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Abstract

The devastating consequences of climate change on our planet cannot be taken lightly. Greenhouse gas emissions due to the various activities
of the increasing human population are solely responsible for this change. The chief and most significant of these gases is carbon dioxide. A
fractional-order model of five compartments is considered. The uniqueness and existence, the positivity, and the boundedness of the model
solution are established. The equilibrium points of the model are given. By formulating different Lyapunov functions, the global stability of the
four equilibrium points was determined. The numerical simulation of the model was done using the Predict-Evaluate-Correct-Evaluate method
of Adam-Bashforth-Moulton by considering four different orders of 0.7, 0.8, 0.9, and 1.0. According to the results, excessive concentrations of
carbon dioxide in the atmosphere can be reduced by the joint employment of mitigation measures.
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1. Introduction

The issue of climate change has become a global problem
beside other global challenges such as terrorism, environmental
degradation, hunger, poverty, and many others which are high-
lighted and enshrined in the Sustainable Development Goals
(SDGs) projected to be achieved in 2030. The current global
increasing trends in carbon dioxide emission and accumulation
can be attributed to factors such as per capita GDP, urbanization
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Email address: peter.achimugwu@students.jkuat.ac.ke (Peter

Urane Achimugwu )

level, technology level, trade openness, energy consumption in-
tensity, population growth, energy consumption structure and
industrial structure [1, 2]. About 50% of the global total carbon
emissions by volume in countries in the ”Belt and Road Initia-
tive (BRI)” are majorly from transportation industry, which is
about 23.96% of the total emissions from all industries in the
BRI countries [2]. Global climate change is one of the burn-
ing issues posing threats to human existence and the ecosys-
tem primarily caused by the emission of carbon dioxide into
the atmosphere from energy generating and transport industries
[3]. There is a strong correlation between increase in global
temperature and the accumulation of carbon dioxide in the at-
mosphere, which is contributing greatly to climate change [4].
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The amount of carbon dioxide in the atmosphere is increased
by the combustion of fossil fuels [4].

Carbon dioxide is a colourless and odourless gas that traps
heat from the sun and warms the earth through a natural process
known as the Greenhouse Effect [4]. The power stations that
use coal to generate electricity contribute to about 83% of the
current emission of carbon dioxide [4]. Carbon dioxide can ex-
ist in three different forms in sea water (solute carbon dioxide,
hydrogen carbonate and carbonate) making the seawater capac-
ity to store carbon dioxide superior to that of the atmosphere
[4]. Gas pollutants like nitrogen dioxide have negative conse-
quences like depletion of ozone layer, damaging green plants
and trees, acid rain, hazardous fog and clouds as well as con-
tamination of coastal water bodies [5]. Climate change due to
large amounts of carbon monoxide lead to change in land and
sea temperature which can further lead to extreme weather con-
ditions [5]. It is very important to capture and remove about
20 Gt of carbon dioxide annually in compliance with the Paris
agreement of keeping the global temperature increase below a
value of 2◦ C [6].

Research have revealed that excessive emission and accu-
mulation of greenhouse gases into our environment is respon-
sible for the current world climate change. Due to the visible
consequences of climate change that is affecting global econ-
omy, different parties with interest in seeking for solution to this
ravaging and burning issue of concern are looking for solutions
in forms of policies, programmes and clean technologies that
would help in reducing excessive emission of the greenhouse
gases [7]. Mathematical modelling is very useful in providing
solutions to human problems such as dynamics of global infec-
tions [8], toxic effects of cytotoxic and hemotoxic snake venom
[9], honeybee farming improvement [10] and many other fields.
As part of the global solution-seeking process, there is the need
to develop some mathematical models of climate change due
to carbon dioxide emission and accumulation by incorporat-
ing some mitigation measures into the model. A number of
mathematical models on climate change attributable to exces-
sive emission of carbon dioxide have been developed [11–17].

Most of them considered one or two mitigation measure (s)
in their model dynamics for the reduction of carbon dioxide.
Leveraging on the idea that a combination of more simple, vi-
able and easy to implement mitigation measures could bring a
much better considerable reduction of carbon dioxide emission
and accumulation in the atmosphere, a mathematical model in-
volving three mitigation measures was developed [18]. In this
current work, we extend this model in Ref. [18] using the con-
cept of fractional calculus. Fractional calculus has become very
crucial and an integral tool in the last three decades in fields
such as biomathematics, economics, physics, finance, engineer-
ing and many others as it provides different scenarios and more
accurate results compared to other techniques [8]. Almeida [19]
in his work presented two reasons for the preference of frac-
tional calculus over the classical (traditional or ordinary) calcu-
lus.

Fractional derivatives are nonlocal operators and may be
more suitable for long-term behavioural studies. Thus, they
contain memory (solution depends on previous instant) unlike

integer-order derivatives. Secondly, the consideration of the
order of the derivative as an arbitrary real number which is
not necessarily an integral value, enables modelling more ef-
ficiently real data compared to the theoretical model. Yuan
et al. [20] in studying long term memory (LTM) in climate
variability using fractional integral technique, considered Frac-
tional Integral Statistical Model (FISM) that could estimate the
long-lasting effects of historical climate states on the contem-
porary time quantitatively and also that of climate memory sig-
nals. They concluded that one could ascertain the trends in time
series change using extracted climate memory signals, which
gave a new dimension to the narrative of prediction of climate.

Kumar et al. [21] proposed and analyzed a fractional or-
der nonlinear mathematical model using the generalized form
of the Caputo fractional derivative to describe the dynamics of
the problem. They presented their novel results graphically and
recommended the usefulness of the fractional approach in solv-
ing real-world phenomena. Eze & Oyesanya [22] presented
fractional model on the impact of climate change with domi-
nant earth’s fluctuations. Their model was a second order ODE
that was solved using modified Laplace Adomian decomposi-
tion method. They compared the results of the fractional solu-
tions with the integer solutions. Their findings revealed that the
fractional model gives a better situation compared to the integer
solution.

Xie et al. [23] developed a novel continuous fractional
non-linear grey Bernoulli model with Grey Wolf Optimizer for
forecasting fuel combustion-related CO2 emissions in China.
Their findings revealed that their developed model produced
better results than other available similar models and that about
1× 1010 tonnes of fuel combustion-related CO2 will be emitted
by 2023. Based on their forecast results, they recommended
developing low-carbon technologies, acceleration of the pro-
motion of the national carbon market and strengthening citi-
zens environmental awareness. Ilhan et al. [24] found a series
solution for a system of fractional ODE describing the atmo-
spheric dynamics of carbon dioxide using the q-homotopy anal-
ysis transform method (q-HAM). Their results revealed that the
fractional scheme is highly methodical and very effective in an-
alyzing the nature of the system of arbitrary order differential
equations in daily life.

Ozarslan & Sekerci [25] developed a fractional order differ-
ential model on oxygen-plankton-zooplanktoon system under
climate change using the Caputo fractional operator and consid-
ering a temperature function to represent the production rate of
photosynthesis. Their findings revealed that the effect of global
warming on the rate of oxygen production was severe, leading
to a decrease in oxygen level which could further cause plank-
ton extinction. Qureshi & Yusuf [26] worked on mathematical
modelling for the impacts of deforestation on wildlife species
using Caputo differential operator. Their results were displayed
graphically and they concluded that the fractional model was
better in performance compared to the usual classical model,
as it captured all the historical information of the considered
system unlike the corresponding classical system.

Sekerci & R. Ozarslan [27] studied a fractional oxygen-
plankton-zooplankton mathematical model with climate change
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effect by employing nonsingular fractional operators, Caputo-
Fabrizio (CF) and Atangana-Baleanu (ABC). In conclusion,
they averred that increase in global warming adversely affect
the rate of oxygen production, leading to depletion in the level
of oxygen and the extinction of plankton. Din et al. [28]
worked on the mathematical study of climate change model
under nonlocal fractional derivatives by considering a three-
compartment of oxygen concentration, phytoplankton and zoo-
plankton. Their findings revealed that firstly, there was a reduc-
tion in the level of oxygen concentration whose value tended to
the free equilibrium point. Secondly, there was a decrease in the
number of phytoplankton also due to decrease in the concen-
tration of oxygen. Lastly, the number of zooplankton reached
its maximum value due to the consumption of the oxygen and
then became stable thereafter. In conclusion, they opined that
the fractional model gives a better situation for climate control
compared to the classical case.

Machado & Lopes [29] studied global warming patterns us-
ing the concepts of dynamical systems and fractional calculus.
From their findings, an assertive representation of the global
warming dynamics and a simpler analysis of its characteris-
tics was revealed by the application of Fourier transforms and
power law trend lines. Furthermore, they opined that fractional
calculus took into account long range effects usually ignored by
classical models.

Xu et al. [30] proposed and analyzed the correlation that
existed between energy consumption and carbon dioxide emis-
sions using Non-equigap GM(1,1) model with conformable
fractional accumulation [CFNGM(1,1)]. From their findings,
the carbon dioxide emissions of 30 out of the 53 countries stud-
ied had risen to different levels, the top three being China, USA
and India. They recommended that particular attention should
be paid mostly to emission trends of China. They also showed
that conformal fractional order had a better prediction effect
when the order was smaller. Considering the current emergency
caused by climate change and the need to seek for solutions
from all possible sources, there is a motivation to formulate a
mathematical model that combines a number of mitigations that
are feasible and realistic in mitigating against excessive emis-
sion of carbon dioxide. Furthermore,the use of fractional cal-
culus approach gives more realistic scenarios compared to use
of integer order ordinary equations.

The rest of the paper is organized as follows: In Section
2, related mathematical preliminaries are presented. In Section
3, the Caputo fractional model equations are given and their
corresponding mathematical properties determined. In Section
4, the stability analysis of the model is done. In Section 5,
the numerical simulation results of the model are presented. In
Section 6, the discussion of the results is done. The conclusion
is presented in Section 7.

2. Mathematical Preliminaries

Definition 1 (Lipschitz Condition). [31].
A function g (t, y(t)) is said to be Lipschitz if

|g (t, y(t)) − g (t,w(t)) | ≤ L|y(t) − w(t)|

for some constants L > 0 which does not depend on t, y and w.

Lemma 1. [13, 32, 33].
Let p(t) ∈ C[t0,+∞]. If p(t) satisfies

Dr p(t) + hp(t) ≤ n, p(t0) = p0 ∈ ℜ, for 0 < r ≤ 1, h, n ∈ ℜ
and h , 0, then

p(t) ≤
(
p0 −

n
h

)
Er

[
−h(t − t0)r] + n

h
.

Here, Er [−h(t − t0)r] is the Mittag-Leffler function.

Lemma 2. [13, 32].
Let p(t) ∈ C(ℜ+) and its fractional derivatives of order r exist

for any 0 < r ≤ 1. Then, for any t > 0:

Dr
[
p(t) − p⃗∗ − p⃗∗ ln

p(t)

p⃗∗

]
≤

(
1 −

p⃗∗

p(t)

)
Dr p(t), p⃗∗ ∈ ℜ+.

Lemma 3. [34, 35]
Let p(t) ∈ ℜ be a continuous and differentiable function.

Then, for any time instant t ≥ t0

1
2

Dr p2(t) ≤ Dr p(t),∀r ∈ (0, 1] .

Lemma 4. [33].
Let Dr p(t) = g (t, p(t)) , t > 0, p(0) ≥ 0, 0 < r ≤ 1 be a
fractional order system, where
g : (0,∞)×Φ→ℜm, Φ ⊆ ℜm. A unique solution exists for the
fractional order system on (0,∞) × Φ if g (t, p(t)) satisfies the
locally Lipschitz condition with respect to p, that is

|g (t, p(t))−g (t, q(t)) | ≤ L|p(t)−q(t)|, L a non-zero positive constant.

Lemma 5. (Generalized Lasalle Invariance Principle). [32].
Suppose Φ is a bounded closed set and every solution of

Dr p(t) = g (p(t))

begins from a point in Φ and stays in Φ for all time. If there ex-
ists W(p) : Φ → ℜ having continuous first partial derivatives
satisfying

DrW |Dr p(t) = g (p(t)) ≤ 0, let

F = {p|DrW |Dr p(t) = g (p(t)) = 0}

and Q be the greatest invariant set of F. Then every solution
p(t) starting in Φ approaches Q as t → ∞.

3. The Fractional Order Model and its Properties

Using the Caputo derivative operator, the fractional model
of order r (the order not visibly written on the RHS for the sake
of ease of writing, reading and simplicity), where 0 < r ≤ 1 of
the model equations in Ref. [18] become:

Dr C(t) = βrC
(
1 −

C
Cm

)
− dr

1CP − (dr
2 + dr

3 + dr
4 + µ

r
0)C. (1)
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Table 1: Descriptions of Model Variables and Parameters [18]

Symbols Descriptions
t Time

C(t) Concentration of CO2 in the atmosphere

P(t) Photosynthetic biomass density

R(t) Recycling and good conservation policies density

E(t) Enlightenment/ awareness programmes density

T (t) Direct air capture technology density

β Intrinsic rate of accumulation of CO2 in the atmosphere

Cm Maximum tolerated concentration of CO2 beyond which the emission becomes dangerous

d1 Rate of decrease in CO2 concentration due to interaction between CO2 and the photosynthetic biomass

d2 Rate of decrease in CO2 concentration due to implementation of recycling and good conservation policies

d3 Rate of decrease in CO2 concentration due to implementation of enlightenment/awareness programmes

d4 Rate of decrease in CO2 concentration due to implementation of direct air capture technology

µ0 Natural rate of depletion in concentration of CO2

ω Intrinsic rate of growth of the photosynthetic biomass

N Carrying capacity for the photosynthetic biomass

ϕ Rate of increase in the photosynthetic biomass due to the interaction between this biomass and CO2

τ Rate of increase in photosynthetic biomass due to interaction between good conservation policies and the photosynthetic biomass

µ1 Rate of decrease in photosynthetic biomass due to natural phenomena

µ2 Rate of decrease in photosynthetic biomass due to human activities

a1 Rate of success of recycling and good conservation policies

a0 Rate of negligence or evasion of recycling and good conservation policies

b1 Rate of success of enlightenment/ awareness programmes

b0 Rate of Ignorance, negligence and evasion of the enlightenment programmes

m1 Rate of success of direct air capture technology

m0 Rate of decline in the implementation of direct air capture technology

Dr P(t) = ωrP
(
1 −

P
N

)
+ ϕrCP + τrPR − (µr

1 + µ
r
2)P. (2)

Dr R(t) = ar
1C − ar

0R. (3)
Dr E(t) = br

1C − br
0E. (4)

Dr T (t) = mr
1C − mr

0T. (5)

The initial conditions of these equations are: C(0) = C0, P(0) =
P0,R(0) = R0, E(0) = E0,T (0) = T0. In subsequent writings,
the order, r, on the right hand side of equations (1)-(5) would be
omitted for ease of writing and simplification. Hence, it would
be implied.

3.1. Existence and Uniqueness
Lemma 6. Let
Φ = {(C, P,R, E,T ) ∈ ℜ5

+ : max (|C|, |P|, |R|, |E|, |T | ≤ δ, δ >
0)}, t∞ and
ℜ5
+ = {(C, P,R, E,T ) : C ≥ 0, P ≥ 0,R ≥ 0, E ≥ 0,T ≥ 0}. The

model system given by equations (1) to (5) with initial value in
ℜ5
+ ⊆ Φ has a unique solution in Φ × [0, t∞]

Proof: The proof of this lemma is done in like manner as pre-
sented in the works of Refs. [13, 31–33] and Refs. [36–38].

Let A = (C, P,R, E,T ) and Ā = (C̄, P̄, R̄, Ē, T̄ ) for any A, Ā ∈ Φ.

By considering a mapping

F(A) = (F1(A), F2(A), F3(A), F4(A), F5(A)) :
4
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||F(A) − F(Ā)|| = |F1(A) − F1(Ā)| + |F2(A) − F2(Ā)|
+ |F3(A) − F3(Ā)| + |F4(A) − F4(Ā)|
+ |F5(A) − F5(Ā)|. (6)

From equations (1)-(5), let

F1(A) = βC
(
1 −

C
Cm

)
− d1CP − (d2 + d3 + d4 + µ0)C. (7)

F2(A) = ωP
(
1 −

P
N

)
+ ϕCP + τPR − (µ1 + µ2)P. (8)

F3(A) = a1C − a0R. (9)
F4(A) = b1C − b0E. (10)
F5(A) = m1C − m0T. (11)

Evaluating each term on the RHS of equation (6) using equa-
tions (7) to (11):

F1(A) − F1(Ā) = −
β

Cm
(C + C̄)(C − C̄) − d1P(C − C̄)

− d1C̄(P − P̄) + β(C − C̄)
− (d2 + d3 + d4 + µ0)(C − C̄). (12)

F2(A) − F2(Ā) = (ω + µ1 + µ2)(P − P̄) −
ω

N
(P + P̄)(P − P̄)

− ϕP(C − C̄) − ϕC̄(P − P̄) + τR(P − P̄)
+ τP̄(R − R̄). (13)

F3(A) − F3(Ā) = (a1C − a0R) −
(
a1C̄ − a0R̄

)
= a1(C − C̄) − a0(R − R̄). (14)

F4(A) − F4(Ā) = (b1C − b0E) −
(
b1C̄ − b0Ē

)
= b1(C − C̄) − b0(E − Ē). (15)

F5(A) − F5(Ā) = (m1C − m0T ) −
(
m1C̄ − m0T̄

)
= m1(C − C̄) − m0(T − T̄ ). (16)

Substituting equations (12), (13), (14), (15) and (16) into equa-
tion (6):

||F(A) − F(Ā)|| =
∣∣∣ β
Cm

(C + C̄)(C − C̄) − d1P(C − C̄) − d1C̄(P − P̄)

+ β(C − C̄) − (d2 + d3 + d4 + µ0)(C − C̄)|

+
∣∣∣(ω + µ1 + µ2)(P − P̄) −

ω

N
(P + P̄)(P − P̄)

− ϕP(C − C̄) − ϕC̄(P − P̄) + τR(P − P̄)

+ τP̄(R − R̄)| +
∣∣∣a1(C − C̄) − a0(R − R̄)|

+
∣∣∣b1(C − C̄) − b0(E − Ē)

∣∣∣
+

∣∣∣m1(C − C̄) − m0(T − T̄ )
∣∣∣

≤
β

Cm
|C + C̄||C − C̄| + d1|P||C − C̄|

+ d1|C̄||(P − P̄)| + β|C − C̄|

+ (d2 + d3 + d4 + µ0)|C − C̄| + (ω + µ1 + µ2)|P − P̄|

+
ω

N
|P + P̄||(P − P̄)| + ϕ|P||C − C̄| + ϕ|C̄||P − P̄|

+ τ|R||P − P̄| + τ|P̄||R − R̄| + a1|C − C̄| + a0|R − R̄|

+ b1|C − C̄| + b0|E − Ē| + m1|C − C̄| + m0|T − T̄ |.

From the statement of lemma 6;

(|C|, |P|, |R|, |E|, |T | ≤ δ)⇒ (|C̄|, |P̄|, |R̄|, |Ē|, |T̄ | ≤ δ).

∴ ||F(A) − F(Ā)|| ≤
2βδ
Cm
|C − C̄| + d1δ|C − C̄| + d1δ|P − P̄|

+ β|C − C̄| + (d2 + d3 + d4 + µ0)|C − C̄|

+ (ω + µ1 + µ2)|P − P̄|

+
2δω
N
|(P − P̄)| + ϕδ|C − C̄| + ϕδ|P − P̄|

+ τδ|P − P̄| + τδ|R − R̄| + a1|C − C̄|

+ a0|R − R̄| + b1|C − C̄| + b0|E − Ē|

+ m1|C − C̄| + m0|T − T̄ |

=
(2βδ

Cm
+ d1δ + d2 + d3 + d4 + µ0 + β + ϕδ + a1 + b1 + m1

)
|C − C̄|

+
(
ω + µ1 + µ2 +

2δω
N
+ ϕδ + τδ

)
|P − P̄| +

(
τδ + a0

)
|R − R̄|

+ b0|E − Ē| + m0|T − T̄ |.

Let

L1 =
(2βδ

Cm
+ d1δ + d2 + d3 + d4 + µ0 + β + ϕδ + a1 + b1 + m1

)
,

L2 =
(
ω + µ1 + µ2 +

2δω
N
+ ϕδ + τδ

)
,

L3 =
(
τδ + d5δ + a0

)
,

L4 = b0,

L5 = m0.

∴ ||F(A) − F(Ā)|| ≤ L1|C − C̄| + L2|P − P̄| + L3|R − R̄| + L4|E − Ē|

+ L5|T − T̄ |.

≤ L
∣∣∣A − Ā

∣∣∣ . (17)

Where L = max {L1, L2, L3, L4, L5}. Therefore, the in-
equality (17) shows that F(A) satisfies the Lipschitz Condition.
Hence, using Lemma 4 the model system given by equations (1)
to (5) has a unique solution A(t) for non-negative initial condi-
tion.

3.2. Positivity of the Model Solution

The biological meaningfulness of the model system given
by equations (1 ) to (5) is dependent importantly on establishing
that all its state variables are non-negative for all time, (t). In
other words, it suffices to proving that for positive initial data,
the solutions of the model system will remain positive for all
time t > 0.

Lemma 7. Let the initial data be C(0) = C0 > 0, P(0) = P0 >
0, R(0) = R0 > 0, E(0) = E0 > 0, T (0) = T0 > 0, then the
solutions (C, P,R, E,T ) of the model are positive for all time
t > 0.

5
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Proof 1. The proof of this lemma is done by considering simi-
lar approaches as presented in the works of Refs. [32, 39–42].
Let t1 = sup{t > 0 : C(0) = C0 > 0, P(0) = P0 > 0,R(0) =
R0 > 0, E(0) = E0 > 0,T (0) = T0 > 0}.
Since the system represents a biological system and there is
continuous emission and accumulation of carbon dioxide into
the atmosphere, we assume that all derivatives are positive.
Thus, for t1 > 0:

Dr C(t) = βC
(
1 −

C
Cm

)
− d1CP − (d2 + d3 + d4 + µ0)C

⇒Dr C(t) ≥ −(d2 + d3 + d4 + µ0)C. (18)

Taking the Laplace transform of both sides of the inequality in
(18):

srC(s) − sr−1C(0) ≥ −(d2 + d3 + d4 + µ0)C(s)

⇒C(s) ≥
sr−1

sr + (d2 + d3 + d4 + µ0)
C0. (19)

Taking the inverse Laplace transform of the inequality in (19):

C(t) ≥ C0Er,1 (−(d2 + d3 + d4 + µ0)tr) . (20)

Since
C0 > 0 and the Mittag-Leffler function
Er,1 (−(d2 + d3 + d4 + µ0 + β)tr) > 0, then C(t) > 0, ∀t > 0.
Taking the second equation given by equation (2):

Dr P(t) = ωP
(
1 −

P
N

)
+ ϕCP + τPR − (µ1 + µ2)P

⇒Dr P(t) ≥ −(µ1 + µ2)P. (21)

Taking the Laplace transform of both sides of the inequality in
(21):

srP(s) − sr−1P0 ≥ −(µ1 + µ2)P(s)

⇒P(s) ≥
sr−1

sr + (µ1 + µ2)
P0. (22)

Taking the inverse Laplace transform of both sides of the in-
equality in (22):

L−1{P(s)} ≥ L−1
{

sr−1

sr + (µ1 + µ2)
P0

}
⇒P(t) ≥ P0Er,1 (−(µ1 + µ2)tr) . (23)

Since
P0 > 0 and the Mittag-Leffler function Er,1 (−(µ1 + µ2)tr) > 0,
then P(t) > 0, ∀t > 0.
Taking the third equation given by equation (3):

Dr R(t) = a1C − a0R

⇒Dr R(t) ≥ −a0R. (24)

Taking the Laplace transform of both sides of the inequality in
(24):

srR(s) − sr−1R0 ≥ −a0R(s)

⇒R(s) ≥
sr−1

sr + a0
R0. (25)

Taking the inverse Laplace transform of both sides of the in-
equality in (25):

L−1{R(s)} ≥ L−1
{

sr−1

sr + a0
R0

}
⇒R(t) ≥ R0Er,1 (−a0tr) . (26)

Since R0 > 0 and the Mittag-Leffler function Er,1 (−a0tr) > 0,
then R(t) > 0, ∀t > 0.
Taking the fourth equation given by equation (4):

Dr E(t) = b1C − b0E

⇒Dr E(t) ≥ −b0E. (27)

Taking the Laplace transform of both sides of (27):

srE(s) − sr−1E0 ≥ −b0E(s)

⇒E(s) ≥
sr−1

sr + b0
E0. (28)

Taking the inverse Laplace transform of both sides of the in-
equality (28):

L−1{E(s)} ≥ L−1
{

sr−1

sr + b0
E0

}
⇒E(t) ≥ E0Er,1 (−b0tr) . (29)

Since E0 > 0 and the Mittag-Leffler function Er,1 (−b0tr) > 0,
then E(t) > 0, ∀t > 0.
Taking the fifth equation given by equation (5):

Dr T (t) = m1C − m0T

⇒Dr T (t) ≥ −m0T. (30)

Taking the Laplace transform of both sides of the inequality
(30):

srT (s) − sr−1T0 ≥ −m0T (s)

⇒T (s) ≥
sr−1

sr + m0
T0. (31)

Taking the inverse Laplace transform of both sides of the in-
equality (31):

L−1{T (s)} ≥ L−1
{

sr−1

sr + m0
T0

}
⇒T (t) ≥ T0Er,1 (−m0tr) . (32)

Since T0 > 0 and the Mittag-Leffler function Er,1 (−m0tr) > 0,
then T (t) > 0, ∀t > 0.
Therefore, the solution of the model system given by equations
(1) to (5) as seen from equations (20), (23), (26), (29) and (32)
is positive provided that the initial data are positive.

6
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3.3. Invariant Region

The formulated fractional climate mathematical model
given by equations (1), (2), (3), (4) and (5) would be bounded
and biologically meaningful if all the solutions with non-
negative initial data remain non-negative for t ∈ (0,∞).

Lemma 8. The region Φ={(C, P,R, E,T ) : 0 < C(t) < LC , 0 <
P(t) < LP, 0 < R(t) < LR, 0 < E(t) < LE , 0 < T (t) <
LT }⊂ ℜ

5
+ is positively-invariant for the model system given

by equations (1) to (5) with initial conditions in ℜ5
+, that is

(C0, P0,R0, E0,T0) ∈ ℜ5
+.

Proof 2. Using the approach of getting boundedness of a
model as presented in the works of Refs. [15, 17, 43, 44], the
regions or domains of positive attraction (invariant regions) are
obtained as follows:
Since the model must be positive for the biological meaning-
fulness of the model which has been established in the proof of
lemma 7, then we have:
Taking equation (1):

Dr C(t) = βC
(
1 −

C
Cm

)
− d1CP − (d2 + d3 + d4 + µ0)C > 0

Let

βC
(
1 −

C
Cm

)
− (d2 + d3 + d4 + µ0)C = 0

⇒ C = 0, β
(
1 −

C
Cm

)
− (d2 + d3 + d4 + µ0) = 0.

C = 0 is invalid in this case. Hence,

C =
Cm

β
[β − (d2 + d3 + d4 + µ0)] = LC , β > (d2 + d3 + d4 + µ0).

(33)

From the definition or statement of lemma 8, C0 > 0 implies
that

0 < C0 ≤ C

⇒ 0 < C(t) ≤
Cm

β
[β − (d2 + d3 + d4 + µ0)] = LC , (34)

β > (d2 + d3 + d4 + µ0).

Taking equation (4):

Dr E(t) > 0⇒ b1C − b0E > 0⇒ E <
b1

b0
C.

From equation (33):

E <
b1

b0
C ⇒ E <

b1Cm

b0β
[β − (d2 + d3 + d4 + µ0)]

=
b1

b0
LC = LE , β > (d2 + d3 + d4 + µ0) (35)

⇒ 0 < E(t) ≤
b1Cm

b0β
[β − (d2 + d3 + d4 + µ0)] =

b1

b0
LC = LE ,

(36)

β > (d2 + d3 + d4 + µ0).

Taking equation (5):

Dr T (t) > 0⇒ m1C − m0T > 0

∴ T <
m1

m0
C ⇒ T <

m1Cm

βm0
[β − (d2 + d3 + d4 + µ0)],

since from equation (33), C =
Cm

β
[β − (d2 + d3 + d4 + µ0)].

∴ 0 < T (t) ≤
m1Cm

βm0
[β − (d2 + d3 + d4 + µ0)] =

m1

m0
LC = LT .

(37)

Considering equation (3):

Dr R(t) > 0⇒ R <
a1

a0
C.

From the inequality results in (33) and (35):

R <
a1

a0
LC ⇒ R <

a1Cm

a0β
[β − (d2 + d3 + d4 + µ0)] = LR.

(38)

∴ 0 < R(t) ≤
a1Cm

a0β
[β − (d2 + d3 + d4 + µ0)] =

a1

a0
LC = LR.

(39)

Lastly, taking equation (2):

Dr P(t) > 0⇒ ωP
(
1 −

P
N

)
+ ϕCP + τPR − (µ1 + µ2)P > 0

∴ R <
N
ω

[
ϕC + τR + ω − (µ1 + µ2)

]
.

Substituting the inequality results in (33) and (38) into this, we
have:

P <
N
ω

[
ϕC + τR + ω − (µ1 + µ2)

]
=

N
ω

[
ϕLC + τ

a1

a0
LC + ω − (µ1 + µ2)

]
P <

N
ω

{
Cm

β

(
ϕ +

a1τ

a0

)
[β − (d2 + d3 + d4 + µ0)] + [ω − (µ1 + µ2)]

}
= LP

0 < P ≤
N
ω

{
Cm

β

(
ϕ +

a1τ

a0

)
[β − (d2 + d3 + d4 + µ0)] + [ω − (µ1 + µ2)]

}
= LP, ω > µ1 + µ2. (40)

From the results got in equations (34),(40), (39), (36) and (37),
the region or domain of attraction of the model solution with
given positive initial data is Φ={(C, P,R, E,T ) : 0 < C(t) <
LC , 0 < P(t) < LP, 0 < R(t) < LR,
0 < E(t) < LE , 0 < T (t) < LT }⊂ ℜ

5
+ and it is positively-

invariant, where

LC =
Cm

β
[β − Θ],

7
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β > Θ.

LP =
N
ω

{
Cm

β

(
ϕ +

a1τ

a0

)
[β − Θ] + [ω − (µ1 + µ2)]

}
,

ω > µ1 + µ2.

LR =
a1Cm

a0β
[β − Θ] =

a1

a0
LC , β > Θ.

LE =
b1Cm

b0β
[β − Θ] =

b1

b0
LC , β > Θ.

LT =
m1Cm

βm0
[β − Θ] =

m1

m0
LC , β > Θ.

Θ = (d2 + d3 + d4 + µ0).

4. Stability Analysis of the Model

4.1. Equilibrium Points

The equilibrium points are obtained by putting each of the
expressions on the RHS of equations (1) to (5) to zero and solv-
ing. That is, Dr C(t) = 0, Dr P(t) = 0, Dr R(t) = 0, Dr E(t) = 0
and Dr T (t) = 0 are solved to obtain the equilibrium points.
The equilibrium points of the model (as also obtained in Ref.
[18]) are:

ε0 = (C0, P0,R0, E0,T 0) = (0, 0, 0, 0, 0).
ε1 = (C∗, P∗,R∗, E∗,T ∗).

ε2 = (C∗∗, P∗∗,R∗∗, E∗∗,T ∗∗) =
(
0,

N
ω

[ω − (µ1 + µ2)], 0, 0, 0
)
.

ε3 = (C∗∗∗, P∗∗∗,R∗∗∗, E∗∗∗,T ∗∗∗).

Where,

C∗ =
Cm

β

[
β − Θ

]
, β > Θ.

P∗ = 0.

R∗ =
a1Cm

a0β

[
β − Θ

]
, β > Θ.

E∗ =
b1Cm

b0β

[
β − Θ

]
, β > Θ.

T ∗ =
m1Cm

m0β

[
β − Θ

]
, β > Θ.

C∗∗∗ =
a0βCmω − a0Cm {d1N[ω − (µ1 + µ2)] + ωΘ}

a0βω +Cmd1N (a0ϕ + τa1)
,

β > {d1N[ω − (µ1 + µ2)] + ωΘ} .

P∗∗∗ = N
[
Cm (a0ϕ + τa1) [β − Θ] + a0β[ω − (µ1 + µ2)]

a0βω +Cmd1N (a0ϕ + τa1)

]
, β > Θ.

R∗∗∗ =
a1

a0
C∗∗∗.

E∗∗∗ =
b1

b0
C∗∗∗.

T ∗∗∗ =
m1

m0
C∗∗∗.

Θ = (d2 + d3 + d4 + µ0).

4.2. Global Stability Analysis
We establish the global stability of the equilibrium points

obtained using the procedures as presented in Refs. [45–52] .

Theorem 1. The equilibrium point ε0 = (C0, P0,R0, E0,T 0) =
(0, 0, 0, 0, 0) is globally asymptotically stable (GAS) if d1 ≥ ϕ ,
(d2 + d3 + d4 + µ0) ≥ (β + a1 + b1 + m1) and (µ1 + µ2) ≥ ω in
the region Φ.

Proof 3. Let V1(C, P,R, E,T ) ≡ V1 =
1
2

C2+
1
2

P2+
1
2

R2+
1
2

E2+

1
2

T 2 be a quadratic Lyapunov function. Then we establish that
it satisfies all the axioms that guarantees the global stability of
ε0 = (0, 0, 0, 0, 0).
Obviously, V1 > 0 for C , 0, P , 0,R , 0, E , 0,T , 0. Thus,
the first axiom is satisfied.
Also,

V1(C, P,R, E,T ) ≡ V1 =
1
2

C2 +
1
2

P2 +
1
2

R2 +
1
2

E2 +
1
2

T 2

⇒ V1(ε0) = 0.

Hence, the second axiom for V1 being a Lyapunov function is
satisfied.
Next, we establish the last axiom as given thus:

DrV1 =
1
2

DrC2 +
1
2

DrP2 +
1
2

DrR2 +
1
2

DrE2 +
1
2

DrT 2. (41)

Using lemma 3, equation (41) becomes:

DrV1 ≤ DrC + DrP + DrR + DrE + DrT. (42)

Substituting equations (1)-(5) into the inequality (42) and sim-
plifying;

DrV1 ≤ DrC + DrP + DrR + DrE + DrT

= −
β

Cm
C2 −

ω

N
P2 − (d1 − ϕ)CP + τPR −

[
(d2 + d3 + d4 + µ0)

− (β + a1 + b1 + m1)
]
C

−
[
(µ1 + µ2 − ω)

]
P − a0R − b0E − m0T

By neglecting τPR, obviously

DrV1 ≤ −
β

Cm
C2 −

ω

N
P2 − (d1 − ϕ)CP −

[
(d2 + d3 + d4 + µ0)

− (β + a1 + b1 + m1)
]
C

−
[
(µ1 + µ2) − ω

]
P − a0R − b0E − m0T

= −

[
β

Cm
C2 +

ω

N
P2 + (d1 − ϕ)CP +

[
(d2 + d3 + d4 + µ0)

− (β + a1 + b1 + m1)
]
C

+
[
(µ1 + µ2) − ω

]
P + a0R + b0E + m0T

]
≤ 0.

DrV1 < 0 if and only if d1 ≥ ϕ and (d2 + d3 + d4 + µ0) ≥
(β + a1 + b1 + m1).
DrV1 = 0 if C = C0 = 0, P = P0 = 0,R = R0 = 0, E = E0 =

0,T = T 0 = 0.
8
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Hence, V1 is a Lyapunov function in Φ and the largest com-
pact invariant set in {C, P,R, E,T : DrV1 ≤ 0} is the singleton
{ε0}. Employing the Generalized LaSalle Invariance Principle
as given by lemma 5, every solution of the model system given
by equations (1)-(5) with initial conditions in Φ, tends to ε0 as
t → ∞ provided d1 ≥ ϕ , (d2 + d3 + d4 +µ0) ≥ (β+ a1 + b1 +m1)
and (µ1 + µ2) ≥ ω. Hence, the equilibrium point, ε0, is globally
asymptotically stable.

Theorem 2. The equilibrium point ε1 = (C∗, P∗,R∗, E∗,T ∗) is
globally asymptotically stable (GAS) if
(µ1 + µ2) ≥ ω in the region Φ.

Proof 4. Let V2(C, P,R, E,T ) ≡ V2 =

(
C − C∗ − C∗ ln

( C
C∗

))
+

1
2

P2 +

(
R−R∗ −R∗ ln

( R
R∗

))
+

(
E −E∗ −E∗ ln

( E
E∗

))
+

(
T −T ∗ −

T ∗ ln
( T
T ∗

))
be a hybrid Lyapunov function. Then we establish that it sat-
isfies all the axioms that guarantees the global stability of
ε1 = (C∗, P∗,R∗, E∗,T ∗) using it.
Obviously, V2 > 0 for C , C∗, P , P∗,R , R∗, E , E∗,T , T ∗.
Thus, the first axiom is satisfied.
Also,

V2(ε1) = V1(C∗, 0,R∗, E∗,T ∗) =
(
C∗ −C∗ −C∗ ln

(
C∗

C∗

))
+

1
2

(0)2 +

(
R∗ − R∗ − R∗ ln

(
R∗

R∗

))
+

(
E∗ − E∗ − E∗ ln

(
E∗

E∗

))
+

(
T ∗ − T ∗ − T ∗ ln

(
T ∗

T ∗

))
= 0.

Hence, the second axiom for V2 being a Lyapunov function is
satisfied.
Next, we establish the last axiom as given thus:

DrV2 = Dr
(
C −C∗ −C∗ ln

( C
C∗

))
+

1
2

DrP2

+ Dr
(
R − R∗ − R∗ ln

( R
R∗

))
+ Dr

(
E − E∗ − E∗ ln

( E
E∗

))
+ Dr

(
T − T ∗ − T ∗ ln

( T
T ∗

))
Using the results given by lemmas 2 and 3:

DrV2 ≤

(
C −C∗

C

)
DrC(t) + DrP(t) +

(
R − R∗

R

)
DrR(t)

+

(
E − E∗

E

)
DrE(t) +

(
T − T ∗

T

)
DrT (t).

Substituting equations (1),(2), (3), (4) and (5) into this and sim-
plifying:

DrV2 ≤ −
β

Cm
(C −C∗)2 − d1CP + d1C∗P − [(µ1 + µ2) − ω]P

−
ω

N
P2 + ϕCP + τPR + a1C −

a1C∗

R∗
R − a1R∗

C
R

+ a1C∗ + b1C −
b1C∗

E∗
E − b1E∗

C
E
+ b1C∗ + m1C −

m1C∗

T ∗
T

− m1T ∗
C
T
+ m1C∗,

Neglecting the positive terms;

DrV2 ≤ −
β

Cm
(C −C∗)2 − d1CP − [(µ1 + µ2) − ω]P −

ω

N
P2−

a1C∗

R∗
R − a1R∗

C
R
−

b1C∗

E∗
E − b1E∗

C
E
−

m1C∗

T ∗
T − m1T ∗

C
T

= −

[
β

Cm
(C −C∗)2 +

ω

N
P2 + d1CP + [(µ1 + µ2) − ω]P

+
a1C∗

R∗
R + a1R∗

C
R
+

b1C∗

E∗
E + b1E∗

C
E
+

m1C∗

T ∗
T + m1T ∗

C
T

]
≤ 0,

provided that (µ1 + µ2) ≥ ω.
DrV2 < 0 if and only if (µ1 + µ2) ≥ ω. Therefore, V2 is a
Lyapunov function inΦ and the largest compact invariant set in
{C, P,R, E,T : DrV2 ≤ 0} is the singleton {ε1}. Employing the
Generalized LaSalle Invariance Principle as given by lemma 5,
every solution of the model system given by equations (1)-(5)
with initial conditions in Φ, tends to ε1 as t → ∞ provided
(µ1 + µ2) ≥ ω. Hence, the equilibrium point, ε1, is globally
asymptotically stable.

Theorem 3. The equilibrium point

ε2 = (C∗∗, P∗∗,R∗∗, E∗∗,T ∗∗) =
(
0,

N
ω

[ω − (µ1 + µ2)], 0, 0, 0
)

is

globally asymptotically stable (GAS) if d1 ≥ ϕ and (ϕP∗∗ + d2 +

d3 + d4 + µ0) ≥ (β + a1 + b1 + m1) in the region Φ.

Proof 5. Let V3 =
1
2

C2 +
(
P−P∗∗ −P∗∗ ln

P
P∗∗

)
+

1
2

R2 +
1
2

E2 +

1
2

T 2 be a hybrid Lyapunov function. Then we establish that
it satisfies all the axioms that guarantee the global stability of
ε2 = (C∗∗, P∗∗,R∗∗, E∗∗,T ∗∗) using it.
Obviously, V3 > 0 for C , C∗∗, P , P∗∗,R , R∗∗, E , E∗∗,T ,
T ∗∗. Thus, the first axiom is satisfied.
Also,

V3(ε2) = V3(C∗∗, P∗∗,R∗∗, E∗∗,T ∗∗) =
1
2

(0)2 +
(
P∗∗ − P∗∗ − P∗∗ ln

P∗∗

P∗∗
)

+
1
2

(0)2 +
1
2

(0)2 +
1
2

(0)2 = 0.

Hence, the second axiom for V3 being a Lyapunov function is
satisfied. Next, we establish the last axiom.

DrV3 =
1
2

DrC2 + Dr
(
P − P∗∗ − P∗∗ ln

P
P∗∗

)
+

1
2

DrR2 +
1
2

DrE2

+
1
2

DrT 2. (43)

Using lemmas 2 and 3, equation (43) becomes:

DrV3 ≤ DrC(t) +
(

P − P∗∗

P

)
DrP(t) + DrR(t) + DrE(t) + DrT (t).

(44)

9
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Substituting equations (1)-(5) into the inequality (44) and sim-
plifying using the equilibrium point:

DrV3 ≤ −

(
β

Cm
C2 +

ω

N
(P − P∗∗)2 + (d1 − ϕ)CP

+ [(ϕP∗∗ + d2 + d3 + d4 + µ0) − (β + a1 + b1 + m1)]C

+ [(τP∗∗ + a0)R − b0E − m0T ]
)
≤ 0

DrV3 < 0 if and only if d1 ≥ ϕ and (ϕP∗∗ + d2 + d3 + d4 +

µ0) ≥ (β + a1 + b1 + m1). Thus, V3 is a Lyapunov function in Φ
and the largest compact invariant set in {C, P,R, E,T : DrV3 ≤

0} is the singleton {ε2}. Employing the Generalized LaSalle
Invariance Principle as given by lemma 5, every solution of the
model system given by equations (1)-(5) with initial conditions
in Φ, approaches ε1 as t → ∞ provided d1 ≥ ϕ and (ϕP∗∗+d2+

d3 +d4 +µ0) ≥ (β+a1 +b1 +m1). Hence, the equilibrium point,
ε2, is globally asymptotically stable.

Theorem 4. The equilibrium point
ε3 = (C∗∗∗, P∗∗∗,R∗∗∗, E∗∗∗,T ∗∗∗) is globally asymptotically sta-
ble (GAS) in the region Φ.

Proof 6. Let

V =
(
C −C∗∗∗ −C∗∗∗ ln

( C
C∗∗∗

))
+

(
P − P∗∗∗ − P∗∗∗ ln

( P
P∗∗∗

))
+

(
R − R∗∗∗ − R∗∗∗ ln

( R
R∗∗∗

))
+

(
E − E∗∗∗ − E∗∗∗ ln

( E
E∗∗∗

))
+

(
T − T ∗∗∗ − T ∗∗∗ ln

( T
T ∗∗∗

))
be a Lyapunov function as similarly presented in Ref. [10].
Then we verify that it satisfies the axioms of Global Asymptotic
Stability for ε3 = (C∗∗∗, P∗∗∗,R∗∗∗, E∗∗∗,T ∗∗∗) as follows:
Obviously, V > 0 for C , C∗∗∗, P , P∗∗∗,R , R∗∗∗, E ,
E∗∗∗,T , T ∗∗∗. Thus, the first axiom is satisfied.
Also,

V(ε3) = V(C∗∗∗, P∗∗∗,R∗∗∗, E∗∗∗,T ∗∗∗)

=

(
C∗∗∗ −C∗∗∗ −C∗∗∗ ln

(
C∗∗∗

C∗∗∗

))
+

(
P∗∗∗ − P∗∗∗ − P∗∗∗ ln

(
P∗∗∗

P∗∗∗

))
+

(
R∗∗∗ − R∗∗∗ − R∗∗∗ ln

(
R∗∗∗

R∗∗∗

))
+

(
E∗∗∗ − E∗∗∗ − E∗∗∗ ln

(
E∗∗∗

E∗∗∗

))
+

(
T ∗∗∗ − T ∗∗∗ − T ∗∗∗ ln

(
T ∗∗∗

T ∗∗∗

))
= 0.

Hence, the second condition of the Lyapunov Stability Theorem
is satisfied.
Next, we verify the third axiom thus:

DrV = Dr
(
C −C∗∗∗ −C∗∗∗ ln

( C
C∗∗∗

))

+ Dr
(
P − P∗∗∗ − P∗∗∗ ln

( P
P∗∗∗

))
+ Dr

(
R − R∗∗∗ − R∗∗∗ ln

( R
R∗∗∗

))
+ Dr

(
E − E∗∗∗ − E∗∗∗ ln

( E
E∗∗∗

))
+ Dr

(
T − T ∗∗∗ − T ∗∗∗ ln

( T
T ∗∗∗

))
Using the result given by lemma 2:

DrV ≤
(
C −C∗∗∗

C

)
DrC(t) +

(
P − P∗∗∗

P

)
DrP(t)

+

(
R − R∗∗∗

R

)
DrR(t) +

(
E − E∗∗∗

E

)
DrE(t)

+

(
T − T ∗∗∗

T

)
DrT (t).

Substituting equations (1),(2), (3), (4) and (5) into this and sim-
plifying:

DrV ≤
[
d1

(
CP∗∗∗ +C∗∗∗P

)
+ ϕ

(
CP +C∗∗∗P∗∗∗

)
+ τ

(
PR + P∗∗∗R∗∗∗

)
+ a1

(
C +

C∗∗∗R∗∗∗

C

)
+ b1

(
C +

C∗∗∗E∗∗∗

E

)
+ m1

(
C +

C∗∗∗T ∗∗∗

T

)]
−

[
β

Cm
(C −C∗∗∗)2 +

ω

N
(P − P∗∗∗)2 +

a0

R
(R − R∗∗∗)2

+
b0

E
(E − E∗∗∗)2 +

m0

T
(T − T ∗∗∗)2

+ d1
(
CP +C∗∗∗P∗∗∗

)
+ ϕ

(
CP∗∗∗ +C∗∗∗P

)
+ τ

(
PR∗∗∗ + P∗∗∗R

)
+ a1

(
C∗∗∗ +

CR∗∗∗

C

)
+ b1

(
C∗∗∗ +

CE∗∗∗

E

)
+ m1

(
C∗∗∗ +

CT ∗∗∗

T

)]
= G − H.

Where,

G =
[
d1

(
CP∗∗∗ +C∗∗∗P

)
+ ϕ

(
CP +C∗∗∗P∗∗∗

)
+ τ

(
PR + P∗∗∗R∗∗∗

)
+ a1

(
C +

C∗∗∗R∗∗∗

C

)
+ b1

(
C +

C∗∗∗E∗∗∗

E

)
+ m1

(
C +

C∗∗∗T ∗∗∗

T

)]
H =

[
β

Cm
(C −C∗∗∗)2 +

ω

N
(P − P∗∗∗)2 +

a0

R
(R − R∗∗∗)2 +

b0

E
(E − E∗∗∗)2

+
m0

T
(T − T ∗∗∗)2 + d1

(
CP +C∗∗∗P∗∗∗

)
+ ϕ

(
CP∗∗∗ +C∗∗∗P

)
+ τ

(
PR∗∗∗ + P∗∗∗R

)
+ a1

(
C∗∗∗ +

CR∗∗∗

C

)
+ b1

(
C∗∗∗ +

CE∗∗∗

E

)
+ m1

(
C∗∗∗ +

CT ∗∗∗

T

)]
.

Thus, if G < H, then DrV ≤ 0. Therefore, the largest compact
invariant set in {(C∗∗∗, P∗∗∗,R∗∗∗, E∗∗∗,T ∗∗∗) ⊂ Φ : DrV = 0}

10
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is the singleton {ε3}, where ε3 is the fourth equilibrium point of
the model system given by equations (1) to (5). Hence, using the
Lasalle’s Invariance Principle given in lemma 5, we conclude
that ε3 is globally asymptotically stable in Φ if G < H.

5. Results

5.1. Parameters and their Values

The following parameter values (as also presented in Ref.
[18] for the classical case) were used for the numerical sim-
ulation of the model in MATLAB using the Predict-Evaluate-
Correct- Evaluate method of Adams-Bashforth-Moulton [53].
The initial conditions of the model were set as: C0 = 1, P0 = 4,
R0 = 2, E0 = 5 and T0 = 7.

6. Discussion

Three cases between the accumulation rate of carbon diox-
ide, β, and the intrinsic growth rate of the photosynthetic
biomass, ω, for four different orders of the model are depicted
in Figure 1. By varying both the intrinsic accumulation rate of
carbon dioxide, β, and the intrinsic growth rate of the photo-
synthetic biomass, ω, for different orders of the model of r =
1.0, r = 0.9, r = 0.8 and r = 0.7, the maximum excessive con-
centration of carbon dioxide corresponding to these orders ob-
tained were (2.2759, 1.9971, 1.5504), (1.6862, 1.554, 1.3069),
(1.3311, 1.2759, 1.1475) and (1.1281, 1.1098, 1.0507) respec-
tively. From these results, lower values of the excessive con-
centration were obtained as the order reduces. The excessive
concentration of carbon dioxide was less for β < ω compared
to when it was β > ω. β < ω is supposed to be the idea situ-
ation, as the expectation would be that emitted carbon dioxide
should be removed by the natural mechanism in place (photo-
synthetic biomass). However, reality is represented by β > ω,
as the natural mechanism is overwhelmed and thereby leading
to excessive accumulation of this greenhouse gas. Hence, other
mitigation measures are needed.

In Figure 2, the effect of both accumulation rate of car-
bon dioxide and the photosynthetic rate for different orders of
r = 1.0, 0.9, 0.8, 0.7 are simulated. The natural mechanism
(sink) in place to regulate the concentration of carbon diox-
ide are the photosynthetic biomass. For four different orders
of r = 1.0, r = 0.9, r = 0.8 and r = 0.7, three cases of relation-
ships between the intrinsic accumulation rate of carbon dioxide,
β and the rate of reduction of carbon dioxide by the photosyn-
thetic biomass, d1, were shown. Corresponding to these model
orders of r = 1.0, r = 0.9, r = 0.8 and r = 0.7, the values of the
excessive concentration obtained were (6.347, 1.9971, 1.5504),
(1.554, 1, 1), (1.2759, 1, 1) and (1.1098, 1, 1) respectively. As
seen in Figure 2, β > d1 means that the rate of accumula-
tion of carbon dioxide surpasses the rate at which the same
gas is removed from the atmosphere. Hence, something needs
to be done to reduce this accumulation into the atmosphere.
β < d1 represents a scenario where the excessive concentration
of carbon dioxide is effectively checked by the photosynthetic

biomass. Unfortunately, this scenario does not represent the
current reality.

The variation of the accumulation rate of carbon dioxide for
different orders of the model are shown in Figure 3. Three dif-
ferent values of β = 6, β = 3 and β = 1.5 for the model orders
r = 1.0, r = 0.9, r = 0.8 and r = 0.7 correspondingly produced
values of the maximum excessive concentration of carbon
dioxide as (19.651, 11.625, 3.8053), (15.055, 7.3906, 2.5096),
(9.948, 4.2791, 1.747) and (5.5851, 2.4337, 1.3241) respec-
tively. These represent reduction in the maximum excessive
concentration of carbon dioxide in the atmosphere to about
(40.84%, 80.03%), (50.91%, 83.33%), (56.99%, 82.44%) and
(56.43%, 76.29%) respectively. The lesser the value of the ac-
cumulation rate, β, the lower the concentration of carbon diox-
ide in the atmosphere. This can be achieved by putting effective
and efficient mitigation measures in place to reduce the exces-
sive concentration. Such mitigations could include: good con-
servations policies, enlightenment programmes and the use of
technology that can capture and store the carbon dioxide.

In Figure 4, three different maximum tolerated concentra-
tion values, Cm = 25,Cm = 15,Cm = 10, of carbon dioxide are
shown for four different values of r = 1.0, r = 0.9, r = 0.8
and r = 0.7. The values of the maximum excessive concen-
tration of carbon dioxide obtained corresponding to these val-
ues and the four orders of r = 1.0, r = 0.9, r = 0.8 and r =
0.7 were (19.651, 12.569, 8.6625), (15.055, 10.239, 7.3234),
(9.948, 7.3578, 5.5722) and (5.5851, 4.5472, 3.7141) respec-
tively . Th percentage reduction of the excessive con-
centration equivalent to these values are (36.04%, 55.92%),
(31.99%, 51.36%), (26.04%, 43.99%) and (18.58%, 33.50%)
respectively. From the simulated results, the lower the value
of the maximum tolerated concentration, Cm, the lower the
excessive concentration of carbon dioxide in the atmosphere.
Cm = 10 gave least values for excessive concentration of car-
bon dioxide compared to Cm = 25 which gave highest values
for the various orders simulated.
The effect of varying both the natural and artificial deple-
tion rates of the photosynthetic biomass on the concentra-
tion of carbon dioxide in the atmosphere are shown for dif-
ferent orders of r = 1.0, r = 0.9, r = 0.8 and r = 0.7
in Figure 5. Different values of µ1 = (0.02, 0.002, 0.0001)
and µ2 = (0.04, 0.0088, 0.0002) simulated simultaneously for
different orders generated values for the maximum exces-
sive concentration of carbon dioxide available in the atmo-
sphere as (19.432, 10.096, 3.8807), (14.646, 5.9705, 2.3118),
(9.3417, 3.2197, 1.5201) and (4.9224, 1.8162, 1.1653) respec-
tively. Corresponding to these values, (48.04%, 80.03%),
(59.23%, 84.23%), (65.53%, 83.73%) and (63.10%, 76.33%)
are the percentage reduction in the maximum excessive con-
centration of carbon dioxide for the different orders of r = 1.0,
r = 0.9, r = 0.8 and r = 0.7. Putting measures in place to re-
duce the activities that contribute to these depletion can reduce
the excessive concentration (as seen in figure 5), as reducing
µ1 = 0.02 to µ1 = 0.0001 and µ2 = 0.04 to µ2 = 0.0002 showed.

By keeping the natural depletion rate of the photosyn-
thetic biomass constant in Figure 6, the effect of varia-
tion of only the artificial depletion rate of the photosyn-

11



Achimugwu et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1749 12

Figure 1: Effect of comparing accumulation rate of carbon dioxide with intrinsic growth rate of photosynthetic biomass for different
orders of the model.
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Figure 2: Effect of comparing the accumulation rate of carbon dioxide with the photosynthetic rate of the photosynthetic biomass
for a variation of the order of the model
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Figure 3: Effect of the accumulation rate of carbon dioxide on the excessive concentration of carbon dioxide for a variation of the
order of the model
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Figure 4: Effect of variation of maximum tolerated concentration of carbon dioxide on the excessive concentration of carbon dioxide
for different orders of the model
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Figure 5: Effect of variation of both the natural and artificial depletion of the photosynthetic biomass on the excessive concentration
of carbon dioxide for variation of the order of the model

16



Achimugwu et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1749 17

Figure 6: Effect of variation of only the artificial depletion of the photosynthetic biomass on excessive concentration of carbon
dioxide for a variation of the order of the model
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Figure 7: Effect of varying only the natural depletion rate of the photosynthetic biomass on excessive concentration of carbon
dioxide for a variation of the model order
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Figure 8: Effect of the photosynthetic biomass on excessive concentration of carbon dioxide for a variation of the model order
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Figure 9: Effect of photosynthetic biomass and good conservation policies on excessive concentration of carbon dioxide for a
variation of the order of the model
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Figure 10: Effect of photosynthetic biomass, good conservation policies and enlightenment programmes on excessive concentration
of carbon dioxide for a variation of the order of the model
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Figure 11: Effect of photosynthetic biomass, good conservation policies, enlightenment programmes and direct air capture technol-
ogy on excessive concentration of carbon dioxide for a variation of the order of the model
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Figure 12: Effect of comparing the accumulation rate of CO2 with combined proportions of success of photosynthetic biomass,
good conservation policies, enlightenment programmes and direct air capture technology on excessive concentration of carbon
dioxide for a variation of the order of the model
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Table 2: Model Parameters and Their Corresponding Values [18]

Parameters Values Units References
β 1 and 6 µmol per mol m−2 [14], [44]

Cm 25 m−2 Fixed

d1 0.05 m−2 [15]

d2 0.013 m−2 Fixed

d3 0.01 m−2 Fixed

d4 0.5 m−2 [54]

µ0 0.016 year−1 Fixed

ω 0.8 and 1.0 year−1 [15, 17, 44]

N 80 kg m−2 [17]

ϕ 0.1 m−2 [15]

τ 0.03 m−2 [15]

µ1 0.02 year−1 [44]

µ2 0.04 year−1 [17]

a1 0.008 m−2 Assumed

a0 0.001 m−2 Assumed

b1 0.0078 m−2 Assumed

b0 0.0019 m−2 Assumed

m1 0.0068 m−2 Assumed

m0 0.0012 m−2 Assumed

thesis biomass are shown for different orders of the model.
Three different values of the artificial depletion rate µ2 =

0.04, µ = 0.0088, µ2 = 0.0002 gave results for the maxi-
mum excessive concentration of carbon dioxide in the atmo-
sphere as (19.432, 10.154, 3.9079), (14.646, 6.0364, 2.3319),
(9.3417, 3.2725, 1.5318) and (4.9224, 1.8448, 1.1704) respec-
tively. These results equivalently represent (47.75%, 79.89%),
(58.78%, 84.08%), (64.97%, 83.60%) and (62.52%, 76.22%)
decrease in the values of the maximum excessive concentra-
tion of carbon dioxide. The artificial depletion are mainly as a
result of human activities in the quest for survival, civilization,
industrialization and urbanization. A reduction of µ2 = 0.04
to µ2 = 0.0002 brought about a corresponding decrease in the

excessive concentration of carbon dioxide. This can be done by
putting in good measures such as regulating deforestation.

Three different values of the natural depletion rate
µ1 = 0.02, µ1 = 0.002 and µ1 = 0.0001 were simulated
for the maximum excessive concentration of carbon dioxide
while keeping the artificial depletion rate at a fixed value of
µ2 = 0.04. The corresponding values of the maximum exces-
sive concentration obtained for the different orders r = 1.0,
r = 0.9, r = 0.8 and r = 0.7 were (19.432, 10.197, 3.9355),
(14.646, 6.0756, 2.3498), (9.3417, 3.297, 1.5408) and
(4.9224, 1.8545, 1.1738). By calculation, these values corre-
spondingly represent (47.75%, 79.75%), (58.52%, 83.96%),
(64.71%, 83.51%) and (62.33%, 76.15%) reduction in the
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maximum concentration values respectively. A variation of
the natural depletion rate of the photosynthetic biomass from
µ1 = 0.02 to µ1 = 0.0001 as depicted in Figure 7, led to a
proportional reduction in excessive concentration of carbon
dioxide in the atmosphere. Hence, the higher the rate of
natural depletion of the photosynthetic biomass, the more the
concentration of carbon dioxide that would be present in the
atmosphere and vice versa.

In Figure 8, the effect of photosynthetic biomass density
on the dynamics of reducing the excessive concentration of
carbon dioxide in the atmosphere is depicted. By simulating
for the different orders r = 1.0, r = 0.9, r = 0.8 and r = 0.7,
the maximum excessive concentration values for three different
parameter values of d1 = 0.05, d1 = 0.015 and d1 = 0.33 ob-
tained were (19.651, 10.494, 4.0699), (15.055, 6.4239, 2.4546),
(9.948, 3.6025, 1.6085) and (5.5851, 2.0498, 1.202) re-
spectively. Expressing these results in percentage, they
are equivalent to (46.60%, 79.29%), (57.33%, 83.70%),
(63.79%, 83.83%) and (63.30%, 78.33%) reduction in the val-
ues of the maximum excessive concentration of carbon dioxide
respectively. Improving the density of the photosynthetic
biomass can lead to a reasonable reduction of the concentration
of carbon dioxide as seen in Figure 8 by increasing d1 = 0.05
to d1 = 0.15 and d1 = 0.33 respectively.

The effect of the combination of the photosynthetic
biomass and good conservation policies rates are pre-
sented in Figure 9. A variation of three different val-
ues of (d1, d2) = {(0.05, 0.013), (0.15, 0.089), (0.33, 0.19)}
for the different orders r = 1.0, r = 0.9, r =

0.8 and r = 0.7 were simulated. The maximum
excessive concentration of carbon dioxide corresponding
to these parameter variations and different orders respec-
tively were (19.432, 9.8859, 3.6062), (14.646, 5.7804, 2.1335),
(9.3417, 3.0832, 1.4184) and (4.9224, 1.7359, 1.1126). The
percentage reduction in the values of the maximum ex-
cessive concentration of carbon dioxide were equivalent to
(49.13%, 81.44%), (60.53%, 85.43%), (67.00%, 84.82%) and
(64.73%, 77.40%) respectively. The results obtained are lower
compared to those obtained in Figure 8. This means that com-
bining two mitigation measures have better effect than using
only one.

The effect of combining the photosynthetic biomass,
good conservation policies and enlightenment pro-
grammes are presented in Figure 10 for four differ-
ent orders of the model. For the different orders of
r = 1.0, r = 0.9, r = 0.8 and r = 0.7, a simulation
of three different values of the parameters (d1, d2, d3) =
{(0.05, 0.013, 0.01), (0.15, 0.089, 0.073), (0.33, 0.19, 0.17)}
was done. The corresponding values of the maxi-
mum excessive concentration of carbon dioxide got
were (19.4300, 9.8848, 3.6060), (14.642, 5.779, 2.1334),
9.3342, 3.0822, 1.4183 and (4.9148, 1.7355, 1.1126) respec-
tively. A calculation of the percentage decrease in the
maximum excessive concentration values of carbon dioxide
gave (49.13%, 81.44%), (60.53%, 85.43%), (66.98%, 84.81%)
and (64.69%, 77.36%) respectively. The results obtained were
better compared to those obtained for a single measure (Figure

8) as well as a combination of two measures as well (Figure 9).
In Figure 11, the effect of the photosynthetic biomass,

good conservation policies, enlightenment programmes and
direct air capture technology are shown for different values of
the associated parameters and order of the model. Different
variations of the parameters involved,
(d1, d2, d3, d4) =

{
(0.05, 0.013, 0.01, 0.5), (0.15, 0.089, 0.073, 0.7),

(0.33, 0.19, 0.17, 0.9)
}

for the different orders r = 1.0, r = 0.9,
r = 0.8 and r = 0.7 gave the results (17.316, 7.5432, 2.3793),
(14.642, 5.779, 2.1334), (9.3342, 3.0822, 1.4183) and
(4.9148, 1.7355, 1.1126) respectively. Calculating the per-
centage decrease in the maximum excessive concentration
of carbon dioxide from these results gave (56.44%, 86.26%),
(60.53%, 85.43%), (66.98%, 84.81%) and (64.69%, 77.36%)
respectively. This combination gave the best result as the ex-
cessive concentration of carbon dioxide was lowest compared
to the results in Figures 8, 9 and 10.

In Figure 12, we look at different scenarios involving the
excessive accumulation of carbon dioxide into the atmosphere
and the collective combination of the mitigation measures. By
taking different parameter values for β > d1 + d2 + d3 + d4,
β = d1 + d2 + d3 + d4, β < d1 + d2 + d3 + d4 and for the dif-
ferent orders of r = 1.0, r = 0.9, r = 0.8 and r = 0.7, the
maximum excessive concentration of carbon dioxide obtained
were (1.0019, 1, 1), (1, 1, 1), (1, 1, 1) and (1, 1, 1) respectively.
As seen from the figure, more concentration of carbon diox-
ide was available in the atmosphere when β > d1 + d2 + d3 + d4
compared to when β < d1 + d2 + d3 + d4 which would represent
a logical explanation of what should be expected.

7. Conclusion

A fractional order deterministic model on climate change
of five compartments is presented. The compartments com-
prises: Excessive Concentration of Carbon Dioxide, Photo-
synthetic Biomass, Good Conservation Policies, Enlightenment
Programmes and Direct Air Capture Technology. The proofs of
the uniqueness and existence of the model solution, the posi-
tivity of the model solution as well as the boundedness of the
model solution were shown. By constructing different Lya-
punov functions, the global stability analysis of the four equi-
librium points was done. The simulation of the model for four
different orders of 1.0, 0.9, 0.8 and 0.7 was done in Matlab us-
ing the Predict-Evaluate-Correct-Evaluate (PECE) method of
Adam-Bashforth-Moulton. The results obtained were presented
graphically and discussed. Findings revealed that the excessive
concentration of carbon dioxide can be reduced by effective im-
plementation of mitigation measures.
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