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Abstract

Secure communication techniques are important due to the increase in the number of technology users across the world. Likewise, a more random
encryption algorithm suitable to secure data from unauthorised users is highly expected. This paper proposes a two-parameter nonlinear chaos
map that is sensitive to the trio seed (s0, α, λ) and has better information encryption. We introduce the parameter α to linearise the conventional
chaos system, which in turn brings a delay in the cryptosystems. The delay is a phenomenon that changes the chaotic features of a system. A
small delay in the system leads to more aperiodicity and the unpredictability of the chaotic attractions. We normalise the new chaos map and
use the Lipschitz and pseudo-contractive operators to obtain its irregularity region in Hilbert spaces. We also analyse the chaos map in terms of
trajectory, Lyapunov exponent, complexity, and information entropy. Results obtained show that the new chaos map has a wide chaotic range and
better statistical properties. It also maintains low complexity due to its linearity and produces more key spaces than most existing chaotic maps.
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1. Introduction

Nonlinear dynamical system is the study of physical (chaos)
phenomena that are unsteady or irregular in nature. The chaos
phenomenon is the study of nonlinear systems that are sensitive
to parameter seeds. Due to the rapid development of communi-
cation technologies and the wide use of internet networks, there
is a need for proper protection of vital information such as per-
sonal messages, business messages, payment platforms, etc. In
communication science, the primary reference source for data
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Wahab )

protection is cryptology [1]. The most widely used chaos map
in cryptosystems is the one-dimensional logistic map which
was popularized by Robert May in 1976, a biologist, and writ-
ten down by Pierre Fracois Verhulst. The logistic map is a non-
linear discrete function that is simple to implement in an en-
cryption algorithm, and it is given by

xi+1 = µxi(1 − xi), (1)

where µ ∈ (0, 4] is a control parameter and x ∈ [0, 1] is called
the state value. Many encryption algorithms have been pro-
posed from the logistic map to secure data through random bit
sequences in cryptanalysis. In 1998, a method of designing
pseudo random number generators (PRNG) based on the lo-
gistic map was proposed in Ref. [2]. Other constructions of
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PRNG model based on chaotic logistic maps of one to three di-
mensions are proposed in Refs. [3–10]. In Ref. [11], Li et al.
introduced a PRNG based on the spatiotemporal chaos-based
map through an unidirectional coupling map lattice composed
of logical maps for the construction. Many contributions in
chaos-based hardware implementation of PRNGs such as fully
digital circuits, Field Programmable Gate Arrays (FPGAs) can
be seen in Refs. [12–14]. For various evaluation of chaos-based
systems using statistical test tools, see Refs. [1, 15, 16]. No-
tably in Ref. [9], the two-dimensional logistic chaotic map was
proposed to cryptanalyse image encryption. It is given by

xi+1 = r(3yi + 1)xi(1 − xi) (2)
yi+1 = r(3xi+1 + 1)yi(1 − yi),

where r ∈ (−1,∞) is the system parameter with concentration
on the interval r ∈ [1.1, 1.19] and (xi; yi) is the pair-wise state
point at the i-th iteration. The algorithm (2) was cryptalysed
using diffusion, permutation, and transposition properties. The
delay linear coupling logistic map (DLCL) was introduced in
Ref. [17] with the structure defined by:

xi+1 = F(xi + axi+1), (3)

where F is given by the logistic map (1) and a ∈ (0, 1). The dif-
fusion and good encryption effects are achieved for the DLCL,
and the encryption efficiency of the algorithm is improved. Re-
cently in Ref. [15], the enhanced digital logistic map

xi+1 = 4xi(1 − xi) + dxi(xi − 1), (4)

where d ∈ [0, 0.430054328), was introduced in order to op-
timise the logistic map (1) by using the perturbation operator
µ = 4 − d which reduces the degradation of digital chaos. The
hardware implementation of this digital chaos was carried out
with the aid of stochastic computing.
This paper, however, suggests a two-parameter logistic map
that is independent of the above mentioned chaotic maps and
is highly sensitive to the trio seed (s0, α, λ). It enhances degra-
dation of the chaos system and produces a more robust and ef-
ficient encryption algorithm. Also, it has a relatively flexible
structure in which a slight change in one of its parameters dis-
turbs the trajectory to extend periodicity and, in turn, produce a
very large key space with good entropy and information crite-
ria.

2. The two-parameter chaos system

Consider a real-valued nonlinear function g : R −→ R. To
find some unique points p ∈ R for which

g(p) = 0,

we seek a rule f : R −→ R such that

f (p) = p − g(p). (5)

Some notes on the mapping f are presented as follows:

• The point p is a fixed point of f if f (p) = p.

Figure 1. Block diagram of the new chaos map.

• The point p is a periodic point of period n if f n(p) = p.

• The point p is an eventually periodic point of period n if
there exists k > 0 such that f n+i(p) = f i(p) for all i ≥ k.

• A point s is called a critical point if f ′(s) = 0. A critical
point is non-degenerate if f ′′(s) , 0 and degenerate if
f ′′(s) = 0.

• The sets of points {s, f (s), f 2(s), . . .},
{s, f −1(s), f −2(s), . . .} are called the forward and
backward orbits of s, respectively.

• If f is a homeomorphism, the full orbit of s is the set of
points f m(s) for m ∈ Z.

Now, let f and g be related as given in the map (5). Let s0 ∈ R
be fixed and let s1 = s0 + ν0 be a cluster around s0. Set s1 =

f (s0), the linearisation of f is the approximant:

s1 ≈ s0 + αν0 + O(ν20),

where α > 0 is a weight multiplier associated with f . Induc-
tively, there gives

sn+1 = sn + ανn, n = 0, 1, 2, . . . , (6)

where νn = f (sn) − sn. Let h : R −→ R be an update of f , then
the equivalent form of system (6) is given by

sn+1 = h(sn) = N(sn, α, λ), (7)

where N(sn, α, λ) ≡ sn − α (sn − f (sn)) and f is defined by the
chaos map (1). This will be referred to as a one-dimensional
two-parameter chaos map. Obviously, the system (6) is the
chaos map (1) with α = 1. Also, it is easy to see that there
is no stride if α = 0. In the sequel, there will be special empha-
sis on some choices of α > 0. Figure 1 describes the new choas
map.
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2.1. Normalisation

Here, the chaos map (7) is restricted to a non-wandering subset
of R. To begin with, we present the following theorem.

Theorem 1. Let h : R −→ R be a function given by (7), then
the critical value of h is the coordinate (s0, h0), where

h0 = s0 − α(s0 − λs0(1 − s0)) and s0 =
1
2
+

1 − α
2αλ

,

for α, λ ∈ (0,∞).

Proof:
Consider the chaos map (7),

h(s) = s − α(s + λs(s − 1)), s ∈ R.

Observe that h is quadratic in s and so

h′(s) = 1 − α(1 − λ(2s − 1)).

At the critical point s0 ∈ R+, where h′(s0) = 0, there gives

s0 =
1
2

(1 +
1 − α
αλ

), for any α > 0, λ ∈ (0,∞).

Substituting s0 into h yields the desired result.

Remark 2. i. If α < 1 and λ grows without bound, then
s0 →

1
2
+.

ii. If α > 1 and λ grows without bound, then s0 →
1
2
−.

iii. If α = 1 and for any λ ∈ R+, then s0 =
1
2 .

In Remark 2(iii.), h has its maximum at s0 =
1
2 for which h0 =

λ
4 . In this case, h is restricted in [0, 1] ⊂ R for λ ∈ (0, 4].
If otherwise, all points of h become wandering for λ > 4. In
order that the Remark 2(i.) and (ii.) follow suit, we present the
following theorem:

Theorem 3. Assume that h is restricted in the interval [0, 1] ⊂
R and has critical value at s0 ∈ [0, 1], then the system parame-
ter λ is given by

λ =


1 + 1

α
− 2α

−1
2 , for α > 0, α , 1,

1 + 1
α
+ 2α

−1
2 , for α > 0, α , 1,

{0, 4}, for α = 1.

Proof: Let h : [0, 1] −→ [0, 1] be given by map (7) and satisfies
the hypothesis of Theorem 1. Since h does not exceed 1 and
s0 =

1
2 (1 + 1−α

αλ
), then

(1 − α)(
1
2
+

1 − α
2αλ

) + αλ(
1
2
+

1 − α
2αλ

)(1 − (
1
2
+

1 − α
2αλ

)) = 1.

This is further reduced to the form

α2λ2 − 2(α2 + α)λ + (1 − α)2 = 0.

Table 1. Relationship between α , λ1 and λ2.
α λ’s Monotonic shifts

(0, 1) (0,∞) decreasing Non-monotonic
λ1 α = 1 λ1 = 0 critical for all α

(1,∞) (0, 1) increasing
(0, 1) (4,∞) decreasing Monotonic

λ2 α = 1 λ2 = 4 critical for all α
(1,∞) (1, 4) decreasing

Figure 2. Normalization of new chaos map.

By completing the square in the parameter λ, we have

λ1 = 1 +
1
α
− 2α−

1
2 and λ2 = 1 +

1
α
+ 2α−

1
2 . (8)

If α = 1 in equation (8), then λ1 = 0 and λ2 = 4. As required.
Summarily, we present the relationship between parameters α
, λ1 and λ2 in Table 1 and Figure 2. In Figure 2 (top), the
parameter λ1 decreases when α ∈ (0, 1) and increases for α ∈
(1,∞), and thus, attains its minimum := 0 at α = 1. On the other
hand, λ2 decreases throughout for all α ∈ (0,∞). Moreover,
both the curves of λ1 and λ2 are asymptotic (approach 1) as α
approaches the large value. Also, the graphs of sn+1 vs sn for
various λ1 and λ2 are plotted. Three cases are considered for
each λ1 and λ2 in Figure 2 (bottom). We observe that the curve
of new chaos map (7) is becoming linear when α decreases in
[0, 1) wherein the curve h lies outside the interval [0, 1]; and
is becoming nonlinear when α increases in [1,∞) wherein h ∈
[0, 1].

2.2. Chaotic and non-chaotic attractive regions
To buttress the normality supposition in the immediate sub-

section, we study the geometric properties of the new chaos
map using the Lipschitz and pseudocontractive operators to
classify the orbits that are chaotic attractive and non-attractive,
periodic and aperiodic, predictable and unpredictable, and so
on. The following definitions are versions of those that are evi-
dent in Refs. [18, 19].
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Definition 4. Let (X, ∥·∥) be a non-empty normed space and f :
X −→ X be a self-map. The map f is called a δ-Lipschitz map
for δ > 0 if

∥ f (s) − f (t)∥ ≤ δ ∥s − t∥ ,∀s, t ∈ X. (9)

It is said to be δ-contractive if δ ∈ (0, 1).

Definition 5. Let H be a Hilbert space with norm ∥·∥ and inner
product ⟨., .⟩. An operator f : H → H is said to be a general-
ized pseudocontractive map if there exists a constant r > 0 such
that

< f (s) − f (t), s − t >≤ r ∥s − t∥2 , ∀ s, t ∈ H. (10)

Lemma 6. Let f : [0, 1] −→ [0, 1] be given by the logistic map
(1). Then, f satisfies the Lipschitz condition (9) and its system
parameter λ = δ.

Proof: Let s, t ∈ [0, 1] and f : [0, 1] −→ [0, 1] be the logistic
map (1), then

∥ f (s) − f (t)∥∞ = ∥λs(1 − s) − λt(1 − t)∥∞
=
∥∥∥λ(s − t) − (s2 − t2)

∥∥∥
∞

= ∥λ[1 − (s + t)](s − t)∥∞
≤ λ ∥1 − s − t∥∞ ∥s − t∥∞
= λ sup{|1 − s − t|} ∥s − t∥∞ = λ ∥s − t∥∞ .

Letting δ = λ gives the desired result.

Lemma 7. Let (X, ∥·∥) be a Banach space and let f : X −→ X
be a map satisfying δ-contractive condition

∥ f (s) − f (t)∥ ≤ δ ∥s − t∥ ,∀s, t ∈ X. (11)

Then, f has an attractive (non-chaotic) unique fixed point.

The proof of Lemma 7 follows the contraction mapping princi-
ple. By virtue of Lemma 7, if δ ≥ 1, f has a repelling (chaotic)
fixed point.

Theorem 8. Let K be a non-empty closed convex subset of a
real Hilbert space H and let f : K → K be a Lipschitz opera-
tor (9) and generalized pseudo-contractive condition (10) with
δ, r > 0. Then,

I. the new chaos map h has an attractive unique fixed point;
II. For s0 ∈ K, the new chaos sequence {sn}

∞
n=0, given by

sn+1 = N(sn, α, λ), n = 0, 1, 2 . . . , (12)

converges (strongly) to the fixed point of f , ∀α ∈ (0, 1)
satisfying

0 < α < (1 − r)/(1 − 2r + λ2).

Proof:
I. Let s, t ∈ K and let h be given by map (7). Then,

∥h(s) − h(t)∥2 = ∥(1 − α)s + α f (s) − (1 − α)t − α f (t)∥2

= ∥(1 − α)(s − t) + α( f (s) − f (t))∥2

≤ (1 − α)2 ∥s − t∥2 + 2α(1 − α) < f (s) − f (t), s − t >

+ α2 ∥ f (s) − f (t)∥2

Lemma 6, conditions (9) and (10) imply that

∥h(s) − h(t)∥2 ≤ (1 − α)2 ∥s − t∥2 + 2α(1 − α)r ∥s − t∥2

+ α2λ2 ∥s − t∥2

=
[
(1 − α)2 + 2α(1 − α)r + α2λ2

]
∥s − t∥2

Let θ2(α, λ, r) = (1 − α)2 + 2α(1 − α)r + α2λ2, we obtain

∥h(s) − h(t)∥ ≤ θ ∥s − t∥ (13)

Now, by optimising θ with respect to the parameter α gives

θα = (λ2 − 2r + 1)α − (1 − r)

So for θα = 0, we obtain

α =
1 − r

1 − 2r + λ2 (14)

This resulted to the following cases:

i. if r = λ, then α = 1
1−λ , λ , 1, implies that θ = 0.

ii. if r < λ, then 1 − r < 1 − 2r + λ2 (that is, α < 1) im-
plies that θ < 1. Hence, the conclusion follows from the
hypothesis of Lemma 7.

II. This follows from inequality (13) for θ < 1.

Remark 9. Observe that if r > λ, then 1 − r > 1 − 2r + λ2

(that is, α > 1) implies that θ > 1. In this case, h has a re-
pelling fixed point where chaotic attractions set in. Also, the
choice of α > 1 changes the chaotic attractor’s interval from
λ ∈ (3.569945672, 4] to λ ∈ (1, 4], see Table 1.

2.3. Periodic doubling

This subsection showcases some bifurcation diagrams of
the new chaos map with respect to the two-parameter system.
The bifurcation is a periodic doubling that describes the dis-
tribution of the chaotic state of the map. The sequence values
associated to the chaos map is plotted against the parameter λ
while α is held fixed, and with respect to α while fixing λ. In
Figure 3, all choices of α maintain aperiodic except for α = 0.9
that is wandering outside the normal set. A cascade of period-
doublings fall out as λ approaches approximately 2.62, 3.2 and
3.57 for α = 1.5, α = 1.1 and α = 1, respectively, in which
the map becomes chaotic and the attraction changes gradually
from a finite state to an infinite set of points. Also in Figure 4,
all choices of λ maintain aperiodic except for λ = 4.3 that is
wandering outside the set. It is apparent from Figures 3 and 4
that the chaotic state occurs for all choices of α ∈ [1,∞) and
λ ∈ (1, 4].
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Figure 3. Period-doublings for some range of λ2.

Figure 4. Period-doublings for some range of α.

2.4. Sensitivity analysis

The sensitivities of the chaos map (7) with respect to the
trio seed (s0, α, λ) are visualised to commemorate the periodic
doubling to cycles of periods in Figures 3 and 4. A small
change in the initial seed yields a dramatically different re-
sults over time and likewise in the system parameters. An
important feature emerges in the region λ ∈ (1, 4] for vari-
ous α ≥ 1 with initial seed s0 = 0.6 and 1000 generations.
In Figure 5, we plot the graphs for the four trios, namely,
(0.6, 0.9, 4.3), (0.6, 1, 4), (0.6, 1.1, 3.72), & (0.6, 1.5, 3). All the
four trios exhibit the symptoms of chaotic attractions except the
trio (0.6, 0.9, 4.3) [λ = 4.3 > 4] that is wandering outside the
set [0, 1]. In Figure 6, two very near initial seeds are compared
to see the key sensitivities between the trios (0.6, 1.0, 3.99) and

Figure 5. Sensitivities to the trio seed (s0, α, λ).

Figure 6. Sensitivities of two near orbits.

(0.6 + 1.0 × 10−15, 1.0, 3.99) for 100 generations. The two time
series stay close together for about 52 generations before dis-
persion set in. Similar comparison is carried out for the trios
(0.6, 1.001, 3.99) and (0.6 + 1.0 × 10−100, 1.001, 3.99) in which
dispersion set in after about 60 generations. Both figures in
Figure 6 illustrate symptoms of chaos, but the latter produces
more keys up to about 10−100 while the former does not exceed
10−15. In Table 2, some 8-floating point numbers are generated

5
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Table 2. Generations of the new chaos map with trio seed (s0, α, λ).
Trio seed Generations 8 floating point
(s0, α, λ) in million (m) numbers
(0.30, 1.0, 4) 1 0.5518764
(0.301, 1.2, 3.5) 1 0.0211566
(0.302, 1.5, 3.0) 1 0.0044686
(0.303, 2.0, 2.5) 2 0.5788585
(0.304, 3.0, 2.0) 2 0.6130698
(0.305, 4.0, 1.75) 2 0.2617860
(0.306, 5.0, 1.6) 3 0.4825651
(0.307, 10.0, 1.3) 3 0.0197317

with different trio seeds to show that the chaotic state remain
for any value of α ∈ [1,∞) and λ ∈ (1, 4].

2.5. Lyapunov exponent
The Lyapunov exponent showcases the rate of chaotic at-

tractions of trajectories in dynamical systems. It is usually used
as an indication of positive chaos. In what follows, we obtain a
Lyapunov constant τ for the new chaos map.
Let h(s∗) be the new chaos map and let s∗ be its fixed point such
that s∗ = h(s∗).
Let un be a sequence of nearby orbits of s∗ such that

sn = s∗ + un ⇒ sn+1 = h(sn) = h(s∗ + un).

By Taylor’s series, we have

sn+1 ≈ h(s∗) + h′(s∗)un + O(u2
n).

This implies that

un+1 ≈ h′(s∗)un. (15)

Let s0 be an initial seed and s0 + u0 be its nearby orbit, where
u0 is exceptionally small.
Set u1 ≈ h′(s0)u0, then u2 ≈ h′(s1)h′(s0)u0 and by induction

|un| ≈
∣∣∣h′(sn−1)

∣∣∣ |un−1| = . . . =
∣∣∣h′(sn−1)

∣∣∣ ∣∣∣h′(sn−2)
∣∣∣

×
∣∣∣h′(sn−3)

∣∣∣ . . . ∣∣∣h′(s0)
∣∣∣ |u0|

≈

n∏
i=0

∣∣∣h′(si)
∣∣∣ |u0| .

This further implies

ln |un| ≈
∑n

i=0 ln |h′(si)| + ln |u0| =
∑n

i=0 ln |1 + α( f ′(si) − 1)| + ln |u0|.

Therefore,
|un| ≈ |u0| enτ,

where τ = 1
n
∑n

i=1 ln |1 + α( f ′(si) − 1)| is the Lyapunov expo-
nent of the new chaos map.

• As opined in the previous section, for any λ ∈ (0,∞), the
exponent τ is negative only if α < 1. This implies that
the new chaos map is stable.

• For any λ ∈ (1, 4], then τ is positive only if α ≥ 1. This
means that the new chaos map has some level of chaotic
attractions that are wandering in the interval [0, 1].

• Divergence occurs when λ > 4 and α ≥ 1.

3. Applications

For a chaos system to be suitable for cryptographic applica-
tions, it requires that the output of a random number generation
(RNG) be unpredictable from earlier outputs. Thus, any se-
quence generated by the RNG must have the following features:
(1) the output of the RNG has good statistical properties; (2)
for any initial seeds, the RNG generated the sequence with no
shorter periods; and (3) the correlation of successive values is
poor in the sequence. In order to ensure forward unpredictabil-
ity in cryptographic applications, the seed itself must be kept se-
cret since the generation algorithm is publicly available, but for
the sake of studies, initial seeds are chosen non-randomly and,
in some cases, randomly. In this study, the random bit stream
generator of the chaos map (6) is based on discrete choice anal-
ysis:

ε(x) =


1; x ≥ 0.5

0; x < 0.5.

The generator ε may be divided into substreams or blocks of
random numbers. All tests are carried-out on R program.

3.1. Correlations

The periodic pattern in sequences can be measured through
correlation. Correlation is the degree of similarity between two
random variables, that is, the measure of similarities between a
random variable and its shifted version. If the correlation of the
sample is close to 1, it means the sequence has a better or more
reliable pattern, and if it is close to zero (0), it is unreliable.
This means that the map produces randomness and chaotic at-
tractions. Here, we let the two near trios (0.2, 1.19, 3.5001)
and (0.201, 1.19, 3.5001) be sample1 and sample2, respectively.
In Figure 7, we plot the boxplot, histogram and scatter (nons-
mooth) plots to display the mean realizations, frequency dis-
tributions, and independence of the two samples. The Pear-
son’s product-moment correlation test of the given samples is
0.02798194 with a p−value of 0.3767, this shows the inde-
pendence of each sample. We also plot the graph of auto-
correlation and cross-correlation in Figure 8 to further show the
independence of the two samples.

3.2. Information criterion

The Akaike information criterion (AIC) is a mathematical
tool for evaluating how good a model fits the data it was ob-
tained from. It is used to compare several possible models and
determine which one is the best fit for some given data. The
AIC formula is given by

AIC = 2K − 2 ln(L), (16)

where K is the number of independent variables used and L is
the log-likelihood estimate. Here, the default K(= 2) is used.
Another model selection among a finite set of models is the
Schwarz-Bayesian information criterion (S-BIC or BIC). It is
based on the likelihood function, and it is closely related to
the AIC. A model with a low AIC (or BIC) is the best model
[20, 21]. The actual difference between the two criteria is that

6
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Figure 7. Boxplot and histogram of the two samples.

Figure 8. Auto-correlation and cross-correlation of the two samples.

the BIC penalizes a given model more for its complexity than
the AIC. The following set of selections shows comparisons of
models for the data generated by chaotic maps (1), (2), (3) and
(6).

Model selection based on AICc and BIC for the new chaos map:

K AICc BIC Delta Wt Cum.Wt LL

(0.2,1.5,2.33) 3 354.53 369.23 0.00 0.65 0.65 -174.26

(0.2,1.2,2.67) 3 356.82 371.52 2.29 0.21 0.86 -175.40

(0.2,1.1,3.0) 3 358.97 373.66 4.43 0.07 0.93 -176.47

(0.2,1.0,3.68) 3 358.99 373.69 4.46 0.07 1.00 -176.48

Model selection based on AICc and BIC for various chaos maps:

K AICc BIC Delta Wt Cum.Wt LL

New chaos map 3 355.22 369.92 0.00 0.63 0.63 -174.60

Enhanced logistic 3 357.77 372.47 2.55 0.17 0.80 -175.87

map

2D logistic map 3 358.80 373.50 3.58 0.10 0.90 -176.39

Logistic map 3 358.97 373.67 3.75 0.10 1.00 -176.47

The AICc and BIC model selections are used to differentiate
among a set of possible models describing the relationship be-
tween the new chaos map and other fewer chaos systems (with
same parameter seeds) in the literature. Due to selection based
on AICc and BIC, the new chaos map considerably performs
better by carrying 63% of the overall cumulative model weight
and 46% ahead of the next best model. Hence, the new al-
gorithm is exceptionally suitable for encryption analyses and
implementations.

3.3. Key space analysis

A good encryption algorithm is more secure in cryptosys-
tem if its key space is at least 2100 so as to frustrate brute-force
attacks, for example, see Refs. [22, 23]. In the proposed map
(2), the key consists of the initial seed s0 and the two-parameter
system α and λ. By Remark 9, s0 ∈ (0, 1), α ∈ [1,∞) and λ ∈
(1, 4]. By using precision of the floating-point equal to 10−50,
initial seed can be any point among 1050 possible values. Also,
by letting the max{α} = 1000, then α and λ can be any point
among 999 × 1050 and (4 − 1.001) × 1050 values, respectively.
Therefore, the key space is about 2.996× 10203 ≈ 2676(≫ 2100),
which satisfies the general requirement of resisting any attack.
Therefore, a very large key space is produced in the proposed
chaos map and is suitable for securing data.

3.4. Information entropy

Information entropy is a measure of the disorderliness in
chaos systems. High values of entropy mean a robust RNG,
whereas low values of entropy mean a weak RNG. The more
chaotic a sequence, the higher the information entropy [1, 10].
The information entropy is described as follow:
Let y1, y2, . . . , yn represent a list of finite positive numbers and
let y =

∑n
i=1 yi denote their sum. The information entropy is

H(y) =
2n−1∑
i=1

p(yi) log2
1

p(yi)
, (17)

where p(yi) indicates the probability of each i. When the distri-
bution of sequence values is an equal probability distribution,
that is, when the probability of each value between [0, 255] is
1/256, it has the maximum entropy of log2 256 = 8-bit. In Ta-
ble 3, some experimental sample points are extracted to show a
few entropies of the new chaos map for randomly selected ini-
tial seeds. Due to the test results, the entropy of each component
is approximately 8 (more accurately as α becomes large) which
is the ideal value for an 8-bit case. Therefore, this cryptosystem
performs well for resisting an entropy attack.

7



Wahab et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 1747 8

Table 3. Information entropy of some samples.
Entropies of randomly selected samples

α = 1 α = 1.1 α = 1.5 α = 2 α = 3 α = 5
λ = 3.68 λ = 3.395 λ = 1.5 λ = 1.2 λ = 1.15 λ = 1.11
7.930096 7.916825 7.988589 7.998697 7.998687 7.998957
7.924763 7.916868 7.994550 7.999746 7.999231 8.000000
7.921137 7.918634 7.997918 7.979209 7.999839 7.999965
7.924579 7.919688 7.995788 7.999920 7.999975 7.997963
7.927595 7.916587 7.997945 7.998820 7.999941 7.996926
7.920791 7.917058 7.996177 7.977601 7.990970 7.998748

4. Conclusion

This paper has proposed a one-dimensional two-parameter
system chaos map that has a relatively simple structure, good
statistical properties, and high sensitivity to the trio seed
(s0, α, λ). The new chaotic map was normalised in the inter-
val [0, 1], where we justify the effect of parameter α relative
to control parameter λ. We further classified the chaotic and
non-chaotic states of the map with the imposition of pseudo-
contractive operator in a Hilbert space setting. The period-
doublings, Lyapunov exponent, and unpredictability of the
chaos system were verified for some random seeds (s0, α, λ).
Also, we checked the cryptographic suitability of the results,
and excellent performances were recorded in all the experi-
ments using statistical tools such as boxplot, histogram, corre-
lation, auto-correlation and cross-correlation, information en-
tropy, AIC, and BIC analyses. Also, the key space produced
is approximately 2676 which is capable of resisting common
attacks, namely, brute-force attacks. Thus, the encryption al-
gorithm has relatively better performance, strong, reliable, and
suitable for studying cryptosystems and implementations.
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