiplicity order U∗α, there exists a
star-like disk operator β∗ = 2, with

H∗ + V∗ = G∗ + 2. (12)

Then

| Tω∗n |= |α
∗ f − g| ≤ |α∗g − f |. (13)

Where
1
2

V∗ = |α∗g − f | ≤ |α∗ f − g|. (14)

Since Tω∗n satisfy (1), it shows that

1
2

V∗ =
G∗ − H∗

2
+ β∗. (15)

6



Akinwunmi et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 1692 7

Therefore
1
2

U∗αi(Tω
∗
n) implies V∗ = G∗ − H∗ + β∗ which gives

star-like vertices of any α∗n ∈ Tω∗n transformation multiplicity
with disk operator β∗.

Theorem 6:
Suppose Tω∗n is a star-like replaceable transformation with
U∗α ∈ Tω∗n then any β∗ ∈ U∗α is equal if and only if

(i) U∗α is spinnable and

(ii) U∗α is replaceable.

Proof
(i) =⇒ (ii)
Let U∗α ∈ Tω∗n be the order of multiplicity of star-like replace-
able transformations. If any U∗αi is spinnable then we need to
show that it is replaceable with β∗ ∈ U∗α such that for all sides
of any spinnable transformation with star-like coordinate

i = j = k ∈ β∗ ⊆ U∗α.

gives a star-like model of Tω∗n shown in Figure 4.

Figure 4. Star-like spinnable model.

By virtue of V∗ of α∗n ∈ Tω∗n such that U∗αn = α
∗
n we have

V∗ =
1
2

i × j × k. (16)

And

1
2
= |α∗g − f | ≤ |α∗ f − g|. (17)

Then U∗αTω
∗
n is spinnable.

(ii) =⇒ (i)
Suppose U∗α = Tω∗n then | Tω∗n |= ∅. By the choice of U∗α to
be the angular order of a star-like multiplicity relation of any
α∗ ∈ Tω∗n the disk operator β∗n ∈ U∗α is a star-like bijective with
finitely many replaceable relations Un of order n, such that

U∗α = ω0(u)4 + ω1(u)3 + ω2(u)2 + ω3(u) + ω4

generate replaceable star-like multiplicity angle of Tω∗n in Fig-
ure 5

Figure 5. Star-like multiplicity angle of Tω∗n.

where U∗α =| Tω∗n | . Therefore, adopting star-like folding
principle , the order of domain of U∗αω

∗
n can be chosen for

Xn = {1, 2, ...} in
(

n
U∗αn
− 1

)
ways, which also contain finitely

many replaceable star-like transformations.

Theorem 7:
Let β∗ ∈ Tω∗n then |R∗n| =

(
w − u
u − 1

)
=

(
w − (u − 1)

w − u

)
.

Proof:
let Xn = {1, 2, 3, ...} then D(β∗) ⊆ Xn where β∗ ⊆ U∗αi. If

F(w, u) = | β∗ ∈ Tω∗n : R∗n(β∗) |=| I(β∗) |= u

Then R∗0 ∈ D(β∗) such that

β∗x0
≤ β∗ny0

=⇒ β∗x0
≤ y0. (18)

Implies

β∗nx0y0
=

(
e0

R∗0

)
So, x0 has w− e+ 1 disk operator degree of freedom with order

| β∗ |=

(
w − u
u − 1

)
,

where w = u = 2 which gives
(
w − u
u − 1

)
= 1. Since for any

choice of star-like multiplicity order, is a subset of all star-
like transformations, then β∗ ∈ Tω∗n : R∗n(β∗n) = u. Therefore,
irrespective of the value of w ≥ 2 whenever u = (w − 1), there
is exactly 2 star-like root order with many disk operators.

| R∗n |=
(
w − (u − 1)

w − u

)
.

Theorem 8:
Let U∗α be the multiplicity order of tar-like transformation with
interior angles, λ∗i , ...λ

∗
n, Then

Area(U∗α) = (
∞⋃

n=1

λn) − (n − 2)π.

7
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Proof:
Let R∗n be a star-like root in U∗α with origin in the interior of
U∗α projecting the boundary of U∗α on Tω∗n using the star-like
function

f (G∗,H∗,V∗) =
(G∗,H∗,V∗)

√
Gn∗ + Hn∗ + Vn∗

. (19)

By star-like folding principle, V∗ of β∗ ∈ U∗α go to part on Tω∗n,
H∗ go to part of great circles in β∗ and G∗ go to polygon while
the union of (U∗α1

,+ · · · U∗αn
) multiplicities degree converge on

Tω∗n. Then

Area(U∗α1
)+Area(U∗α2

)+···+Area(U∗αn
) = Area(Tω∗n).(20)

Let R∗i be the number of star-like roots of U∗αi and λi j f or j =
1, · · ·ni be the interior angles such that

1
2

V∗ =
G∗ − H∗

2
+ β∗ where β∗ = 2n.

implies;

V∗ = G∗ − H∗ + 4n. (21)

Since R∗i ⊆ U∗αi and λi j for j = 1, · · ·R∗i then

i, j⋃
R∗i =1

(
n⋃

j=1

λi j − R∗i π + 2nπ) = 4nπ

in which two star-like tropical corners share one edge gives

n⋃
i= j

n jπ = 2nπG∗. (22)

Also, if the sum of angles at every star-like multiplicity order is
2nπ then

n⋃
i=1

n⋃
j=1

λi j = 2nπV∗. (23)

Therefore,

2nπV∗−2nπG∗+2nπH∗ ≤ Area(U∗α) = (
∞⋃

n=1

λn)−(n−2)π = 4nπ.

5. Conclusion

The research converted the star-like transformation semi-
group Tω∗n into a star-like polynomial and produced a tropical
algebra, which was then used to build a star-like graph. The
output of Theorems 5 through 8 is predicated on multiplicity
star-like order, whose form was thought to be solid, stiff, and
spinnable at various axes with a constant star-like angle unless
the root rotates. The paper suggests using the findings to solve
issues in code theory, genetics, and other physical sciences.
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