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Abstract

Recent studies have highlighted fixed point theorems in the context of bicomplex valued metric spaces, utilizing rational type contractions with
coefficients defined by two-variable control functions. In our research, we extend these findings by proposing new theorems for identifying com-
mon fixed points within bicomplex valued metric spaces, employing rational type contractions characterized by three-variable control functions as
coefficients. We have refined the contraction conditions presented in numerous existing theorems by substituting constants with a limited number
of control functions for more versatility in bicomplex valued metric spaces. This advancement broadens the scope of several significant findings
in the literature. To demonstrate the efficacy of our results, we offer compelling examples that validate our theorems. Furthermore, we apply our
primary findings to effectively address the Urysohn integral equation system, showcasing the practical application of our research.
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1. Introduction

Fixed point theory is the most important branch of func-
tional analysis and its recent developments in different fields of
mathematics show its importance and applicability. Fixed point
theory has grown in importance as a tool for studying theoreti-
cal problems that are directly applicable in a variety of scientific
fields. Optimization issues, control theory, economics, and var-
ious other applications are just a few examples. It is especially
useful in determining whether solutions to differential and inte-
gral equations exist because these equations govern the behav-
ior of various real-world problems. At present, the fixed point
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notion is used to study mathematical models of diseases such
as COVID-19, in which such points play a vital role in finding
solutions to a given system. Banach has established the Banach
contraction principle, which ensures the existence and unique-
ness of a fixed point on a complete metric space, in 1922. De-
spite its remarkable simplicity, it is one of the most frequently
used fixed point theorems in all of the analyses. Several authors
have extended, generalized, and improved it in many ways and
in various spaces.

In mathematics, metric space is one of the most useful and
important space. Its broad scope makes it an effective tool
for studying variational inequalities, optimization and approx-
imation theory, computer sciences, and other topics. Biology,
medicine, physics, and computer science are just a few of the
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pure and applied science fields that have emphasized the value
of metric spaces (see Refs. [1, 2]). The concept of metric
spaces has been expanded upon by Perov [3] by introducing
vector-valued metric spaces. Mustafa and Sims [4] have in-
troduced G-metric spaces and Huang and Zhang [5], the cone
metric spaces, and Chistyakov [6], modular metric spaces and
more real valued fixed points on different spaces [7, 8]. Many
articles have been published about fixed point theory in various
metric spaces.

Sir Carl Fredrich Gauss has established the emergence of
complex numbers in the 17th century, but his work was not doc-
umented. Later, in 1840, Augustin Louis Cauchy, known as the
effective founder of complex analysis, began analysis of com-
plex numbers. Segre has initialized the study of bi-complex
numbers by providing a commutative substitute to the skew
field of quaternions. These numbers are a more precise general-
ization of complex numbers to quaternions. For a more in-depth
look at bi-complex numbers, see Ref. [9].

Azam et al. [10] have introduced complex-valued metric
spaces as a generalization of the metric spaces in 2011. They
have found some fixed point solutions for a pair of mappings
that satisfy a rational expression for the contraction condition.
As a result, many analytical results could not be generalized
to cone metric spaces and could be applied to complex-valued
metric spaces. The authors of [11] have established common
fixed point theorems that are more general than those of Klin-
eam and Suanoom [12], Rouzkard and Imdad [13], and et al.
[10] on complex valued metric spaces and expanded and refined
the conditions of contraction from the entire space to closed
ball. More results on complex valued metric spaces are dis-
cussed in [14–18]. Numerous branches of mathematics as well
as physics, including hydrodynamics, mechanical engineering,
and electrical engineering, benefit from complex-valued metric
space.

In 2017, Choi et al. [19] have introduced the idea of bi-
complex valued metric spaces by combining the concepts of bi-
complex numbers and complex-valued metric spaces, and have
proved common fixed point results for weakly compatible map-
pings. In order to define the max function for the partial order
in bi-complex valued metric space and to obtain common fixed
point results for a pair of mappings, Jebril et al. [20] have used
the recently introduced space concept. A. J. Gnanaprakasam
et al. [21] have proved some common fixed point theorems on
bi-complex metric space and using this, they have solved the
linear system of equations. Recently A.Tassaddiq et al. in [22],
have used the idea of bi-complex valued metric spaces to get
common fixed point results for rational type contractions in-
volving two-variable control functions. For more details about
bi-complex valued metric spaces refer [23, 24].

Motivated by these authors, we have proved a number of re-
sults on a common fixed point using more general rational type
contraction conditions involving three variable control func-
tions as coefficients on bi-complex valued metric space. We
have extended and improved the conditions of contraction of
many existing theorems by using control functions as coeffi-
cients instead of the constants of contraction on bi-complex
valued metric spaces. In addition, we have provided a valid

example to show the validity of the proven results. As an ap-
plication, in the context of bi-complex valued metric space, we
have developed common fixed point results for rational con-
tractions involving control functions of two variables to a sys-
tem of Urysohn integral equations involving control functions
of three variables. Following are the symbols, notations, defini-
tions, and lemmas relevant to this study.

Let C0,C1 and C2 be the sets of real, complex, and bi-
complex numbers, respectively. According to Segre, a bi-
complex number is defined as follows h = b1+i1b2+i2b3+b4i1i2
where b1, b2, b3, b4 ∈ C0, and i1, i2 are the independent units
such that i21 = i22 = −1 and i1i2 = i2i1. Here the set C2 is defined
as C2 = {h : h = b1 + i1b2 + i2b3 + i1i2b4 : b1, b2, b3, b4 ∈ C0}.
(i.e.) C2 = {h : h = z1+i2z2 : z1, z2, ∈ C1}where z1 = b1+i1b2 ∈

C1 and z2 = b3 + i1b4 ∈ C1. If there exits h, k such that hk = 1,
then h = z1 + i2z2 ∈ C2 is said to be invertible, and k is called
the inverse (multiplicative) of h. As a result, h is known as the
inverse of k. An element h = z1+ i2z2 ∈ C2 is nonsingular if and
only if |z2

1+z2
2| , 0 and singular if and only if |z2

1+z2
2| = 0. In this

order, we represent the set of singular members of C0 and C1 by
ℵ0 and ℵ1. Many members in C2 do not have a multiplicative
inverse. A bi-complex number h = b1+b2i1+b3i2+b4i1i2 ∈ C2
is said to be degenerated if the 2 × 2 matrix of h is degener-
ated. At the same time inverse of h exists and it is generated too
and the norm ∥.∥ : C2 → C+0 is defined as ∥h∥ = ∥z1 + i2z2∥ =√
|z1 − i1z2|

2 + |z1 + i1z2|
2

2
=

√
b2

1 + b2
2 + b2

3 + b2
4. A Banach

space is the space C2 with respect to the aforementioned norm.
If h, k ∈ C2, then ∥hk∥ ≤

√
2 ∥h∥ ∥k∥ holds instead of ∥hk∥ ≤

∥h∥ ∥k∥. Let h, k ∈ C2. A partial order relation on C2 is de-
fined as follows. h ⪯i2 k iff Rea(z1) ≤ Rea(w1)and Ima(z2) ≤
Ima(w2)
Consequently, we can say that h ⪯i2 k if any one of the follow-
ing cases exists

(a1) z1 = w1 and z2 = w2
(a2) z1 = w1 and z2 < w2
(a3) z1 < w1 and z2 = w2
(a4) z1 < w1 and z2 < w2.

Azam et al. [10] have defined the complex-valued metric
spaces as follows.

Definition 1.1. Let P be a nonempty set. A mapping dC1 : P ×
P → C1 is said to be a complex-valued metric if the following
conditions hold.

(a1) 0 ⪯ dC1 (h, k),∀h, k ∈ P and dC1 (h, k) = 0⇔ h = k
(a2) dC1 (h, k) = dC1 (k, h),∀h, k ∈ P
(a3) dC1 (h, b) ⪯ dC1 (h, k) + dC1 (k, b),∀h, k, b ∈ P. Then

(P, dC1 ) is called a complex-valued metric space.

A bi-complex valued metric space has been defined by Choi et
al. [19] as follows.

Definition 1.2. Let P be a nonempty set. A mapping dC2 : P ×
P→ C2 is said to be a bi-complex valued metric if the following
conditions hold.
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(a1) 0 ⪯i2 dC2 (h, k),∀h, k ∈ P and dC2 (h, k) = 0⇔ h = k
(a2) dC2 (h, k) = dC2 (k, h),∀h, k ∈ P
(a3) dC2 (h, b) ⪯i2 dC2 (h, k) + dC2 (k, b),∀h, k, b ∈ P.

Then (P, dC2 ) is called a bi-complex valued metric space.

Lemma 1.1. [23] Let (P, dC2 ) be a bi-complex-valued metric
space and let {hm} be a sequence in P. Then {hm} converges to
h⇔ |dC2 (hm, h)| → 0 as n→ ∞.

Lemma 1.2. [23] Let (P, dC2 ) be a bi-complex-valued metric
space and let a sequence in P be {hm}. Then {hm}is a Cauchy
sequence⇔ |dC2 (hm, hm+n)| → 0 as n→ ∞.

2. Some Theorems on Fixed Points

This section begins with the following observation.

Proposition 2.1. Let (P, dC2 ) be a complete bi-complex valued
metric space and S 1, S 2 : P → P. Let h0 ∈ P and the se-
quence {hm} be defined by h2m+1 = S 1h2m and h2m+2 = S 2h2m+1.
Assume that there exists F : P × P × P → [0, 1) satisfying
F(S 2S 1h, k, b) ≤ F(h, k, b) and F(h, S 1S 2k, b) ≤ F(h, k, b) for
all h, k ∈ P and for a fixed element b ∈ P. Then F(h2m, k, b) ≤
F(h0, k, b) and F(h, h2m+1, b) ≤ F(h, h1, b) ∀m = 0, 1, 2, ... and
h, k ∈ P.

Proof. Let h, k ∈ P and m = 0, 1, 2, ... Then we have

F(h2m, k, b) = F(S 2S 1h2m−2, k, b) ≤ F(h2m−2, k, b)
= F(S 2S 1h2m−4, k, b) ≤ F(h2m−4, k, b)
≤ ... ≤ F(h0, k, b).

Similarly, we have

F(h, h2m+1, b) = F(h, S 1S 2h2m−1, b) ≤ F(h, h2m−1, b)
= F(h, S 1S 2h2m−3, b) ≤ F(h, h2m−3, b)
≤ ... ≤ F(h, h1, b).

Following is a theorem on contractive condition in which the
coefficient is a control function with three variables out of
which one variable is fixed.

Theorem 2.1. Let (P, dC2 ) be a complete bi-complex valued
metric space and S 1, S 2 : P → P. If there exists mappings
F1, F2, F3, F4 : P × P × P→ [0, 1) such that for i = 1, 2, 3, 4.

(a) Fi(S 2S 1h, k, b) ≤ Fi(h, k, b) and
Fi(h, S 1S 2k, b) ≤ Fi(h, k, b),

(b)
dC2 (S 1h, S 2k) ⪯i2 F1(h, k, b)dC2 (h, k)

+ F2(h, k, b)
dC2 (h, S 1h)dC2 (k, S 2k)

1 + dC2 (h, k)

+ F3(h, k, b)
dC2 (k, S 1h)dC2 (h, S 2k)

1 + dC2 (h, k)

+ F4(h, k, b)
(

dC2 (h, S 1h)dC2 (h, S 2k)
1 + dC2 (h, S 2k) + dC2 (k, S 1h)

+
dC2 (k, S 2k)dC2 (k, S 1h)

1 + dC2 (h, S 2k) + dC2 (k, S 1h)

)
, (1)

(c) F1(h, k, b) +
√

2 F2(h, k, b) +
√

2 F3(h, k, b)
+
√

2 F4(h, k, b) < 1,∀h, k ∈ P and for a fixed b. ∈ P

Then S 1 and S 2 have a unique common fixed point.

Proof. Let h, k ∈ P. From (1), we have

dC2 (S 1h, S 2S 1h) ⪯i2 F1(h, S 1h, b)dC2 (h, S 1h)

+ F2(h, S 1h, b)
dC2 (h, S 1h)dC2 (S 1h, S 2S 1h)

1 + dC2 (h, S 1h)

+ F3(h, S 1h, b)
dC2 (S 1h, S 1h)dC2 (h, S 2S 1h)

1 + dC2 (h, S 1h)
+ F4(h, S 1h, b)(

dC2 (h, S 1h)dC2 (h, S 2S 1h)
1 + dC2 (h, S 2S 1h) + dC2 (S 1h, S 1h)

+
dC2 (S 1h, S 2S 1h)dC2 (S 1h, S 1h)

1 + dC2 (h, S 2S 1h) + dC2 (S 1h, S 1h)

)
.∥∥∥dC2 (S 1h, S 2S 1h)

∥∥∥ ≤ F1(h, S 1h, b)
∥∥∥dC2 (h, S 1h)

∥∥∥
+ F2(h, S 1h, b)

∥∥∥∥∥∥dC2 (h, S 1h)dC2 (S 1h, S 2S 1h)
1 + dC2 (h, S 1h)

∥∥∥∥∥∥
+ F3(h, S 1h, b)

∥∥∥∥∥∥dC2 (S 1h, S 1h)dC2 (h, S 2S 1h)
1 + dC2 (h, S 1h)

∥∥∥∥∥∥
+ F4(h, S 1h, b)( ∥∥∥∥∥∥ dC2 (h, S 1h)dC2 (h, S 2S 1h)

1 + dC2 (h, S 2S 1h) + dC2 (S 1h, S 1h)

∥∥∥∥∥∥
+

∥∥∥∥∥∥ dC2 (S 1h, S 2S 1h)dC2 (S 1h, S 1h)
1 + dC2 (h, S 2S 1h) + dC2 (S 1h, S 1h)

∥∥∥∥∥∥
)

≤ F1(h, S 1h, b)
∥∥∥dC2 (h, S 1h)

∥∥∥
+
√

2 F2(h, S 1h, b)

∥∥∥∥∥∥ dC2 (h, S 1h)
1 + dC2 (h, S 1h)

∥∥∥∥∥∥
×

∥∥∥dC2 (S 1h, S 2S 1h)
∥∥∥ + √2 F4(h, S 1h, b)

×

∥∥∥∥∥∥ dC2 (h, S 2S 1h)
1 + dC2 (h, S 2S 1h)

∥∥∥∥∥∥ ∥∥∥dC2 (h, S 1h)
∥∥∥

≤ F1(h, S 1h, b)
∥∥∥dC2 (h, S 1h)

∥∥∥
+
√

2 F2(h, S 1h, b)
∥∥∥dC2 (S 1h, S 2S 1h)

∥∥∥
+
√

2 F4(h, S 1h, b)
∥∥∥dC2 (h, S 1h)

∥∥∥ .∥∥∥dC2 (S 1h, S 2S 1h)
∥∥∥ ≤ F1(h, S 1h, b)

∥∥∥dC2 (h, S 1h)
∥∥∥

+
√

2 F2(h, S 1h, b)
∥∥∥dC2 (S 1h, S 2S 1h)

∥∥∥
+
√

2 F4(h, S 1h, b)
∥∥∥dC2 (h, S 1h)

∥∥∥ . (2)

Similarly, from(1), we have∥∥∥dC2 (S 1S 2k, S 2k)
∥∥∥ ≤ F1(S 2k, k, b)

∥∥∥dC2 (S 2k, k)
∥∥∥

+
√

2 F2(S 2k, k, b)
∥∥∥dC2 (S 2k, S 1S 2k)

∥∥∥
+
√

2 F4(S 2k, k, b)
∥∥∥dC2 (k, S 2k)

∥∥∥ . (3)

Let h0 ∈ P and the sequence {hm} be defined by h2m+1 = S 1h2m

and h2m+2 = S 2h2m+1. Using (2) and (3) in Proposition(2.1),∥∥∥dC2 (h2m+1, h2m)
∥∥∥ ≤ F1(h2m, h2m−1, b)

∥∥∥dC2 (h2m−1, h2m)
∥∥∥
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+
√

2 F2(h2m, h2m−1, b)
∥∥∥dC2 (h2m, h2m+1)

∥∥∥
+
√

2 F4(h2m, h2m−1, b)
∥∥∥dC2 (h2m−1, h2m)

∥∥∥
≤ F1(h0, h2m−1, b)

∥∥∥dC2 (h2m−1, h2m)
∥∥∥

+
√

2 F2(h0, h2m−1, b)
∥∥∥dC2 (h2m, h2m+1)

∥∥∥
+
√

2 F4(h0, h2m−1, b)
∥∥∥dC2 (h2m−1, h2m)

∥∥∥
≤ F1(h0, h1, b)

∥∥∥dC2 (h2m−1, h2m)
∥∥∥

+
√

2 F2(h0, h1, b)
∥∥∥dC2 (h2m, h2m+1)

∥∥∥
+
√

2 F4(h0, h1, b)
∥∥∥dC2 (h2m−1, h2m)

∥∥∥
≤

(F1(h0, h1, b) +
√

2 F4(h0, h1, b))

1 −
√

2 F2(h0, h1, b)
×

∥∥∥dC2 (h2m, h2m−1)
∥∥∥ .

∥∥∥dC2 (h2m+1, h2m)
∥∥∥ ≤ (F1(h0, h1, b) +

√
2 F4(h0, h1, b))

1 −
√

2 F2(h0, h1, b)
×

∥∥∥dC2 (h2m, h2m−1)
∥∥∥ . (4)

Similarly, we obtain,

∥∥∥dC2 (h2m+2, h2m+1)
∥∥∥ ≤ (F1(h0, h1, b) +

√
2 F4(h0, h1, b))

1 −
√

2 F2(h0, h1, b)
×

∥∥∥dC2 (h2m+1, h2m)
∥∥∥ . (5)

Let k =
(F1(h0, h1, b) +

√
2 F4(h0, h1, b))

1 −
√

2 F2(h0, h1, b)
. Then from (4) and

(5), we have∥∥∥dC2 (hm, hm+1)
∥∥∥ ≤ k

∥∥∥dC2 (hm−1, hm)
∥∥∥ ≤ k2

∥∥∥dC2 (hm−2, hm−1)
∥∥∥ ≤

... ≤ km
∥∥∥dC2 (h0, h1)

∥∥∥∀m ∈ N. Now for n > m, we find,∥∥∥dC2 (hm, hn)
∥∥∥ ≤ k

∥∥∥dC2 (h0, h1)
∥∥∥ + k2

∥∥∥dC2 (h0, h1)
∥∥∥ + ...

+ kn−1
∥∥∥dC2 (h0, h1)

∥∥∥
≤

km

1 − k

∥∥∥dC2 (h0, h1)
∥∥∥ .

By allowing m, n→ ∞, we have
∥∥∥dC2 (hm, hm)

∥∥∥→ 0. Therefore
{hm} is a Cauchy sequence by Lemma (1.2). As P is complete,
the sequence converges to ξ as n→ ∞. Now to show that ξ is a
fixed point of S 1 consider

dC2 (ξ, S 1ξ) ⪯i2 dC2 (ξ, S 2h2m+1) + dC2 (S 2h2m+1, S 1ξ)
= dC2 (ξ, h2m+2) + dC2 (S 2h2m+1, S 1ξ)
⪯i2 dC2 (ξ, h2m+2) + F1(ξ, h2m+1, b)dC2 (ξ, h2m+1)

+ F2(ξ, h2m+1, b)
dC2 (ξ, S 1ξ)dC2 (h2m+1, S 2h2m+1)

1 + dC2 (ξ, h2m+1)

+ F3(ξ, h2m+1, b)
dC2 (h2m+1, S 1ξ)dC2 (ξ, S 2h2m+1)

1 + dC2 (ξ, h2m+1)

+ F4(ξ, h2m+1, b)
(

dC2 (ξ, S 1ξ)dC2 (ξ, S 2h2m+1)
1 + dC2 (ξ, S 2h2m+1) + dC2 (h2m+1, S 1ξ)

+
dC2 (h2m+1, S 2h2m+1)dC2 (h2m+1, S 1ξ)

1 + dC2 (ξ, S 2h2m+1) + dC2 (h2m+1, S 1ξ)

)
.

∥∥∥dC2 (ξ, S 1ξ)
∥∥∥ ≤ ∥∥∥dC2 (ξ, h2m+2)

∥∥∥ + F1(ξ, h1, b)
∥∥∥dC2 (ξ, h2m+1)

∥∥∥
+ F2(ξ, h1, b)

∥∥∥∥∥∥dC2 (ξ, S 1ξ)dC2 (h2m+1, h2m+2)
1 + dC2 (ξ, h2m+1)

∥∥∥∥∥∥
+ F3(ξ, h1, b)

∥∥∥∥∥∥dC2 (h2m+1, S 1ξ)dC2 (ξ, h2m+2)
1 + dC2 (ξ, h2m+1)

∥∥∥∥∥∥
+ F4(ξ, h1, b)

( ∥∥∥∥∥∥ dC2 (ξ, S 1ξ)dC2 (ξ, h2m+2)
1 + dC2 (ξ, h2m+2) + dC2 (h2m+1, S 1ξ)

∥∥∥∥∥∥
+

∥∥∥∥∥∥ dC2 (h2m+1, h2m+2)dC2 (h2m+1, S 1ξ)
1 + dC2 (ξ, h2m+2) + dC2 (h2m+1, S 1ξ)

∥∥∥∥∥∥
)
.

Letting m → ∞, we have ∥ξ, S 1ξ∥ = 0 and hence S 1ξ = ξ. In
same line, one can prove that ∥ξ, S 2ξ∥ = 0 and hence S 2ξ = ξ.
Next, we have to show that ξ is a unique common fixed point
of mappings S 1 and S 2. Let ξ∗ be another common fixed point
of the mappings such that S 1ξ

∗ = S 2ξ
∗ = ξ∗ with ξ∗ , ξ. From

(1), we have∥∥∥dC2 (ξ, ξ∗)
∥∥∥ ≤ F1(ξ, ξ∗, b)

∥∥∥dC2 (ξ, ξ∗)
∥∥∥

+ F2(ξ, ξ∗, b)

∥∥∥∥∥∥dC2 (ξ, S 1ξ)dC2 (ξ∗, S 2ξ
∗)

1 + dC2 (ξ, ξ∗)

∥∥∥∥∥∥
+ F3(ξ, ξ∗, b)

∥∥∥∥∥∥dC2 (ξ∗, S 1ξ)dC2 (ξ, S 2ξ
∗)

1 + dC2 (ξ, ξ∗)

∥∥∥∥∥∥
+ F4(ξ, ξ∗, b)

( ∥∥∥∥∥∥ dC2 (ξ, S 1ξ)dC2 (ξ, S 2ξ
∗)

1 + dC2 (ξ, S 2ξ∗) + dC2 (ξ∗, S 1ξ)

∥∥∥∥∥∥
+

∥∥∥∥∥∥ dC2 (ξ∗, S 2ξ
∗)dC2 (ξ∗, S 1ξ)

1 + dC2 (ξ, S 2ξ∗) + dC2 (ξ∗, S 1ξ)

∥∥∥∥∥∥ )
≤ F1(ξ, ξ∗, b)

∥∥∥dC2 (ξ, ξ∗)
∥∥∥

+
√

2 F3(ξ, ξ∗, b)

∥∥∥∥∥∥ dC2 (ξ, ξ∗)
1 + dC2 (ξ, ξ∗)

∥∥∥∥∥∥ ∥∥∥dC2 (ξ∗, ξ)
∥∥∥

≤ F1(ξ, ξ∗, b)
∥∥∥dC2 (ξ, ξ∗)

∥∥∥
+
√

2 F3(ξ, ξ∗, b)

∥∥∥∥∥∥ dC2 (ξ, ξ∗)
1 + dC2 (ξ, ξ∗)

∥∥∥∥∥∥ ∥∥∥dC2 (ξ∗, ξ)
∥∥∥

1 ≤ F1(ξ, ξ∗, b) +
√

2 F3(ξ, ξ∗, b).

Since F1(ξ, ξ∗, b)+
√

2 F3(ξ, ξ∗, b) < 1, we get
∥∥∥dC2 (ξ, ξ∗)

∥∥∥ = 0.
Therefore ξ is a unique common fixed point of S 1 and S 2.

Following example illustrates the correctness of our Theorem
(2.1).

Example 1. Let dC2 : [0, 1] × [0, 1] → C2 be defined by
dC2 (h, k) = (1 + i2)|h − k| for all h, k ∈ [0, 1]. Clearly it is a
bi-complex valued metric space. Define S 1, S 2 : P → P by
S 1(h) = h

6 and S 2(k) = k
6 and consider F1, F2, F3, F4 : P × P ×

P→ [0, 1) by F1(h, k, b) = ( h
4+

k
6+b), F2(h, k, b) = ( h2

16+
k2

36+b2),
F3(h, k, b) = ( hkb

12 ), F3(h, k, b) = ( h2k2b2

12 ), ∀h, k ∈ P and for
b = 1

5 . Then

(a) F1(S 2S 1(h), k, b) = F1(S 2( h
6 ), k, b) = F1( h

36 , k, b) =
h

144 +
k
6 + b ≤ ( h

4 +
k
6 + b) = F1(h, k, b) and

F1(h, S 1S 2(k), b) = F1(h, S 1( k
6 ), b) = F1(h, k

36 , b) =
h
4 +

k
216 + b ≤ ( h

4 +
k
6 + b) = F1(h, k, b).

4
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That is F1(S 2S 1h, k, b) ≤ F1(h, k, b) and
F1(h, S 1S 2k, b) ≤ F1(h, k, b). In the same line, we
can show that for F2, F3, F4.

dC2 (S 1h, S 2k) = dC2 (
h
6
,

k
6

)

=
1
6

(1 + i2)|h − k|

⪯i2
1
5

(1 + i2)|h − k|

⪯i2 (
h
4
+

k
6
+

1
5

)(1 + i2)|h − k|

= F1(h, k, b)dC2 (h, k).

It is easy to check the other conditions of the Theorem (2.1) and
thus 0 is a common fixed point of mappings S 1 and S 2.

We arrive at the following Corollaries on complete bi-complex
valued metric space (P, dC2 ) by assigning values to the control
functions in Theorem (2.1).

If we fix F2(h, k, b), F3(h, k, b) and F4(h, k, b) at zero in
Theorem (2.1), then we have the following.

Corollary 2.1. Let S 1, S 2 be two self-mappings from P to itself.
If there exists a map F1 : P×P×P→ [0, 1) such that ∀ h, k ∈ P
and for a fixed b ∈ P,

(a) F1(S 2S 1h, k, b) ≤ F1(h, k, b) and
F1(h, S 1S 2k, b) ≤ F1(h, k, b),

(b) dC2 (S 1h, S 2k) ⪯i2 F1(h, k, b)dC2 (h, k),
(c) F1(h, k, b) < 1.

Then S 1 and S 2 have a unique common fixed point.

If we replace Fi(h, k, b) by Fi(h, k) for i = 1, 2, 3, 4 in Theorem
(2.1) we switch over from F1, F2, F3, F4 : P × P × P→ [0, 1)
to F1, F2, F3, F4 : P × P→ [0, 1) and we have the following
corollary.

Corollary 2.2. Let S 1, S 2 : P → P. If there exists mappings
F1, F2, F3, F4 : P × P → [0, 1) such that for all h, k ∈ P,
for i = 1, 2, 3, 4.

(a) Fi(S 2S 1h, k) ≤ Fi(h, k) and Fi(h, S 1S 2k) ≤ Fi(h, k),

(b)
dC2 (S 1h, S 2k) ⪯i2 F1(h, k)dC2 (h, k)

+ F2(h, k)
dC2 (h, S 1h)dC2 (k, S 2k)

1 + dC2 (h, k)

+ F3(h, k)
dC2 (k, S 1h)dC2 (h, S 2k)

1 + dC2 (h, k)

+ F4(h, k)
(

dC2 (h, S 1h)dC2 (h, S 2k)
1 + dC2 (h, S 2k) + dC2 (k, S 1h)

+
dC2 (k, S 2k)dC2 (k, S 1h)

1 + dC2 (h, S 2k) + dC2 (k, S 1h)

)
,

(c) F1(h, k) +
√

2 F2(h, k) +
√

2 F3(h, k) +
√

2 F4(h, k) < 1.

Then S 1 and S 2 have a unique common fixed point.

Example 2. Let dC2 : [0, 1] × [0, 1] → C2 be defined by
dC2 (h, k) = |h − k| + i2|h − k| for all h, k ∈ [0, 1]. Define
S 1, S 2 : P → P by S 1(h) = h

8 and S 2(k) = k
8 and con-

sider F1, F2, F3, F4 : P × P → [0, 1) by F1(h, k) = ( h+1
6 +

k
7 ),

F2(h, k) = ( hk
10 ), F3(h, k) = ( h2k2

9 ), F3(h, k) = ( h3k3

8 ), for all h, k
in P. Then

(a) F1(S 2S 1(h), k) = F1(S 2( h
8 ), k) = F1( h

64 , k) = h+64
384 +

k
7 ≤

( h+1
6 +

k
7 ) = F1(h, k) and

F1(h, S 1S 2(k)) = F1(h, S 1( k
8 )) = F1(h, k

64 ) = h
6 +

k
448 ≤

( h
6 +

k
7 ) = F1(h, k). Similarly, we have

(b) F2(S 2S 1h, k) ≤ F2(h, k) and F2(h, S 1S 2k) ≤ F2(h, k).
(c) F3(S 2S 1h, k) ≤ F3(h, k) and F3(h, S 1S 2k) ≤ F3(h, k).
(d) F4(S 2S 1h, k) ≤ F4(h, k) and F4(h, S 1S 2k) ≤ F4(h, k).

dC2 (S 1h, S 2k) = dC2 (
h
8
,

k
8

)

=
1
8

(|h − k| + i2|h − k|)

⪯i2
h + 1

6
(|h − k| + i2|h − k|)

⪯i2 (
h + 1

6
+

k
7

)(|h − k| + i2|h − k|)

= F1(h, k)dC2 (h, k).

All the conditions of the above Corollary 2.2 are satisfied.
Therefore 0 is a common fixed point of the mappings S 1 and
S 2.

If we replace the mappings F1, F2, F3, F4 : P × P × P → [0, 1)
by the mappings F1, F2, F3, F4 : P → [0, 1) with Fi(h, k, b) =
Fi(h) for i = 1, 2, 3, 4. in Theorem (2.1), then we have the fol-
lowing .

Corollary 2.3. Let S 1, S 2 : P → P. If there exists mappings
F1, F2, F3, F4 : P → [0, 1) such that ∀ h, k in P and for a fixed
b ∈ P with

(a) Fi(S 1h) ≤ Fi(h) and Fi(S 2h) ≤ Fi(h), for i = 1, 2, 3, 4.

(b)
dC2 (S 1h, S 2k) ⪯i2 F1(h)dC2 (h, k)

+ F2(h)
dC2 (h, S 1h)dC2 (k, S 2k)

1 + dC2 (h, k)

+ F3(h)
dC2 (k, S 1h)dC2 (h, S 2k)

1 + dC2 (h, k)

+ F4(h)
(

dC2 (h, S 1h)dC2 (h, S 2k)
1 + dC2 (h, S 2k) + dC2 (k, S 1h)

+
dC2 (k, S 2k)dC2 (k, S 1h)

1 + dC2 (h, S 2k) + dC2 (k, S 1h)

)
,

(c) F1(h) +
√

2 F2(h) +
√

2 F3(h) +
√

2 F4(h) < 1.

Then S 1 and S 2 have a unique common fixed point.

5
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Example 3. Let P = [0, 1] and dC2 : P × P → C2 be defined
by dC2 (h, k) = (1 + i2)|h − k|. Clearly it is a bi-complex valued
metric space. Define S 1, S 2 : P→ P by S 1(h) = h

4 and S 2(k) =
k
3 and consider F1, F2, F3, F4 : P → [0, 1) by F1(h) = h+1

3 ,
F2(h) = h2

9 , F3(h) = h3

27 , F4(h) = h3

81 , ∀h, k ∈ P. Then, as usual,
by simple calculation, we can check the conditions of above
Corollary 2.3.

Corollary 2.4. Let S 1, S 2 : P→ P. If there exists F1, F2,
F3, F4 ∈ [0, 1) such that for all h, k ∈ P,

(a)
dC2 (S 1h, S 2k) ⪯i2 F1dC2 (h, k)

+ F2
dC2 (h, S 1h)dC2 (k, S 2k)

1 + dC2 (h, k)

+ F3
dC2 (k, S 1h)dC2 (h, S 2k)

1 + dC2 (h, k)

+ F4

(
dC2 (h, S 1h)dC2 (h, S 2k)

1 + dC2 (h, S 2k) + dC2 (k, S 1h)

+
dC2 (k, S 2k)dC2 (k, S 1h)

1 + dC2 (h, S 2k) + dC2 (k, S 1h)

)
,

(b) F1 +
√

2 F2 +
√

2 F3 +
√

2 F4 < 1,

then S 1 and S 2 have a unique common fixed point.

We have proved the following fixed point theorem for a single
mapping using a different condition.

Theorem 2.2. Let (P, dC2 ) be a complete bi-complex valued
metric space and S 1 : P → P. If there exists mappings
F1, F2, F3 : P × P × P → [0, 1) ∋ ∀ h, k in P, for a fixed b
in P, for i = 1, 2, 3.

(a) Fi(S 1h, k, b) ≤ Fi(h, k, b) and Fi(h, S 1k, b) ≤ Fi(h, k, b),

(b)
dC2 (S 1h, S 1k) ⪯i2 F1(h, k, b)dC2 (h, k)

+ F2(h, k, b)
dC2 (k, S 1k)(1 + dC2 (h, S 1h))

1 + dC2 (h, k)

+ F3(h, k, b)
dC2 (h, S 1k)dC2 (h, S 1h)

1 + dC2 (h, k)
, (6)

(c) F1(h, k, b) +
√

2 F2(h, k, b) + 2
√

2 F3(h, k, b) < 1.

Then S 1 has a unique fixed point.

Proof. Let h0 ∈ P and the sequence {hr} be defined as hr+1 =

S 1hr, where n = 0, 1, 2, .... Using (a) for i = 1, 2, 3. we have

Fi(hr, hr+1, b) = Fi(S 2hr−1, hr+1, b)
≤ Fi(hr−1, hr+1, b) = Fi(S 2hr−2, hr+1, b)
≤ Fi(hr−2, hr+1, b) = Fi(S 2hr−3, hr+1, b)
.

.

.

≤ Fi(h0, hr+1, b)

Fi(h0, hr+1, b) = Fi(h0, S 2hr, b)
≤ Fi(h0, hr, b) = Fi(h0, S 2hr−1, b)
≤ Fi(h0, hr−1, b)
.

.

.

≤ Fi(h0, h0, b).

dC2 (hr+1, hr+2) = dC2 (S 1hr, S 1hr+1)
⪯i2 F1(hr, hr+1, b)dC2 (hr, hr+1)

+ F2(hr, hr+1, b)
dC2 (hr+1, S 1hr+1)(1 + dC2 (hr, S 1hr))

1 + dC2 (hr, hr+1)

+ F3(hr, hr+1, b)
dC2 (hr, S 1hr+1)dC2 (hr, S 1hr)

1 + dC2 (hr, hr+1)
⪯i2 F1(hr, hr+1, b)dC2 (hr, hr+1)

+ F2(hr, hr+1, b)
dC2 (hr+1, hr+2)(1 + dC2 (hr, hr+1))

1 + dC2 (hr, hr+1)

+ F3(hr, hr+1, b)
dC2 (hr, hr+2)dC2 (hr, hr+1)

1 + dC2 (hr, hr+1)
.

∥∥∥dC2 (hr+1, hr+2)
∥∥∥ ≤ F1(hr, hr+1, b)

∥∥∥dC2 (hr, hr+1)
∥∥∥

+
√

2 F2(hr, hr+1, b)
∥∥∥dC2 (hr+1, hr+2)

∥∥∥
+
√

2 F3(hr, hr+1, b)
∥∥∥dC2 (hr, hr+1)

∥∥∥
+
√

2 F3(hr, hr+1, b)
∥∥∥dC2 (hr+1, hr+2)

∥∥∥
≤ F1(h0, h0, b)

∥∥∥dC2 (hr, hr+1)
∥∥∥

+
√

2 F2(h0, h0, b)
∥∥∥dC2 (hr+1, hr+2)

∥∥∥
+
√

2 F3(h0, h0, b)
∥∥∥dC2 (hr, hr+1)

∥∥∥
+
√

2 F3(h0, h0, b)
∥∥∥dC2 (hr+1, hr+2)

∥∥∥
≤ k

∥∥∥dC2 (hr, hr+1)
∥∥∥ ,

where k =
F1(h0, h0, b) +

√
2 F3(h0, h0, b)

1 −
√

2 (F2(h0, h0, b) + F3(h0, h0, b))
. It is easy to

prove that {hr} is a Cauchy sequence. As P is complete, the
sequence converges to ζ as n→ ∞. Now we have to prove that
ζ is a fixed point of S 1.

dC2 (ζ, S 1ζ) ⪯i2 dC2 (ζ, S 1hr) + dC2 (S 1hr, S 1ζ)
⪯i2 dC2 (ζ, S 1hr) + F1(hr, ζ, b)dC2 (hr, ζ)

+ F2(hr, ζ, b)
dC2 (ζ, S 1ζ)(1 + dC2 (hr, S 1hr))

1 + dC2 (hr, ζ)

+ F3(hr, ζ, b)
dC2 (hr, S 1ζ)dC2 (hr, S 1hr)

1 + dC2 (hr, ζ)
⪯i2 dC2 (ζ, hr+1) + F1(hr, ζ, b)dC2 (hr, ζ)

+ F2(hr, ζ, b)
dC2 (ζ, S 1ζ)(1 + dC2 (hr, hr+1))

1 + dC2 (hr, ζ)

+ F3(hr, ζ, b)
dC2 (hr, S 1ζ)dC2 (hr, hr+1)

1 + dC2 (hr, ζ)
6
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⪯i2 F2(h0, ζ, b)dC2 (ζ, S 1ζ)
1 ⪯i2 F2(h0, ζ, b),

which is a contradiction. Therefore ζ is a fixed point of S 1.
Also it is easy to check the uniqueness of the fixed point.

Example 4. Let P = [0, 1] and dC2 : P× P→ C2 be defined as
dC2 (h, k) = (1+ i2)|h−k|. Define the single mapping S 1 : P→ P
by S 1(h) = h

5 and consider F1, F2, F3 : P × P × P → [0, 1) by
F1(h, k, b) = ( h

6+
k
5+b), F2(h, k, b) = ( hkb

10 ), F4(h, k, b) = ( h2k2b2

14 ),
∀h, k ∈ P and for b = 1

4 . Then,

(a) F1(S 1(h), k, b) = F1( h
5 , k, b) = h

30 +
k
5 + b ≤ ( h

6 +
k
5 + b) =

F1(h, k, b) and
F1(h, S 1(k), b) = F1(h, k

5 , b) = h
6 +

k
25 + b ≤ ( h

6 +
k
5 + b) =

F1(h, k, b). In the same line, we can show that
(b) F2(S 1h, k, b) ≤ F2(h, k, b) and F2(h, S 1k, b) ≤

F2(h, k, b).
(c) F3(S 1h, k, b) ≤ F3(h, k, b) and F3(h, S 1k, b) ≤

F3(h, k, b).

dC2 (S 1h, S 1k) = dC2 (
h
5
,

k
5

)

=
1
5

(1 + i2)|h − k|

⪯i2
1
4

(1 + i2)|h − k|

⪯i2 (
h
6
+

5
6
+

1
4

)(1 + i2)|h − k|

= F1(h, k, b)dC2 (h, k).

As a result, the requirements of Theorem (2.2) are all fulfilled.
Then, S 1 has a fixed point at 0, which is unique.

Replacement of Fi(h, k, b) by using Fi(h, k) for i = 1, 2, 3
leads to F1, F2, F3 : P × P→ [0, 1) from
F1, F2, F3 : P × P × P→ [0, 1) and then the corollary is as
follows..

Corollary 2.5. Let (P, dC2 ) be a complete bi-complex valued
metric space and S 1 : P → P. If there exists mappings
F1, F2, F3 : P× P→ [0, 1) such that ∀ h, k in P, for i = 1, 2, 3.

(a) Fi(S 1h, k) ≤ Fi(h, k) and Fi(h, S 1k) ≤ Fi(h, k),

(b)
dC2 (S 1h, S 1k) ⪯i2 F1(h, k)dC2 (h, k)

+ F2(h, k)
dC2 (k, S 1k)(1 + dC2 (h, S 1h))

1 + dC2 (h, k)

+ F3(h, k)
dC2 (h, S 1k)dC2 (h, S 1h)

1 + dC2 (h, k)
,

(c) F1(h, k) +
√

2 F2(h, k) + 2
√

2 F3(h, k) < 1.

Then S 1 has a unique fixed point.

If we replace the mappings F1, F2, F3 : P × P × P→ [0, 1) by
F1, F2, F3 : P→ [0, 1) with Fi(h, k, b) = Fi(h) for i = 1, 2, 3. in
Theorem (2.2), then we have the following .

Corollary 2.6. Let (P, dC2 ) be a complete bi-complex valued
metric space and S 1 : P → P. If there exists mappings
F1, F2, F3 : P→ [0, 1) such that ∀ h, k in P,

(a) Fi(S 1h) ≤ Fi(h) and Fi(S 1k) ≤ Fi(k), for i = 1, 2, 3.

(b)
dC2 (S 1h, S 1k) ⪯i2 F1(h)dC2 (h, k)

+ F2(h)
dC2 (k, S 1k)(1 + dC2 (h, S 1h))

1 + dC2 (h, k)

+ F3(h)
dC2 (h, S 1k)dC2 (h, S 1h)

1 + dC2 (h, k)
,

(c) F1(h) +
√

2 F2(h) + 2
√

2 F3(h) < 1.

Then S 1 has a unique fixed point.

Remark 2.1. By using the appropriate point-dependent con-
trol functions with constant coefficients F1, F2, F3, F4 and map-
pings S 1 and S 2 in Theorem (2.1), Theorem (2.2) and Corollar-
ies, one can derive numerous results from the existing litera-
ture, including the well-known Banach fixed point theorem in
bi-complex valued complete metric spaces, complete complex
valued metric spaces, and complete metric spaces.

3. Applications

In this section, we have shown how Theorem (2.1) can
be used to prove the existence of a common solution to the
Urysohn integral equation system.

Theorem 3.1. Let P = C([a1, a2],Rn), where [a1, a2] ⊂ R+
and dC2 : P × P → C2 be defined by dC2 (h, k) = max

t∈[a1,a2]
(|h(t) −

k(t)| + i2|h(t) − k(t)|) for all h, k ∈ P and t ∈ [a1, a2], where |.|
is the usual real modulus. Consider the following Urysohn type
integral equations

h(t) =
∫ a2

a1

K1(t, u, h(u))du + f (t), (7)

h(t) =
∫ a2

a1

K2(t, u, h(u))du + g(t), (8)

where ∀h, k ∈ P and t ∈ [a1, a2]. Suppose that K1,K2 :
[a1, a2] × [a1, a2] × Rn → Rn are ∋

Fh(t) =
∫ b

a
K1(t, u, h(u))du,

Gh(t) =
∫ b

a
K2(t, u, h(u))du,

which belong to P,∀t ∈ [a1, a2] and if there exist mappings
F1, F2, F3, F4 : P × P × P → [0, 1) ∋ ∀h, k ∈ P and for a fixed
b ∈ P, satisfying the following conditions

(a) Fi(S 2(Fh + f ), k, b) ≤ Fi(h, k, b) and Fi(h, S 1(Gh +

g), b) ≤ Fi(h, k, b), for i = 1, 2, 3, 4.
(b) F1(h, k, b) +

√
2 F2(h, k, b) +

√
2 F3(h, k, b) +√

2 F4(h, k, b) < 1.
7
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(c) |Fh(t) −Gk(t) + f (t) − g(t)| ≤ F1(h, k, b)A(h, k)(t)
+ F2(h, k, b)B(h, k)(t) + F3(h, k, b)C(h, k)(t)
+ F4(h, k, b)D(h, k)(t),

where

A(h, k)(t) = |h(t) − k(t)|,

B(h, k)(t) =
|h(t) − Fh(t) − f (t)||k(t) −Gk(t) − g(t)|

1 + |h(t) − k(t)|

C(h, k)(t) =
|k(t) − Fh(t) − f (t)||h(t) −Gk(t) − g(t)|

1 + |h(t) − k(t)|
,

D(h, k)(t) =
(
|h(t) − Fh(t) − f (t)||h(t) −Gk(t) − g(t)|

1 + |h(t) −Gk(t) − g(t)| + |k(t) − Fh(t) − f (t)|

+
|k(t) −Gk(t) − g(t)||k(t) − Fh(t) − f (t)|

1 + |h(t) −Gk(t) − g(t)| + |k(t) − Fh(t) − f (t)|

)
then the system of the integral equations (7) and (8) have a
unique common solution.

Proof. Define continuous mappings S 1, S 2 : P → P by S 1h =
Fh + f and S 2h = Gh + g. Then, we have

dC2 (S 1h, S 2k) = max
t∈[a,b]

(1 + i2)(|Fh(t) + f (t) −Gk(t) + g(t)|),

dC2 (h, S 1h) = max
t∈[a,b]

(1 + i2)(|h(t) − Fh(t) − f (t)|),

dC2 (k, S 2k) = max
t∈[a,b]

(1 + i2)(|k(t) −Gk(t) − g(t)|),

dC2 (h, S 2k) = max
t∈[a,b]

(1 + i2)(|h(t) −Gk(t) − g(t)|)

and dC2 (k, S 1h) = max
t∈[a,b]

(1 + i2)(|k(t) − Fh(t) − f (t)|).

Clearly condition (1) of Theorem (2.1) is satisfied for all h, k ∈
P and so by Theorem (2.1), the equations (7) and (8) have a
unique common solution.

4. Conclusion

In our study, we have introduced several findings related to
common fixed points, achieved by broadening the scope of ra-
tional type contraction conditions with the integration of three-
variable control functions as coefficients within the framework
of bicomplex valued metric spaces. By replacing contraction
constants with control functions as coefficients, we have en-
hanced and expanded upon the contraction conditions of a wide
array of pre-existing theorems, thereby enriching the field of
bicomplex valued metric spaces with our contributions.
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