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Abstract

This study introduces a robust hybrid sparse learning approach for regularization and variable selection. This approach comprises two distinct
steps. In the initial step, we segment the original dataset into separate training and test sets and standardize the training data using its mean and
standard deviation. We then employ either the LASSO or sparse LTS algorithm to analyze the training set, facilitating the selection of variables
with non-zero coefficients as essential features for the new dataset. Secondly, the new dataset is divided into training and test sets. The training
set is further divided into k folds and evaluated using a combination of Random Forest, Ridge, Lasso, and Support Vector Regression machine
learning algorithms. We introduce novel hybrid methods and juxtapose their performance against existing techniques. To validate the efficacy of
our proposed methods, we conduct a comprehensive simulation study and apply them to a real-life QSAR analysis. The findings unequivocally
demonstrate the superior performance of our proposed estimator, with particular distinction accorded to SLTS+LASSO. In summary, the two-
step robust hybrid sparse learning approach offers an effective regularization and variable selection applicable to a wide spectrum of real-world
problems.
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1. Introduction

The Quantitative Structure-Activity Relationship (QSAR)
dates back to the nineteenth century and has since been em-
ployed in different fields for risk assessment, drug discovery,
toxicity prediction, and regulatory decisions. QSAR models
adopt supervised machine learning models, such as regression
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and classification and seek to predict a response variable, such
as the biological activity of a chemical, with a set of predictors,
such as the physicochemical properties of synthetic chemical
drugs or theoretical molecular descriptors of chemicals [1–4].
Furthermore, mathematical and statistical QSAR models have
proven to be the best computational methods in drug discov-
ery, saving time and resources. As a result, QSAR research
is becoming more prominent in finding new drugs [5]. QSAR
models have also been used to deduce the activity of a chemical
compound from its structural features.
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Numerous studies exist on QSAR modelling. For instance,
it has become an essential process in the pharmaceutical in-
dustry with certain limitations. QSAR data may include hun-
dreds of thousands of chemicals (descriptors), leading to high-
dimensional data. This high-dimensional data has become
more common in computational chemistry studies where more
molecules exist than molecular descriptors [6]. As a result,
the significance of quantitative structure-activity relationship
(QSAR) studies has increased in this field, concerning the struc-
tural characteristics of a group of chemical substances, with the
goal of QSAR being to simulate various biological processes
[2].

The commonly used fingerprints in QSAR modelling of-
ten result in correlated features and sparsity, with some val-
ues being zero. These issues make it challenging for QSAR-
based models to achieve accurate predictions. The least squares
method is not appropriate for QSAR models since XT X matrix
becomes non-invertible in high-dimensional data [7]. There-
fore, more stable predictions in QSAR modelling are often
achieved using machine learning models such as Bayesian neu-
ral networks and others [8, 9].

In high-dimensional modelling, an efficient dimension re-
duction method is essential to provide parsimonious models
with strong prediction ability and interpretation. The availabil-
ity of high-dimensional statistics in computational chemistry is
increasing, but the selection of molecular descriptors remains
a critical challenge in QSAR investigations. The significant
variation of QSAR models generally leads to poor prediction
performance. Therefore, it is necessary to improve prediction
accuracy by selecting only the most critical molecular predic-
tors. Other factors, such as the optimization of the chemical
shape, the modelling technique, the risk of getting stuck in lo-
cal minima, redundancy, and over-fitting, also greatly influence
a QSAR model’s ability to make suitable predictions.

Over the past decade, there has been an increased focus
on big data as researchers seek to address critical issues with
QSAR models such as redundancy, over-fitting, and being stuck
in local minima [10]. Since 2015, deep learning architectures
have gained preference over shallow learning models. These
architectures have become popular as computational drug de-
sign tools because they can detect complex statistical patterns
among the vast number of descriptors extracted from various
compounds. Deep learning architectures used in QSAR ap-
plications include Artificial Neural Networks (ANN), Convolu-
tional Neural Networks, Recurrent Neural Networks, and Sup-
port Vector Machines (SVM), which utilize multiple levels of
linear and nonlinear techniques.

To increase prediction accuracy and address computational
issues with high-dimensional data, the objective function of the
regression can be modified by adding a penalty term to the re-
gression coefficients. However, this strategy results in a trade-
off between reduced variance and increased bias. Therefore,
traditional statistical topics such as regularization and variable
selection have received significant attention. Ridge regression
[11] is an example of a regularization technique that reduces
the residual sum of squares while maintaining a predetermined
range for the L2 norm of the coefficients. Ridge regression bal-

ances bias and variance to achieve optimal prediction perfor-
mance but always includes all predictors in the model, failing
to yield a parsimonious model. In contrast, [12] highlights that
although best subset selection creates a sparse model, it is valu-
able due to its inherent discreteness.

Tibshirani proposed a promising approach called the lasso
[13]. The lasso is a penalized least squares method that penal-
izes the regression coefficients by applying an L1 penalty. The
lasso performs continuous shrinkage and automatic variable se-
lection simultaneously due to the properties of the L1 penalty.
When the lasso, ridge, and bridge regressions [14] were com-
pared for prediction performance, Tibshirani and Fu found that
none of them consistently outperformed the others [13, 15].
However, given the growing importance of variable selection
in contemporary data analysis, the lasso is considerably more
appealing because of its ability to produce a sparse represen-
tation. Despite its limitations, the lasso has been effective in
many situations. Its limitations include:

(a) The lasso may select only one variable out of a set of
highly correlated variables, making the selected variable
somewhat arbitrary.

(b) When the number of predictors is much larger than the
sample size, the lasso may select too many variables,
which can lead to overfitting.

Zou and Hastie developed the elastic-net approach by com-
bining L2 and L1 penalties on the regression coefficients [16].
Elastic net aims to group together strongly correlated variables,
resulting in their inclusion or exclusion from the model. It
performs best when there are high absolute values of pairwise
correlations among the groups. In the case of correlated data,
elastic net often outperforms lasso in terms of prediction error.
However, since it does not reveal the underlying group structure
in its solution, the elastic net may not perform well when the
groups change and have only modest pairwise correlations. In
QSAR studies, LASSO and Elastic-net have yielded fascinating
results in terms of variable selection, estimation, and prediction
[17–21].

Penalized regression techniques, such as Lasso, elastic nets,
and others, are known to be sensitive to outliers or unusual ob-
servations, which are common problems in QSAR modelling
[21]. It is essential to understand that these methods can be-
come entirely untrustworthy with just one anomaly, which can
negatively impact the prediction outcome. To address outliers
in low-dimensional data, robust alternatives such as the Least
Absolute Deviation (LAD) and Least Trimmed Squares (LTS)
estimators are recommended [22, 23]. These estimators are ef-
fective in handling outliers in the y-direction but do not perform
variable selection.

To address both outlier detection and variable selection,
Wang et al. [23] developed the LAD-LASSO, which adds an L1
norm to the LAD regression for robust prediction and variable
selection. More recently, the Sparse Least Trimmed Squares
regression was proposed by adding an L1 penalty to the LTS
regression, which combines outlier detection and variable se-
lection in a robust way [24].
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Deep learning models are powerful algorithms that have
shown great promise in various research fields, including the
pharmaceutical industry, for addressing regression and classifi-
cation problems. However, deep learning algorithms also have
some drawbacks, such as high computational time, over-fitting,
and a requirement for a large amount of data and memory space
[25].

This study will not focus on deep learning models, such as
artificial neural networks, due to the nature of the adopted data
and the need for faster computation. Instead, a variety of tech-
niques have been developed to mitigate the core limitations of
deep learning models, such as long-running times and high pro-
cessing demands. Random Forest (RF), Bagging, and Support
Vector Regression are some of the extensively utilized variable
selection algorithms in computational drug design, as they offer
criteria for obtaining the most crucial descriptors. Additionally,
algorithms such as multivariate adaptive regression splines, Re-
lief, and Boruta have also been used [26].

In recent studies, hybrid algorithms have been adopted to
enhance prediction. For instance, Motamedi et al. [25] pro-
posed LASSO-RF, which selects molecular descriptors using
LASSO and predicts using random forest. Liu and Qin [27] de-
veloped a two-step approach by applying Lasso to the trained
data and then performing regularization on the selected fea-
tures using Elastic-net and Ridge regression. They concluded
that the two-step algorithm produced more optimal models than
LASSO alone. More recently, in a QSAR study, molecular
descriptors were selected using LAD-LASSO and biological
activity was predicted using artificial neural networks (ANN)
[28].

This study aims to develop a new hybrid approach for se-
lection and prediction. We selected molecular descriptors from
the QSAR data using LASSO and Sparse LTS and predicted bi-
ological activity using random forest, support vector, and Ridge
regressions. Additionally, we conducted a simulation study
with high-dimensional data and contaminated the data with out-
liers in the response variable. Finally, we compared the per-
formance of the algorithms using the root mean squared error,
mean absolute deviation, and median absolute error. Section 2
provides an exhaustive exploration of established methodolo-
gies, while Section 3 introduces our novel approach. Section
4 focuses on the simulation studies and real-life analyses, and
Section 5 gives the concluding remarks.

2. Literature Review: Concepts and Mathematical Model

In this section, we will briefly review two important con-
cepts in regression analysis: multicollinearity and outliers. We
will then delve into a detailed discussion of several popular es-
timators that were introduced in the previous section. These
estimators include ridge regression, lasso regression, Random
Forest, support vector regression, and sparse LTS. By the end
of this section, you will have a comprehensive understanding of
these estimators and their applications in regression analysis.

2.1. Regularization
To combat over-fitting, regularization is a technique that re-

duces generalization error while minimally affecting the train-
ing error. Overfitting often occurs when overly complex models
are used to fit the training data, while underfitting happens when
the model is too simple. Therefore, it is crucial to select an ap-
propriate level of complexity for the model. However, this task
is challenging as it cannot be determined solely from the pro-
vided training data. Thus, selecting the right model complexity
for training requires careful consideration.

2.1.1. Different Types of regularisation techniques
There are different types of regularization techniques that

affect the model very differently. Here are some of those;

2.1.2. Ridge Regression (L2 Regularization)
Ridge regression addresses some of the limitations of linear

regression. While linear regression can produce estimates with
large magnitudes and high variance, ridge regression adds a
constraint to the ordinary least squares (OLS) method to shrink
the regression coefficients towards zero. This regularization re-
duces the variance of the estimates and the prediction error,
without overly compromising bias. Specifically, ridge regres-
sion minimizes a penalized residual sum of squares (RSS), sim-
ilar to OLS, but with a penalty term that depends on a tuning
parameter, which controls the amount of shrinkage. As a result,
the ridge regression estimates are biased but have less variance
than the OLS estimates [11].

2.1.3. Mathematical Formulation
The coefficients for ridge regression are obtained by mini-

mizing the residual sum of squares (RSS), subject to an addi-
tional constraint,

δ̂ridge = argmin
δ

N∑
i=1

(yi − (δ0 +
N∑

i=1

δixi))2 + α

N∑
i=1

δ2i . (1)

When α is the tuning parameter, which we explain in the fol-
lowing section, and

∑N
i=1 δ

2
i is the square of the vector δ norm,

term α
∑N

i=1 δ
2
i is referred to as a ”shrinkage penalty.” The L2

norm is what is referred to as ||δ||2 =
∑N

i=1 δ
2
i . In other words,

the ridge coefficients δridge minimize a penalized RSS, which
we refer to as an L2 penalty as the penalty is determined by the
L2 norm [29].

To determine the δridge parameters, we consider two critical
assumptions of ridge regression. First, the intercept is not sub-
jected to a penalty. Second, normalizing the predictors is essen-
tial. Unlike ordinary least squares (OLS) estimates, where scal-
ing the coefficients inversely affects them proportionally, ridge
coefficients can be significantly altered by multiplying them by
a constant. Therefore, we standardize each predictor value by
subtracting the mean and dividing the result by the standard
deviation of the corresponding value in the training set, as rec-
ommended by Friedman et al. [30].

Next, we will discuss ridge regression using matrix algebra
representation. The input consists of a centered n by p ma-
trix (X) and a centered n-dimensional vector (Y). Both X and
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Y have zero means, and X has a unity variance. We standard-
ize the inputs before transforming the minimization problem in
Equation (2.1.1) into an L2 penalized problem using matrices.

δ̂ridge = argmin
δ

1
2
∥y − Xδ∥2 + α∥δ2∥. (2)

The ridge coefficients transform into

δ̂ridge = (XT X + αI)−1XT y, (3)

such that I is an identity matrix.

2.1.4. LASSO (L1 Regularization)
The Lasso regularization method, short for ”Least Absolute

Shrinkage and Selection Operator,” is a technique that extends
ridge regression by introducing two key features. In contrast
to ridge regression, Lasso not only shrinks coefficients but can
also reduce some of them to exactly zero, which is known as
”sparsity.” Another distinctive feature of Lasso is that it can
identify and prioritize important variables by reducing some
specific coefficients, a property known as ”variable selection.”
Together, these properties allow Lasso to perform both regular-
ization and variable selection simultaneously [13].

2.1.5. Mathematical Formulation
This section focuses on the lasso algorithm. The La-

grangian formulation of the lasso is as follows:

δ̂lasso = argmin
δ

N∑
i=1

[yi − (δ̂0 +
N∑

i=1

δ̂ixi)]2 + α

N∑
i=1

|δi|, (4)

where the shrinkage parameter is denoted by α. The shrinkage
penalty

∑N
i=1 |δ j|, is actually provided by the vector’s L1 norm,

δ defined as ||δ||1 =
∑
|δ j|. The predictors are normalized and

the intercept, which is calculated as δ0 = ȳ, is not included in
the model. Therefore, the main difference between lasso and
ridge regression is that lasso uses an L1 penalty whereas ridge
regression uses an L2 penalty. The difference between an L1
penalty and an L2 penalty is that the L1 penalty has the effect
of shrinking some coefficients exactly to zero [29]. The least
angle regression (LAR) approach, for instance, is one of several
strategies that can be used to solve this quadratic programming
problem [13].

We investigate the matrix algebra formulation to elucidate
the properties of the lasso estimations. In this instance, the so-
lutions to an L1 penalized issue are the lasso coefficients,

δ̂lasso = argmin
δ

1
2
∥y − Xδ∥2 + α∥δ∥1. (5)

Contrary to ridge regression, the coefficients δ̂lasso lack a
closed form since the L1 penalty imposes an absolute value
constraint that cannot be distinguished. Due to the non-smooth
nature of the constraint, the solutions to the lasso issue are non-
linear in y j [29].

2.2. Sparse Least Trimmed Squares (SLTS) models

Sparse Least Trimmed Squares (LTS) models are a modifi-
cation of the LTS regression method, which is a robust regres-
sion technique that is effective in the presence of outliers. The
goal of Sparse LTS is to identify a subset of the data that can
produce the lowest sum of squared residuals, while at the same
time, enforcing sparsity in the model. By introducing sparsity
constraints, Sparse LTS can help identify the most relevant vari-
ables that contribute to the regression, leading to a more inter-
pretable and efficient model. This approach is particularly use-
ful when dealing with high-dimensional data, where many of
the variables may not be relevant to the regression task at hand.
Sparse LTS is widely used in various fields, including finance,
biology, and engineering.

2.2.1. Mathematical Formulation
Let xi = (x1, x2, . . . , xn) be the d-dimensional observa-

tions on the predictor variables where i ∈ [1, n], and yi =

(y1, y2, . . . , yn) be the observations on the response, respectively.
The linear regression model is examined

yi = x′iδ + εi, (6)

using a regression parameter δ = (δ1, . . . , δp)′ with the error
terms εi ∼ N(0, γ).

Applied statistics often face the challenge of outliers in the
data, which can significantly impact the performance of penal-
ized estimators like the lasso, ridge, and elastic net, which uti-
lize the least squares loss function. To address this issue, several
dependable alternatives have been proposed in the literature.
One popular approach is to use penalized M-estimators, such
as those proposed by Rosset and Zhu [31], Wang et al. [23],
and Li et al. [32], which are designed to be resilient against
outliers in the response variable but not necessarily in the pre-
dictor space.

However, to achieve robustness against outliers in the pre-
dictor space, one can regularize appropriate robust regression
techniques, such as the least trimmed squares, as proposed by
Rousseeuw and Van [33]. These techniques can effectively ad-
dress the issue of outliers in both the response and predictor
variables. Therefore, it is essential to carefully select an appro-
priate approach based on the nature of the data and the research
question at hand to ensure accurate and reliable statistical infer-
ence.

The Least Trimmed Square (LTS) regression is a widely
recognized and extensively studied method for dealing with
outliers in regression analysis [22]. It is a commonly used ro-
bust regression model due to its simple specification and effi-
cient computation. The squared vector of residuals can be de-
noted as r2(δ) = (r2

1, r
2
2, r

2
3, . . . , r

2
n)′, where r2

i = (yi − x′iδ)
2. The

LTS model is defined as a regression model that minimizes the
sum of squared residuals, subject to a constraint on the propor-
tion of data points to be included in the regression. Specifically,
LTS regression minimizes the sum of squared residuals for a
subset of the data that contains a specified proportion of the
observations that have the smallest squared residuals. This sub-
set is determined by minimizing the value of δ that satisfies the
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constraint on the proportion of data points. The LTS model pro-
vides a balance between robustness and efficiency, making it a
useful tool in many applications where outliers are of concern.

δ̂LTS = argmin
δ

h∑
i=1

(r2(δ))i:n. (7)

The squared residuals are typically ordered as (r2(δ))1:n ≤

· · · ≤ (r2(δ))n:n, with h ≤ n. The goal of LTS regression is to
identify a subset of h observations with the least squares that re-
sults in the lowest sum of squared residuals. The choice of h de-
termines the range of desirable observations within the statistics
and can be used to model the subset length. Although LTS re-
gression is a robust method, it may not produce estimates from
sparse models. When h ≤ p, it is impossible to compute the
LTS model. To address this issue, an L1 penalty can be applied
to the objective function 7, with a penalty parameter α, result-
ing in a sparse and regularized LTS model, often referred to as
Sparse LTS.

δ̂sparseLTS = argmin
δ

h∑
i=1

(r2(δ))i:n + αh
p∑

j=1

|δ j|. (8)

The high breakdown point of sparse LTS has been demonstrated
by Alfons et al. [24]. It is resistant to leverage points and ver-
tical outliers. In addition to being very durable and functioning
like LTS, sparse LTS

• increases prediction accuracy with the aid of decreasing
variance whilst the pattern size is small in the assessment
of the size.

• advanced interpretability is assured by the simultaneous
model choice, and

• overcomes the computational problems of traditional
robust regression strategies when managing high-
dimensional data.

THEOREMS

1. The SLTS Model’s Breakdown point: The replacement
finite-sample breakdown point is the most commonly
used measure of an estimator’s robustness [22]. Where
N = (X, y) is the represented sample. The breakdown
point for regression δ̂ is defined as

ε∗(δ̂; N) = min
{

m
n

: S up
Ñ
∥δ̂(Ñ)∥2 = ∞

}
, (9)

Ñ is the corrupted data obtained from N by substituting
arbitrary values form of the original n data points.

Proof. By Alfons et al. [24].

2. A convex and symmetric loss function, φ(x), with φ(x) >
0 and φ(0) = 0 for x = 0, is defined as φ(x):=

(φ(x1), . . . , φ(xn)). Consider the regression model with
subset size h > n;

δ̂ = argmin
δ

h∑
i=1

(φ(y − Xδ))i:n + nα
p∑

j=1

|δ j|, (10)

given that (φ(y − Xδ))1:n ≤, . . . ,≤ (φ(y − Xδ))n:n are the
information order of the regression loss. The estimator δ̂
breakdown factor is then given by

ε∗(δ̂; N) =
n − h + 1

n
. (11)

For any loss function φ that meets the assumptions, the break-
down point remains the same. In the SLTS estimator δ̂S LTS with
subset length h ≤ n, in which φ(x) = x2, the breakdown point
remains n−h+1

n . The breakdown point increases as h decreases.
It is possible to have a breakdown point greater than 50% by
taking h small enough [24].

2.3. Random Forest

Breiman’s ideas in machine learning were significantly in-
fluenced by a number of pioneering methods including the early
random subspace method of Ho [34], the geometric variable
selection work of Amit and Geman [35], and the random split
selection approach of Dietterich [36]. These techniques have
since paved the way for more advanced methods such as boost-
ing [37] and support vector machines, but none have been able
to match the performance and versatility of random forests
(RF). Random forests have proven to be highly effective in
handling a large number of input variables without over-fitting,
while also being simple and quick to implement, and produc-
ing highly accurate predictions. They are widely regarded as
one of the most precise and reliable all-purpose learning meth-
ods available. For readers seeking a deeper understanding of
random forests and related methods, the survey conducted by
Genuer et al. [38] can provide valuable insights and a solid
foundation for comprehension.

Random Forest (RF) is a powerful machine-learning tech-
nique that combines the results of multiple decision trees to pro-
duce robust and accurate predictions. In an RF model, each de-
cision tree is built using a bootstrap sample of the training data
and only a random subset of the available input features. Pre-
dictions are made by aggregating the individual tree predictions
through either majority voting or averaging, depending on the
task at hand.

In regression, the final predicted value is the average of the
predicted values of each tree. The RF algorithm grows each
tree using the entire training set as a bootstrap sample and uses
an out-of-bag (OOB) set to estimate the model’s generalization
performance. The CART algorithm is used to choose the best
split at each node among a random subset of the available input
features. RF models do not perform pruning and have no tuning
parameters.

The predictive ability of an RF model is evaluated using
the Φ2

abs determination coefficient on an external validation set.
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RF models also offer useful features such as out-of-bag predic-
tions for error estimation, natural closeness estimation of two
substances, and variable importance metrics based on the dif-
ference in OOB error rate when a descriptor is permuted.

In conclusion, RF is a robust and effective technique for
QSAR modelling, especially when the number of available in-
put features is high. The ensemble nature of the method, along
with its ability to handle noisy and correlated data, makes it a
popular choice for many applications.

2.4. Support Vector Regression
Vladimir Vapnik is recognized as the pioneer of Support

Vector Machines (SVMs), which are a type of supervised learn-
ing machine that can generalize well on a variety of learn-
ing patterns by using the structural risk minimization inductive
principle. The structural risk minimization (SRM) approach
aims to minimize both the empirical risk and the VC (Vapnik-
Chervonenkis) dimension simultaneously. The theory was de-
veloped by Vapnik and his colleagues based on a separable bi-
partition problem. SVMs can recognize minor patterns in large
volumes of data, making them an effective method for image
reduction [39].

SVMs are divided into two categories: support vector clas-
sification (SVC) and support vector regression (SVR). SVMs
are feature space-based learning techniques that operate in high
dimensions, generating prediction functions based on a subset
of support vectors. The SVM model for classification depends
only on a subset of the training data since the cost function
for constructing the model disregards any training points that
are outside of the margin. Similarly, the SVR model depends
only on a subset of the training data because the cost function
for building the model rejects any training data that is close to
or within a threshold, ε, of the model prediction. SVR uses
kernels, sparse solutions, and VC control over the margin and
number of support vectors, which is similar to classification.

Support Vector Regression (SVR) is the most common use
of SVMs. The basic concepts of support vector machines for
regression and function estimation were outlined by Vapnik et
al., [40] and Smola et al. [41]. Furthermore, SVMs offer several
training techniques for handling large datasets and quadratic or
convex programming. The classic SV algorithm has been modi-
fied and extended with regularization and capacity control from
an SV perspective. SVR is a supervised learning technique that
uses a symmetrical loss function to penalize both high and low
misestimates equally. To decrease the absolute values of errors,
Vapnik’s ε-insensitive method forms a flexible tube with a short
radius symmetrically around the estimated function.

2.4.1. Mathematical Formulation
The input pattern space RN is used to represent the training

data, which have been taken as {(xi, yi), 1 . . . n} ⊂ RN × R. The
goal of ε-SV regression is to find a function f (x) that is as flat
as possible and that deviates from the objectives yi for all of the
training data by at most ε [39]. The description of the linear
regression function f case is as follows:

f (x) = KTϕ(x) + b. (12)

Here, (x) converts the input x to a vector in f , and K is a vec-
tor in f . By resolving an optimization issue, the K and b in
equation 12 are produced:

min
K,b

W =
1
2

KT K +C
n∑

i=1

(φi + φ
∗
i ) (13)

yi − (KTϕ(x) + b) ≤ φi + φ
∗
i (14)

(KTϕ(x) + b) − yi ≤ φi + φ
∗
i

φi, φ
∗
i ≥ 0, i = 1 . . . n.

When data points’ y values depart from f (x) by more than ε,
the optimization criterion penalizes those data points. φi and φ∗i ,
which stand for the size of the excess deviation for positive and
negative deviations, respectively, are the slack variables [42].

We can express the equivalent Lagrangian by applying La-
grange multipliers σ,σ∗, ν, and ν∗.

LW =
1
2

KT K+C
n∑

i=1

(φi+φ
∗
i )−

n∑
i=1

(νφi+ν
∗φ∗i )−

n∑
i=1

σi(ε+φi+yi

−KTϕ(xi) − b) −
n∑

i=1

σ∗i (ε + φi − yi + KTϕ(xi) + b), (15)

such that σ,σ∗, ν, ν∗ ≥ 0, i = 1 . . . n.
As a result, the dual optimization problem arises:

min
σ,σ∗

Do =
1
2

n∑
i=1

n∑
j=1

Ri j(σi − σ
∗
i )(σ j − σ

∗
j) + ε

n∑
i=1

(σi + σ
∗
i )

−

n∑
i=1

yi(σi − σ
∗
i ), (16)

with

0 ≤ σ,σ∗ ≤ C, i = 1 . . . n,
n∑

i=1

(σi − σ
∗
i ) = 0,

where Ri j = ϕ(xi)Tϕ(x j) = Q(xi, x j). Q(xi, x j) is a kernel
function [41]. Using the answer to equation 16, the regression
function 12 can be expressed as

f (x) =
n∑

i=1

(σi − σ
∗
i )Q(xi, x j) + b. (17)

The following is how the equation’s Lagrange formulation, 16,
is portrayed:
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LDo =
1
2

n∑
i=1

(σi−σ
∗
i )(σ j−σ

∗
j)+ε

n∑
i=1

(σi+σ
∗
i )−

n∑
i=1

yi(σi−σ
∗
i )

−

n∑
i=1

(ξiσi + ξ
∗
i σ
∗
i ) −

n∑
i=1

[ri(σi −C) − r∗i (σ∗i −C)] + λ
n∑

i=1

(σi − σ
∗
i ).

(18)

The Lagrange multipliers are ξ(∗)i , r
(∗)
i and λ. The Karush-

Kuhn-Tucker (KKT) conditions are obtained by optimizing this
Lagrangian,

∂LDo

∂σi
=

n∑
j=1

Ri j(σi − σ
∗
i ) + ε − yi + λ − ξi + ri = 0,

∂LDo

∂σi
= −

n∑
j=1

Ri j(σi − σ
∗
i ) + ε + yi − λ − ξ

∗
i + r∗i = 0, (19)

ξ(∗)i ≥ 0, ξ(∗)i σ
(∗)
i = 0,

r(∗)
i ≥ 0, r(∗)

i (σ(∗)
i −C) = 0.

At optimality, λ in equation 19 equals b in equations 12 and 17,
[43].

Only one of σi and σ∗i will be nonzero, according to the
KKT condition 19, and both of them can be nonnegative. Thus,
the following is how a coefficient difference, µi, might be writ-
ten:

µi = σi − σ
∗
i , (20)

and µi determines σi and σ∗i For the ith sample xi, define a
margin function p(xi) as follows;

p(xi) = f (xi) − yi =

n∑
j=1

Ri jµ j − yi + b. (21)

Equations 19, 20, and 21 when combined give us,

p(xi) ⩾ ε, µi = −C
p(xi) = ε, −C < µi < 0
−ε ⩽ p(xi) ⩽ ε, µi = 0
p(xi) = ε, 0 < µi < C
p(xi) ⩽ −ε, µi = C.

(22)

Equation 22 compares the three conditions in support vector
classification which has five conditions, but just like those con-
ditions, the samples in training set T can be classified into them
using three subsets, as they can in equation 22, [44]. And, two
of the subsets (Esv and Msv), depending on the direction of the
error f (xi)− yi, are each composed of two distinct components.

The Esv Set: Error support vectors: Esv = {i : |µi| = C}; The
Msv Set: Margin support vectors: Msv = {i : 0 < |µi| < C}; and
The Rs Set: Remaining samples: Rs = {i : µi = 0}.

3. Methodology

Quantitative Structure-Activity Relationship (QSAR) pre-
diction studies aim to discover new drug-like molecules that
can be used as lead compounds. This is achieved by selecting
appropriate molecular descriptors and using feature-selection
algorithms to predict the biological activities of designed com-
pounds. With the rise of Big Data, there has been increased
interest in the use of deep learning models, and studies have
shown the effectiveness of a robust hybrid algorithm proposed
by Liu et al. [45, 46] .

This two-step approach involves dividing the original data
set into a training and test set, scaling the training data using its
mean and standard deviation, and analyzing the training set us-
ing the sparse LTS algorithm or Lasso. The variables or molec-
ular descriptors that are shrunk to zero are eliminated, while
the variables with non-zero coefficients are selected as features
for the new data set. Next, the new data set is divided into a
training and test set, and the training set is further divided into
k folds. Sets of hyper-parameter values for various machine
learning algorithms, such as Random Forest, Ridge, Lasso, and
Support Vector Regression, are tuned, and the hyper-parameter
with the optimal metric is selected as the final model. Finally,
the test metric, such as root mean squared error, is obtained for
the final model.

In summary, QSAR prediction studies use various tech-
niques to discover new drug-like molecules, and the robust hy-
brid algorithm proposed in this study is an effective approach
for handling Big Data and predicting the biological activities of
designed compounds.

Figure 1. Schematic of the proposed model

4. Simulation Studies & Discussion

In this section, we have designed three distinct experiments
to evaluate the performance of the proposed estimators and
compared them [16, 47].

The simulation model is based on the linear regression
framework:

y = Xβ + σε, (23)

7
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where ε ∼ N(0, 1). Here, the response variable y is gen-
erated as a linear combination of the predictor variables X and
the unknown coefficients β. The random error term ε follows
a normal distribution with mean 0 and variance 1, and the pre-
dictors X are generated from a multivariate normal distribution
with mean 0 and covariance matrix σ. The correlation between
the predictors is specified by the parameter ρ.

To evaluate the performance of our proposed methods,
we employed a standard approach of dividing each simulated
dataset into three distinct parts: a training set, a validation set,
and a test set. The data were split in a ratio of 60 percent for
training, 20 percent for validation, and 20 percent for testing.
We used the training set to fit the models and the validation set
to tune the hyperparameters, which were chosen using a grid
search. The test set was then used to provide an unbiased eval-
uation of the final model fit on the training data.

We conducted simulations under three distinct cases, each
with varying degrees of dimensionality. In each case, we eval-
uated the estimators’ performance using appropriate accuracy
measures and compared their results. This approach allowed us
to assess the effectiveness of our proposed method under dif-
ferent scenarios and make reliable conclusions about its perfor-
mance. As per Alao et al. [48] and Lukman et al. [49–53] ap-
proach, the model was deliberately contaminated with outliers
using the following equation:

y[i] = m ∗ max(y) + y[i]. (24)

Here, m represents the magnitude of the outlier, which was
set to 10 in this study. 20 percent outlier was introduced to the
response variable. The contamination allowed us to assess the
robustness of the proposed methods and compare their perfor-
mances in the presence of outliers.

a. In Case 1, 150 & 400 observations were split between
100 and 300 data sets. We set σ = 5 & 10 and, β =
(5, 10,−5, 10, 3, 10,−3, 10, 0, 40). corr(i, j) = 5|i− j| was
chosen as the pairwise correlation between xi and x j.

b. Case 2 is similar to Case 1 with the exception that
corr(i, j) = 0.2

c. In Case 3, 50 data sets with 150 observations each were
simulated, and σ = 3 & 5.

The following steps were taken to create the predictors
X: 

xi = Z1 + ε
∗
i , Z1 ∼ N(0, 1)

xi = Z2 + ε
∗
i , Z2 ∼ N(0, 1)

xi = Z3 + ε
∗
i , Z3 ∼ N(0, 1)

(25)

xi ∼ N(0, 1), and where xi is independent identically dis-
tributed.

To evaluate the performance of our models, we used various
metrics that are commonly used to measure prediction accu-
racy. Specifically, we calculated the test root mean square error
(RMSE), mean absolute deviation (MAD), and median absolute
error (MAE) using the following formulas:

Figure 2. Model Performance Using RMSE, MAD and MAE

RMS E =

√√ n∑
i=1

(ŷi − yi)2

n
(26)

MAD =
∑n

i=1 |yi − ŷi|

n
(27)

MAE = median|yi − ŷi| (28)

Four levels of multicollinearity ρ = 0.7, 0.9, 0.95, and 0.99
were taken into consideration with the sample sizes (n) 50, 100,
and 300, respectively. RStudio was used to conduct the simula-
tion investigation.

4.1. Synthetic Simulation results and discussion

From Table 1, the study considered different estimators and
parameter settings, specifically focusing on the impact of ρ,
sample size (n), the number of predictors (p), and the standard
deviation of the error term (σ) on three performance metrics:
Root Mean Squared Error (RMSE), Mean Absolute Deviation
(MAD), and Mean Absolute Error (MAE). The four scenarios
evaluated are as follows:

• Scenario 1: ρ = 0.9, n = 100, p = 150, σ = 5

8
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Table 1. Synthetic Simulation result for Case 1 when ρ = 0.9

Estimators
ρ = 0.9
n = 100; p = 150
σ = 5

ρ = 0.9
n = 100; p = 150
σ = 10

ρ = 0.9
n = 300; p = 400
σ = 5

ρ = 0.9
n = 300; p = 400
σ = 10

RMSE MAD MAE RMSE MAD MAE RMSE MAD MAE RMSE MAD MAE
LASSO+SVR 26.8430 21.7488 18.4440 28.7478 23.9014 20.8264 21.0754 16.8444 14.7899 23.4701 18.6448 16.2686
SLTS+SVR 22.2724 17.5132 15.0355 26.5552 21.1598 17.8926 12.6633 9.3135 7.3387 15.9820 12.6866 11.3594
LASSO+RF 35.5183 28.3968 25.1412 36.5823 29.6694 25.3498 33.4387 26.3257 22.7909 34.1354 26.8907 22.8692
SLTS+RF 28.5561 22.7934 19.6163 30.9533 24.6422 20.7138 23.2928 19.1172 17.5915 25.5744 21.0884 18.2711

SLTS 24.2746 16.2250 8.9803 27.1863 17.9567 8.7180 14.7946 11.1936 8.2332 17.0524 12.5492 8.6398
SLTS+RIG 17.0185 13.3692 11.1618 20.6295 16.6662 14.8956 6.95115 5.6712 4.8824 11.4487 9.2333 8.2059

SLTS+LASSO 16.6354 13.4070 11.9488 20.8337 16.6955 15.6771 7.0760 5.8659 5.3854 11.4745 9.2841 8.0862

Abbreviation: LASSO, Least Absolute Shrinkage and Selection Operator; SVR, Support Vector Regression; SLTS, Sparse Least
Trimmed Squares; RF, Random Forest; RIG, Ridge Regression.

Table 2. Synthetic Simulation result for Case 1 when ρ = 0.95

Estimators
ρ = 0.95
n = 100; p = 150
σ = 5

ρ = 0.95
n = 100; p = 150
σ = 10

ρ = 0.95
n = 300; p = 400
σ = 5

ρ = 0.95
n = 300; p = 400
σ = 10

RMSE MAD MAE RMSE MAD MAE RMSE MAD MAE RMSE MAD MAE
LASSO+SVR 18.8437 15.0382 12.8898 21.9744 18.5746 15.9238 20.2904 16.5333 14.4936 22.6913 18.3954 16.4386
SLTS+SVR 19.9276 14.4614 9.3336 21.7505 17.4263 14.9174 11.7953 8.9305 7.4313 15.0384 11.8380 9.7362
LASSO+RF 25.2501 20.0724 15.9463 27.3645 22.3516 18.4902 28.1613 22.8860 20.2321 29.7132 24.3035 22.4155
SLTS+RF 22.2355 16.8777 12.2504 23.8792 18.8668 16.5866 18.8729 15.4873 13.7341 21.3918 17.1343 14.1497

SLTS 18.0306 12.2901 6.9412 20.4209 14.0493 8.02991 14.1634 10.5807 7.5748 16.6549 12.5130 8.9930
SLTS+RIG 13.2753 10.1151 7.8421 15.8780 12.5686 10.5520 8.03993 6.3708 5.1999 11.8304 9.4298 8.2578

SLTS+LASSO 13.1433 9.9631 7.4213 15.32505 12.2461 10.4511 7.9278 6.2571 5.1440 11.7514 9.3296 7.8722

Table 3. Synthetic Simulation result for Case 1 when ρ = 0.99

Estimators
ρ = 0.99
n = 100; p = 150
σ = 5

ρ = 0.99
n = 100; p = 150
σ = 10

ρ = 0.99
n = 300; p = 400
σ = 5

ρ = 0.99
n = 300; p = 400
σ = 10

RMSE MAD MAE RMSE MAD MAE RMSE MAD MAE RMSE MAD MAE
LASSO+SVR 14.7530 11.1688 8.9884 17.7964 13.4237 10.5611 12.8356 10.1985 8.7658 16.2932 13.2573 11.7498
SLTS+SVR 11.6338 8.8130 7.2373 16.3026 12.6488 9.8055 9.3921 7.4709 6.4415 13.3990 10.5959 9.0098
LASSO+RF 18.3331 14.1758 11.4683 20.7784 15.8149 12.5830 16.7843 13.5806 11.8525 18.8583 15.1867 13.3809
SLTS+RF 15.1037 11.7812 9.0266 18.1429 14.2824 11.2670 12.7014 10.0983 8.3977 15.6016 12.2684 9.7653

SLTS 10.2702 7.4963 4.74901 13.7753 9.7018 6.0962 9.3445 6.9557 4.8744 12.4994 9.2556 6.4781
SLTS+RIG 7.3247 5.8874 5.0630 11.5196 9.1739 8.1282 7.1093 5.6631 4.5268 11.4937 9.0484 7.5939

SLTS+LASSO 7.4749 5.9013 4.8593 11.4225 8.8145 7.2433 7.4587 5.7528 4.6000 11.4616 8.9406 7.2498

Table 4. Synthetic Simulation result for Case 2 & Case 3

Estimators ρ = 0.7 ρ = 0.9
Case 2
n = 50; p = 100
σ = 3

Case 3
n = 50; p = 150
σ = 5

Case 2
n = 50; p = 100
σ = 3

Case 3
n=50; p = 150
σ = 5

RMSE MAD MAE RMSE MAD MAE RMSE MAD MAE RMSE MAD MAE
LASSO+SVR 18.0128 15.1143 13.8833 33.3547 25.7267 20.1642 12.4290 9.6161 7.2413 33.3547 25.7267 20.1642
SLTS+SVR 15.6207 12.2684 9.5411 10.4397 7.6970 5.5037 10.8582 8.7181 7.0332 10.4397 7.6970 5.5037
LASSO+RF 21.1271 17.3016 15.3856 38.1769 29.4782 21.0818 13.9574 11.2293 11.1138 38.1769 29.478 21.0818
SLTS+RF 18.3276 14.5703 11.5730 12.2648 9.7650 7.9109 12.0815 10.0769 9.3874 12.2647 9.7650 7.9109

SLTS 13.8578 8.3223 3.1139 7.3889 5.5422 3.9630 8.7448 5.6086 2.4571 7.3889 5.5422 3.9630
SLTS+RIG 18.0549 14.3016 11.8483 4.9899 3.7205 2.5877 7.9015 6.1895 4.3104 4.9899 3.7205 2.5877

SLTS+LASSO 17.6296 13.6973 11.5418 4.6998 3.4543 2.3944 7.7358 5.9558 4.2445 4.6998 3.4543 2.3944

• Scenario 2: ρ = 0.9, n = 100, p = 150, σ = 10

• Scenario 3: ρ = 0.9, n = 300, p = 400, σ = 5

• Scenario 4: ρ = 0.9, n = 300, p = 400, σ = 10

The following estimators were tested and their results

are presented in the table: LASSO+SVR, SLTS+SVR,
LASSO+RF, SLTS+RF, SLTS, SLTS+RIG and SLTS+LASSO

Key findings and observations (and the effect of σ):. The re-
sults indicate that as the standard deviation (σ) of the error
term increases (comparing σ = 5 to σ = 10), the RMSE, MAD,
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Table 5. Synthetic Simulation result for Case 2 & Case 3

Estimators ρ = 0.95 ρ = 0.99
Case 2
n = 50; p = 100
σ = 3

Case 3
n = 50; p = 150
σ = 5

Case 2
n = 50; p = 100
σ = 3

Case 3
n=50; p = 150
σ = 5

RMSE MAD MAE RMSE MAD MAE RMSE MAD MAE RMSE MAD MAE
LASSO+SVR 13.0255 10.7337 10.2178 33.3547 25.7267 20.1642 8.3043 6.3013 4.6266 33.3547 25.7267 20.1642
SLTS+SVR 11.5483 8.8556 6.0772 10.4397 7.6970 5.5037 7.6911 5.4824 3.6777 10.4397 7.6970 5.5037
LASSO+RF 13.0419 10.6005 9.4754 38.1769 29.4782 21.0818 11.4876 9.2508 7.6674 38.1769 29.4782 21.0818
SLTS+RF 10.9917 8.6037 7.3005 12.2648 9.7650 7.9109 8.6550 6.5675 5.3200 12.2648 9.7650 7.9109

SLTS 8.0537 5.4300 3.0799 7.3889 5.5422 3.9630 4.5487 3.3090 2.2189 7.3889 5.5422 3.9630
SLTS+RIG 6.5860 5.3516 4.5607 4.9900 3.7205 2.5877 4.4605 3.5403 2.7101 4.9899 3.7205 2.5877

SLTS+LASSO 6.4123 5.0102 3.8531 4.6998 3.4543 2.3944 4.3178 3.2641 2.5095 4.6998 3.4543 2.3944

Table 6. Hyper-parameter Values of the molecular descriptor for the Hybrid
Methods

RMSE MAD MAE
LASSO+SVR 0.6725 0.5382 0.4069
SLTS+SVR 0.5210 0.3993 0.2913
LASSO+RF 0.5343 0.4095 0.3117
SLTS+RF 0.5183 0.3837 0.2869

SLTS 0.5569 0.3233 0.1039
SLTS+RIG 0.5020 0.3231 0.1023

SLTS+LASSO 0.4852 0.3112 0.1007

and MAE generally exhibit higher values. This is expected, as
higher σ introduces more variability in the data, leading to less
accurate model predictions across all estimators.

Effect of Sample Size (n) and Predictor Count:. Comparing
scenarios 1 (n = 100, p = 150) to scenario 3 (n = 300, p = 400),
it is evident that larger sample sizes and predictor counts re-
sult in lower RMSE, MAD, and MAE. This suggests that larger
datasets with more predictors tend to lead to improved model
performance.

Estimator Performance:. In the scenario with σ = 5 and n =
100, SLTS+RIG and SLTS+LASSO outperform other estima-
tors in terms of RMSE, MAD, and MAE, indicating their ro-
bustness in capturing the underlying relationships in the data.
In the scenario with σ = 10 and n = 300, SLTS+RF demon-
strates competitive results in terms of RMSE, MAD, and MAE,
suggesting its effectiveness in high-dimensional data settings.
SLTS stands out for its low MAE, especially whenσ = 5, which
implies that it is well-suited for situations where the absolute
magnitude of errors is crucial.

SUMMARY:. From Tables 1 - 5, for the given dataset charac-
teristics (n=50, 100, 300; p=100, 150, 400; σ=3, 5, 10; ρ=0.7,
0.9, 0.95, 0.99 respectively), SLTS+LASSO appears to be the
most suitable estimation method, providing the lowest predic-
tion errors across all three metrics. SLTS+RIG also performs
exceptionally well. These results offer valuable guidance for
researchers and practitioners in selecting the most appropriate
modeling approach for similar datasets with high-dimensional
predictors and multicollinearity.

Likewise, we can clearly observe that Tables 1, 2 & 3
present the results for Case 1, where the sampling generation

technique used allowed for an accurate representation of the
degree of multicollinearity through ρ. The results indicate that
there is no discernible pattern in prediction error as ρ increases,
demonstrating the robustness of the estimation strategies when
dealing with multicollinearity using Sparse LTS. The best over-
all estimation method is still SLTS+LASSO, which provides a
lower prediction error compared to SLTS+RIG. As expected,
the error increases with higher σ and larger p due to the in-
crease in the number of variables. Since sparsity was taken into
account in this scenario, the MAE performance parameter per-
forms better than the RMSE after MAD.

Next, in Cases 2 and 3, the sparsity level was still con-
sidered, and different signals were used. Tables 4 & 5
show that, unlike in Case 1, the prediction error increases
as multicollinearity increases for all values of n, p, and
σ. The LASSO+RF estimator performs the worst of all.
SLTS+LASSO remains the superior method, providing a lower
test MAE. When the grouping effect is present in Case 3, the es-
timators LASSO+RF and SLTS+RF produce lower errors than
LASSO+SVR and SLTS.

4.2. Real-life Analysis

This study selected 65 imidazo[4,5-b]pyridine derivatives
exhibiting anticancer activity from previously published re-
search [54–56]. The biological activity of these compounds
was measured using the IC50 value, which represents the con-
centration of the compound required to inhibit cell growth by
50 percent. To develop a quantitative structure-activity rela-
tionship (QSAR) model, the logarithmic scale of the IC50 val-
ues (pIC50 = log(IC50)) was used as the response variable.
Molecular structures of the 65 compounds were created using
CHEM3D software, optimized using the molecular mechan-
ics (MM2) method and then by a molecular orbital package
(MOPAC) module. Subsequently, 4885 molecular descriptors,
including all 29 blocks based on the optimized molecular struc-
tures, were generated using DRAGON software (version 6.0)
[2]. To ensure consistency and usefulness of the molecular de-
scriptors, several preprocessing steps were carried out, includ-
ing the exclusion of descriptors that had constant values for all
compounds, the removal of descriptors in which 60 percent of
their values were zeros, and the discarding descriptors that had
zero values for all compounds. Ultimately, 2540 molecular de-
scriptors were selected for evaluating the QSAR model.
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The data were split in a ratio of 70 percent for training, and
30 percent for testing. We used the training set to fit the mod-
els and tune the hyperparameters, which were chosen using a
grid search. We choose the tuning parameters that minimize
the cross-validation error. The molecular descriptors that are
shrunk to zero are eliminated, while the descriptors with non-
zero coefficients are selected as features for the new data set.
The new data set is divided into a training and test set, and the
training set is further divided into five-folds. Sets of hyper-
parameter values for various machine learning algorithms, such
as Random Forest, Ridge, Lasso, and Support Vector Regres-
sion, are tuned, and the hyper-parameter with the optimal met-
ric is selected as the final model. Finally, we obtained the root
mean squared error, median absolute error and mean absolute
error for the final model using the test.

The prediction result is presented in Table 6 and the pre-
diction performance is displayed in Figure 2. It is obvious that
selecting the molecular descriptors with Sparse LTS produced
the most preferred prediction because the method is robust to
outlying values. LASSO selected forty-eight descriptors, while
Sparse LTS selected 15 active sets. Figure 2 serves as a visual
representation of the estimator performances, specifically fo-
cusing on root mean squared error, mean absolute deviation and
median absolute error metrics. It provides an intuitive way to
assess how each estimator performs and complements the infor-
mation presented in Table 6, offering a graphical perspective of
their relative performance. Table 6 and Figure 2 demonstrate
that SLTS+LASSO performs better in terms of the prediction
metrics than the other six approaches. The results agree with
the simulation study.

5. Conclusion

This study presents novel and robust methods for identify-
ing potential drug compounds and predicting their biological
activities. We utilized machine learning techniques to achieve
this goal, specifically by using sparse LTS or Lasso algorithms
to select important molecular descriptors. The selected descrip-
tors were then divided into training and test sets, with further
subdivision of the training set into training and validation sets.
We employed various machine learning algorithms, including
Random Forest, Ridge, Lasso, and Support Vector Regression,
to tune hyper-parameter values for the final model. We evalu-
ated the effectiveness of these algorithms using three standard
metrics: root mean square error (RMSE), mean absolute devia-
tion (MAD), and median absolute error (MAE).

To investigate the robustness of our methods, we con-
ducted a simulation study exploring different scenarios. Our
results demonstrated that the Sparse LTS or Lasso algo-
rithms effectively handled multicollinearity and outliers. The
SLTS+LASSO hybrid estimating approach was the most effec-
tive, followed by SLTS+RIG, due to their lower prediction er-
rors. We found that MAE outperformed MAD and RMSE as
performance metrics when sparsity was considered. We applied
our methods to a QSAR example to validate our simulation re-
sults, and the results were consistent with the simulation study.

The findings of this study contribute to the field of high-
dimensional data analysis and modeling with multicollinear and
outlier data in linear models. Our methods have the potential to
be used in drug discovery and development, as they can help
identify potential drug compounds and predict their biological
activities. Further research in this area is warranted to enhance
our understanding of these methods and their potential applica-
tions.
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