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Abstract

This paper is interested in studying the one-phase Stefan problem. For this purpose, we use the nonlinear sentinel method, which relies typically
on the approximate controllability and the Fanchel-Rockafellar duality of the minimization problem, to prove the existence and uniqueness of
a solution to this problem. In particular, our research focuses on the application of the nonlinear sentinel method to the single-phase Stefan
problem. This approach aids in identifying an unspecified boundary section within the domain undergoing a liquid-solid phase transition. We
track the evolution of the temperature profile in the liquid-solid material and the corresponding movement of its interface over time. Eventually,
the local convergence used for the iterative numerical scheme is demonstrated.
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1. Introduction

Mathematical modeling is a method that represents and ex-
plains a lot of real phenomena using proper mathematical for-
mulas and approaches [1–5]. It can be described by a set of
ordinary, partial and fractional differential equations [6–10].
In 1795, Gauss and Legendre elaborated the method of least
square, which is the most popular parameter identification tech-
nique in mathematical modelling. This technique relies on min-
imizing the distance between the observed values yobs and the
calculated values y(O). After a period of time, particularly
in 1992, Lions introduced another method called the sentinel

∗Corresponding author: Tel.: +962-786-500-389; fax: +962-6-429-1432;
Email address: i.batiha@zuj.edu.jo (Taki-Eddine Ouassaeif)

method that can achieve the same objective [11, 12]. This
method can provide a sufficient information about a certain pa-
rameter or an approximation of the latter (pollution term). To
be able to obtain some information, it is necessary to observe
“y” from the state on an observatory “O”.

The liquid-solid models were studied by Joseph Stefan in
his works done in 1889, that is why it is called Stefan’s prob-
lem later. Stefan’s problem has been applied in many typical
problems such as sea ice melting and freezing [13], continuous
casting of steel [14], crystal growth [15], thermal energy stor-
age systems [16], lithium-ion batteries [17], model population
dynamics of the tumor growth process [18], and information
diffusion on social networks [19]. Physically, the domain can
represent a specific body that could be divided into two parts,
liquid and solid, by a position interface. The shape of the first
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side is known and fixed at a given temperature, but the other
side must be estimated by measuring the distributed tempera-
ture in the middle of the body, where the dynamics of Stefan’s
problem are influenced by the heat flux. Mathematically, Ste-
fan’s problem can be described from two points of view. The
first one is the diffusion partial differential equation (PDE) with
an unknown boundary [12] in which this PDE represents the
heat diffusion equation for the melting or freezing of material.
While the second one is an ordinary differential equation (ODE)
that can describe the movement of the interface part with the
time-varying.

Bodart and Demeestere used the method of the sentinels for
identifying a part of an unknown boundary of “Stefan problem”
in 1997, and he proved the local convergence of the scheme
for this problem in Ref. [20]. Due to the efficiency and accu-
racy of this method, it was included as an application when the
groundwater pollution is addressed whereby several numerical
tests were conducted on the Rheman aquifer in the South of
Strasbourg. Herein, the classical situation could be explained
via Meteorology, where the initial data are never completely
known. On the other hand, José and Gianni studied the speed
of propagation of the free boundary for the Digue problem [21].
They proved that the free boundary of the saturated part has
a finite speed of propagation, which implies that the speed of
propagation of the pressure is finite when the medium is not
saturated. When the medium is saturated, the speed of prop-
agation of the pressure would be intimate. In the same con-
nection and as a final example of the artificial intelligence, the
field of control theory can provide several useful concepts and
tools for the machine learning. Within the scheme employed in
control theory, there is a necessary need to express the relation-
ship between the input and output of the controlled object, and
so there is a very important need for an accurate mathematical
model. In 1967, the term “intelligent control” was proposed
as it can represent the interface between artificial intelligence
and control. Autonomous machines are examples on such a
kind of control. Learning control, fuzzy control and neural
control are some other kinds of control methods. In 1999, El
Badia and Moutazaim solved a one-phase inverse Stefan prob-
lem based on the method of the least-square approach in Ref.
[22]. In 2017, Demarque and Fernández-Cara proved in Ref.
[23] that there exist controls that can drive the state to zero at
time t = T (i.e., the null controllability for parabolic systems
in non-cylindrical domains). In 2019, Koga et al. [24] proved
the existence of a non-approach to globally stabilizing a class
of nonlinear parabolic PDE via a nonlinear back stepping trans-
formation in Ref. [24].

The remaining of this paper is arranged as follows: In sec-
tion 2, we recall the nonlinear sentinel method. In section 3,
we formulate the main problem, the one-phase Stefan problem,
and define its deformation of its space. In section 4, we apply
the sentinel method to prove the existence and uniqueness of
Stefan problem. In section 5, we transform the problem into a
fixed point problem, and then prove the local convergence. Fi-
nally, we state the some conclusions and future works in the last
section.

2. The nonlinear sentinel Method

The sentinel is generally a function which represents a
scalar product between the measure yobs and a function u or
a certain control. The goal of this method is to obtain some
information about the needed parameters [25]. To get a full
description about this method, we let yαi be given by

yαi =
∂y(α)
∂αi
,

where α ∈ Rn such that it satisfies the following linear relation:

y(α) =
n∑

i=1

αiyαi .

In the sense of the sentinel method, the sentinel item S uses the
parameter i0 to estimate the system, i.e.

S (α) =
n∑

i=1

αi(u, yαi ) = αi0 ,

where {
(u, yαi ) = 0, ∀i , i0

(u, yαi0
) = 1, Otherwise.

Afterward, the sentinel item has to be insensitive to all the pa-
rameters but one (the i0 parameter). It should be noticed that
there is a further property of the sentinel method, that is the
norm of u represents a unique minimum value. Therefore, if
the values of all components of the vector α are needed, one
function u for each component of α needs to be constructed.
Thus, we suppose that u j and S j are certain functions, and the
sentinel item is associated with the parameter α j. From this
point of view, we assume

(u j, yαi ) = δi j, ∀i, j = 1, n.

The new sentinel item, which was defined by S in Ref. [20],
contains a complete set of (u j(α)) j=1,2,··· ,n. In other words, it
can be defined by

S (α) = (u j, y(α)) j=1,2,··· ,n. (1)

Now, with the use of (1), we can have

DαS = Id, (2)

where DαS is the differential of S with respect to the parameter
α. As S (·) depends linearly on α via y(α), DαS is easy to be
computed.

Throughout the rest of the paper, we attempt to extend the
notion of sentinels to the case of nonlinear identification of a
parameter belonging to l2(R) instead of Rn. It means that we
will use the linearization of the state y(α) to compute the func-
tion (u j) j=1,2,··· ,∞, which will depend on the point where this
linearization is made. Based on what has been discussed, we
have

S (α̃, α) = (u j(α̃), y(α)) j=1,2,··· ,∞,

which represents the new sentinel S (α) containing the whole
set of (u j(α)) j=1,2,··· ,∞.
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Figure 1. The deformation of the domain Ωα by vector x + α(x)U(x).

Figure 2. Schematic of one-phase Stefan problem.

3. Setting problem

In this part, we use the notion of deformation reported in
Ref. [26]. In fact, the idea of deformation was created by
Riemann, and it was applied to Lie algebras by Nijenhuis and
Riehardson. In general, a body is said to be deformed, if there
has been a variation in the shape and the dimensions of its body
from its initial state to the final state. It is usually represented
graphically by the change in the shape of a circle of the unit
radius or a square of unit dimension, see Figure 1 and Figure 2.

To continue setting the problem, we assume that Ω0 ⊂ R2 is
an open subset with the smooth boundary ∂Ω0 = Γ

∗ ∪ Γ0, and
Γ∗ ∪ Γ0 = ∅. We define the deformation Ωα of Ω0 like in Ref.
[20] by

Ωα = {x + α(x)U(x), x ∈ Ω0} ,

where U is a known transverse vector field of the class C∞,
and α(x) is a C2-function such that Γ∗ remains invariant by the
deformation αU. The boundary of an open set Ωα is ∂Ωα =
Γ∗ ∪ Γα such that Γ∗ ∩ Γα = ∅. Hence, Γα is a deformation of
Γ0 such that

Γα = {x + α(x)U(x), x ∈ Γ0} ,

where c is a heat coefficient, ρ is volume mass and λ is thermal
conductivity. According to Fourier law, we have

dQ = dQin − dQout, (3)

where
dQin

dt
= −λs

dy
dx

∣∣∣∣∣
x

and
dQout

dt
= −λs

dy
dx

∣∣∣∣∣
x+∆x
.

By subtracting dQin and dQout in (3), we get

dQ = −λs
dy
dx

∣∣∣∣∣
x
−

(
−λs

dy
dx

∣∣∣∣∣
x+∆x

)
,

i.e.

dQ = λsdt
[
∆x

d2y
dx2

∣∣∣∣∣∣
x

]
.

This heat equation can be used to heat a small piece of mass
dm, that is

dQ = cdydm = cρs∆xdy.

Consequently, we have

dm = ρs∆x,

cρs∆xdy = λsdt∆x
d2y
dx2 ,

and
dy
dt
=
λ

cρ
d2y
dx2 .

Let C =
λ

cρ
, then we obtain

dy
dt
= C

d2y
dx2 .

Also, let y = y(x, t;α) be the solution of the following problem:

∂y
∂t
= C
∂2y
∂x2 in Qα = Ωα × ]0,T [ ,

− k
∂y
∂x

(0,T ) = u(t) on Σα = Γα × ]0,T [ ,

y(s(t), t) = ym on Σ∗ = Γ∗ × ]0,T [ ,
y(x, 0) = y0(x) in Ωα,

(4)

where u(t) ∈ L2
(
]0,T [ ,H

3
2 (Γ)

)
, k is the thermal conductivity,

ym is the limit of y(x, t) when t → ∞, y0 is the initial condition,
and s(t) is the solution of the following nonlinear differential
equation:

ṡ(t) = −βyx(s(t), t),

where β = k
ρ∆H∗ such that ∆H∗ is the latent heat of fusion.

Hence, we have

y ∈ L2
(
]0,T [ ,H2(Ωα)

)
and

∂y
∂n

∣∣∣∣∣
Γα

∈ L2
(
]0,T [ ,H

1
2 (Γ)

)
.

In the rest of this work, we consider ω ⊂ Ωα an open subset
for all α such that O = ω × ]0,T [. We suppose that the solution
y of the problem observed in O such that

yobs = y(x, t; α̃), ∀(x, t) ∈ O,

where y(x, t; α̃) is the solution of problem (4) in Ωα.
3
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4. Application of sentinel method

In this part, we intend to apply the sentinel method to prove
the existence and uniqueness of the Stefan problem. For this
purpose, we should note that the parametrization of Γα is given
by

Γα = {x(s) + α(s)U(s), s ∈ [0, 1] , x(s) ∈ Γ0} , (5)

where α is C2-function over [0, 1], i.e. it belongs to L2 (]0, 1[).
Next, with the decomposition of α over the basis of functions
(b j) j=1,2,··· ,∞ in C2(0, 1) and α ∈ l2(R), the parametrization (5)
can be reexpressed as

Γα =

x(s) +
∞∑
j=1

α j(s)b j(s)U(s)

 , (6)

where s ∈ [0, 1] and x(s) ∈ Γ0.
The following proposition is the main core to prove the

main result of this work. In particular, in such a proposition,
we aim to define the sentinel item, its existence, and its unique-
ness as well.

Proposition 1. [20] Let S (α̃, α) be a sentinel item defined as
follows:

S :

∣∣∣∣∣∣∣ l2(R) × l2(R) −→ l2(R)
(α̃, α) −→

(∫
O ui(α̃)y(α)dxdt

)
i=1,2,··· ,∞

, (7)

where y(α) = y(x, t;α) is the solution of the first problem and
ui(α̃)i=1,2,··· ,∞ are the functions that need to be found in such a
way that

DαS (α̂, α̂) = Id + M, ∀α̂ ∈ l2(R), (8)

ui(α̃) = min ∥ϕ∥L2(Θ) , i = 1, 2, · · · ,∞, (9)

where M ∈ £(l2(R)) such that

∥(Mi)∥l2(R) =
ϵ

i
, for i = 1, 2, · · · ,∞, (10)

in which Mi is the ith-line of M and DαS (α̂, α̂) is the differential
of S with respect to its second parameter at the point (α̂, α̂).
Then, S (α̃, α), which is defined by (7)-(9), exists and unique.

Proof. The proof of this proposition takes three steps, which
are listed below for clarification.
Step 1: The solution y(x, t; α̃) of the problem is differentiable
with respect to α, i.e.,

yα j =
∂y(α̃)
∂α j
, j = 1, 2, · · · ,∞,

where yα j is the solution of

∂yα j

∂t
= ∆yα j in Qα = Ωα × ]0,T [

yα j (s(t), t) = 0 on Σ∗ = Γ∗ × ]0,T [ ,

− k
∂yα j

∂x
= −b j(∇y(α̃).U) on Σα = Γα × ]0,T [ ,

yα j (x, 0) = 0 in Ωα,

(11)

where y(α̃) = y(x, t; α̃) solves (4) with data α̃ and ym that is
dependent of α j. Thus the general element of the infinite matrix
DαS (α̃, α̃) is

(DαS (α̃, α̃))i j =

(∫
O

ui(α̃)yα j dxdt
)

i=1,2,··· ,∞
(12)

= δi j + (M)i j, j = 1, 2, · · · ,∞, (13)

where ∥M∥ = ϵi . Now, (8) reads∫
O

ui(α̃)yα j dxdt = δi j + (M)i j, j = 1, 2, · · · ,∞, (14)

where i is fixed and the matrix M is defined as in this proposi-
tion. Based on the previous discussion, the adjoint problem is
given by

−
∂qi

∂t
− ∆qi = ui(α̃)|O in Qα̃ = Ωα̃ × ]0,T [

qi = 0 on Σα̃ = Γα̃ × ]0,T [ ,
qi(·,T ) = 0 in Ωα̃,

(15)

where qi ∈ L2
(
]0,T [ ,H1

0(Ωα̃) ∩ H2(Ωα̃)
)

is the solution of the
adjoint problem. Multiplying the first equation of (15) by yα j ,
and then applying Green’s formula yield∫

O
ui(α̃)

∂yα j

∂x
dxdt =

∫
O

b j

k
(∇y(α̃).U)

∂qi

∂n
dΣ. (16)

Consequently, we define a linear continuous operator B ∈

£(L2(O); l2(R)) by

B :

∣∣∣∣∣∣∣∣∣
L2(O) −→ l2(R)

ui(α̃) −→
(∫
Σα̃

b j

k
(∇y(α̃).U)

∂qi

∂n
dΣ

)
j=1,2,··· ,∞

.
(17)

Equation (16) allows rewriting (12) as

(DαS (α̃, α̃))i j = (Bui(α̃)) j. (18)

As a result, we have an exact controllability to the consid-
ered problem. Thus, the main goal of this part is to find
ui(α̃) ∈ L2(O) of the minimal norm such that Bui(α̃) = z with
z ∈ l2(R). For the numerical applications, we need to show
that there is a proper approximate controllability of the prob-
lem [27].
Step 2: In this step, we aim to prove that Im(B) = l2(R)
(i.e. ker(B∗) = {0}). To do so, we should observe that B∗ ∈
£(l2(R); L2(O) can be given by

B∗ :

∣∣∣∣∣∣ l2(R) −→ L2(O)
(σ j) j=1,2,··· ,∞ −→ ϕ|Θ

, (19)

where ϕ solves the following problem:

∂ϕ

∂t
= ∆ϕ

ϕ(s(t), t) = 0

−k
∂ϕ

∂x
= −(∇y(α̃).U)

∑∞
j=1 σ jb j

ϕ(x, 0) = 0

. (20)

4
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Now, in view of (20), we can have

(u, ϕ)L2(Θ) =

∞∑
j=1

σ j

∫
Σα̃

b j(∇y(α̃).U)
∂qi

∂n
dΣ (21)

= (σ, Bu)l2(R), (22)

i.e. ϕ|Θ = B∗σ. Suppose that B∗σ = ϕ|O = 0, i.e. ϕ = 0 in O.
By the unique continuation theorem, we have

−(∇y(α̃).U)
∞∑
j=1

σ jb j = 0. (23)

Note that (b j) j=1,2,··· ,∞ is a basis of l2(R) whenever either
{(∇y(α̃).U) = 0} or

{
σ j = 0, j = 1, 2, · · · ,∞

}
. Now, we decom-

pose the field U on the να̃ and the tangent vectors τ
α̃

on Γ
α̃

to
obtain

∇y(α̃).U(x) = ∇y(α̃).(avα̃(x)) + ∇y(α̃).(bτ
α̃
(x)), ∀x ∈ Γ

α̃
.

In other words, since y(α̃) = 0 on Γ
α̃
, we have

∇y(α̃).U(x) = a
∂y(α̃)
∂να̃

(x),∀x ∈ Γ
α̃
. (24)

From the Cauchy uniqueness, we can have∣∣∣∣∣∂y(α̃)
∂να̃ Γα̃

, 0,

otherwise, we have

y(α̃) = 0 in Q
α̃
.

Thus (∇y(α̃).U) , 0 and B∗ is injective, which proves that
Im(B) = l2(R), i.e. ∀ρ > 0, ∀z ∈ l2(R), ∃ui(α̃) ∈ L2(O) such
that

∥Bui(α̃) − z∥l2(R) ≤ ρ. (25)

Step 3: In this step, we use the Fenchel-Rockafellar duality
method to prove the second condition of the proposition at
hand. For this purpose, we let

Uad =
{
u ∈ L2(O) : ∥Bu − z∥l2(R) ≤ ρ, z ∈ l2(R)

}
,

which represents, from (25), a nonempty convex and closed set
in L2(O). Thus, there exists a unique ui(α̃) satisfying (9) and
the solutions of the following minimization problem:

min
ω∈Uad

1
2
∥u∥2L2(O) . (26)

Now, let F and G be two functions defined as

F(u) =
1
2
∥u∥2L2(O) (27)

and

G(w) =
{

0 if ∥w − z∥l2(R) ≤ ρ,
+∞ otherwise . (28)

So, problem (26) can be now rewritten as

min
ω∈L2(O)

F(u) +G(w). (29)

By the duality theorem of Fenchel-Rockafellar, we get

ui(α̃) = B∗σ∗, (30)

where σ∗ is the solution of the dual of (26), i.e.

min
σ∈l2(R)

F∗(B∗σ) +G∗(−σ), (31)

where F∗ and G∗ are the Fenchel-Rockafellar conjugates of F
and G respectively such that F∗ = F and G∗ is given by

G∗(σ) = sup
u∈l2(R)

(u, σ)l2(R) −G(w)

= (z, σ)
l2(R)
+ ρ ∥σ∥

l2(R)
,

(32)

where B(0, ρ) is l2(R), which is a closed ball with center 0 and
radius ρ. This would immediately turn (20) to be as

min
σ∈l2(R)

J(σ) = F(ϕ) + ρ ∥σ∥l2(R) − (z, σ)l2(R), (33)

where ϕ is the solution of (20).

Lemma 1. σ∗ = 0 is the solution of (33) if and only if ∥z∥l2(R) ≤

ρ.

Proof.
⇒) Suppose that σ∗ = 0. Then, with the use of (30), we can
have ui(α̃) = 0, and hence we obtain

Bui(α̃) − z = −z.

This means
∥Bui(α̃) − z∥l2(R) ≤ ρ,

i.e.
∥z∥l2(R) ≤ ρ.

⇐) Suppose that ∥z∥l2(R) ≤ ρ. Then, we have

ui(α̃) = 0,

which represents the solution of (26). Consequently, due to B∗

is injective, then (30) yields that σ∗ = 0.
In light of the previous discussion and to show the existence

and uniqueness of (8) and (9), we can have(
∂J
∂σ
, δσ

)
l2(R)

= (B∗σ, B∗δσ)l2(R) + ρ

(
σ

∥σ∥l2(R)
, δσ

)
l2(R)

− (z, δσ)l2(R)

=

(
BB∗σ + ρ

σ

∥σ∥l2(R)
− z, δσ

)
l2(R)
,

(34)

for any δσ ∈ l2(R) and σ , 0, where σ∗ is such that

BB∗σ − z = −ρ
σ

∥σ∥l2(R)
. (35)

Since ui(α̃) = B∗σ∗, we have

∥Bui(α̃) − z∥l2(R) = ρ. (36)
5
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Now, we choose

(z) j = δi j, j = 1, 2, · · · ,∞, (37)

where (z) j is the generic coordinate of z on the canonical basis
of l2(R) and

ρ =
ϵ

i
, with ϵ > 0 sufficiently small. (38)

Consequently, we can obtain ∥z∥l2(R) > ρ. Eventually, (35) gives

Bui(α̃) = z − ρ
(σ∗)
∥σ∗∥l2(R)

, (39)

which means

(Bui(α̃)) j = (z) j − ρ
(σ∗) j

∥σ∗∥l2(R)

= δi j −
ϵ

i
(σ∗) j

∥σ∗∥l2(R)
.

(40)

So, we have

Dα(S (α̃, α̃)) = Bui(α̃), (41)

which gives

Dα(S (α̃, α̃)) = Id + M, ∀α̃ ∈ l2(R). (42)

By combining the above assertion with (18), we obtain (8).
Thus, the existence and uniqueness of a family of functions
ui(α̃) are hold for (8) and (9), for i = 1, 2, · · · ,∞.

5. The numerical scheme

In this section, we transform the considered problem into a
fixed point problem, and then we prove the local convergence.
However, to get an overview about the fixed point problem, the
reader may refer to the references [28–30]. Now, in order to
carry such a transformation, we differentiae S (α) = S (α̃, α) to
obtain

S (α̃, α) = S (α̃, α̃) + DαS (α̃, α̃).(α − α̃) + o(|α − α̃|).

Accordingly, for ᾱ = α, we have

S (α̃, ᾱ) = S (α̃, α̃) + ᾱ − α̃ + M(α − α̃) + o(|ᾱ − α̃|).

By neglecting the last two terms of the above equality with tak-
ing α̃ = αk and ᾱ = αk+1, we obtain

αk+1 = αk + S (αk, ᾱ) − S (αk, αk),

where

S (αk, ᾱ) =
(∫

O
wi(αk)yobsdxdt

)
i=1,2,··· ,∞

,

and

S (αk, αk) =
(∫

O
wi(αk)y(x, t, αk)dxdt

)
i=1,2,··· ,∞

.

Theorem 1. The sequence
(
αk

)
k=0,1,··· ,∞

in which{
α0 ∈ l2(R)

αk+1 = αk + S (αk, ᾱ) − S (αk, αk)

locally converges in l2(R).

Proof. The numerical scheme here is a method to solve the
fixed point problem

αk+1 = g(αk),

where g is an operator defined from l2(R) to itself. For µ ∈
l2(R), we obtain

g′(µ) = Id + Dα̃S (µ, α̃) − Dα̃S (µ, µ) − DαS (µ, µ),

which implies µ = ᾱ and so we have

g′(ᾱ) = Id − DαS (ᾱ, ᾱ).

Now, in light of Proposition 1, we can get

g′(ᾱ) = −M, M ∈ L (l2(R)).

This consequently yields∥∥∥g′(ᾱ)
∥∥∥2

HS =

∞∑
j=1

∞∑
i=1

(g′(ᾱ))2
i j

=

∞∑
i=1

∞∑
j=1

(g′(ᾱ))2
i j

=

∞∑
i=1

∥(Mi)∥2l2(R)

= ϵ2
∞∑

i=1

1
i2
.

This means ∥∥∥g′(ᾱ)
∥∥∥

HS ≤ 1.

Hence, the local convergence of the sequence is satisfied.
In the following content, we provide an illustrative example

with the aim of explaining our results. In particular, the inter-
est of this example is to show the deformation of the square
]0, 1[×]0, 1[ numerically. The reader may refer to the article of
Bodart and Demeestere that can, with the use of such a defor-
mation, show the error between the exact and calculated bound-
ary [20].

Example 1. Bodart and Demeestere discretized 100 elements,
and the observatory was composed of 36 mesh center elements.
They supposed the initial state and the boundary of the square
as ]0, 1[×]0, 1[. Herein, after eight iterations, we observe that
the boundary Γα deforms on one side and the other three sides
are Γ∗. For more illustration, Figure 3 shows more explana-
tion about the meant deformation, i.e. it can show the clearly
deformation of the boundary Γα after some iterations.

6



Merabti et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1772 7

Figure 3. Deformation of the boundary after certain steps.

Figure 4. Schematic of the two-sided Stefan problem.

6. Conclusion and future work

In this paper, the one-phase Stefan problem has been stud-
ied with the use of the nonlinear sentinel method. Accordingly,
the existence and uniqueness of a solution of this problem have
been theoretically shown, and the local convergence used for
the iterative numerical scheme has been also demonstrated. In
this connection, the material related to the two-sided Stefan
problem contains two moving solid boundaries with liquid in
the middle (between s1 and s2), see Figure 4.

The control law can provide the convergence rate in the two-
sided case, prove that the observed problem converges asymp-
totically to the first problem, and also present the results by
simulation of exponential convergence. Our future work is to
create a problem by changing the place of the liquid and the
solid materials and controlling the solid phase by the notion of
spray control (spreadability).
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