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Abstract

The Human Monkeypox virus has received significant research interest in recent times. While few researchers have studied the effects of vacci-
nation on human-to-animal or animal-to-human Monkeypox transmission, others just studied the effects of treatment on human Monkeypox. In
this article, we made the proposition of a deterministic vaccine model that deals with the dynamics of the effects of vaccination and treatment on
human Monkeypox in sub-Saharan Africa. We investigated the effects of vaccination on the various epidemiological classes qualitatively. The
findings from the analysis of the model are that the model possesses two equilibria, locally asymptotically stable disease-free equilibrium (DFE)
when an epidemiological threshold - the effective reproductive number is less than unity, and locally asymptotically stable endemic equilibrium
when the number is greater than unity. We then corroborated the theoretical findings with numerical simulations, which reveal that when the
rate of vaccination is increased resulting in many newly born persons in the populace being vaccinated, the prevalence of the deadly scourge is
significantly reduced, while newly born individuals that miss vaccination experience a drastic torment of the deadly disease that often occasion
death. Further revelation from the simulations is that when greater efforts is geared towards vaccination of individuals in the population, the loss
of more people to the scourge of the virus would be greatly reduced.
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1. Introduction

Monkeypox virus has its origin dated back to 1959 as a re-
sult of a strange disease that invaded the colony of monkeys
in Copenhagen, Denmark at their State Serum Institute [1–3].
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Worthy of note is the fact that Monkeypox virus was actually
identified as a distinct disease only after smallpox was eradi-
cated in 1970-1971, when it was identified as a disease whose
illness resembles that of smallpox in the suburb of western and
central Africa [1–3]. Human Monkeypox virus, a zoonotic
febrile rash illness with characteristic that it is smallpox-like
in nature which belong to the family of genus Orthopox virus
family poxviridae and it is of subfamily chordopoxvirinae with
traits of disease in the category of cowpox, camelpox, ec-
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tromelia, vaccinia and smallpox otherwise called variola [1, 2].
During this period, it should be noted that in the countries of
the sub-Saharan Africa, such as Nigeria, Liberia, Sierra Leone,
and Democratic Republic of Congo (DRC), 6 cases were re-
ported in Liberia, Sierra Lone, DRC and Nigeria while over
the next decade in the same countries of sub-Saharan Africa,
53 additional cases of human Monkeypox virus disease were
reported [2]. However, it is pertinent to note that 80% of this
cases occurred in DRC with other remaining cases of Monkey-
pox virus infection afflicted the citizens of the Liberia, Sierra
Leone, Nigeria, Gabon, Central African Republic, Cameroon
and Cote d’Ivoire [3, 4]. Furthermore, it has been identified
within the terminal regions via whole genome analysis and
DNA sequencing of Monkeypox virus (MPXV), the presence of
two geographically distinct MPXV classes which are of ninety
nine percent similar and demonstrate greatest diversity [3–7].
There are two clades of the disease, namely, the Congo Basin
clade which comprises MPXV isolates which are from Gabon,
DRC, Republic of the Congo and the Cameroon, while on the
other hand, isolates from Nigeria, Liberia and imports to United
States from Ghana is referred to as the West African clade [5–
7]. Of the two clades, the latter appears to be significantly
less virulent and transmissible than the other, though the two
of them appear not as virulent as variola [3].

Surveillance program were initiated in the DRC from 1981-
1986 by the WHO as result of concern that the disease might
fill the niche vacated by smallpox (viriola). From this program,
though there was limitation brought about by lack of a robust
MPXV antibody-specific immunoassay and similarity between
Varicella Zoster Virus (VZV) and human Monkeypox virus,
there was the identification of 404 human Monkeypox cases [1–
3]. The good news is that, there is the reports of decline in re-
ported cases of human Monkeypox virus disease at the conclu-
sion of the surveillance program, from 1986-1992, only a pal-
try cases of 13 infections was reported, while from 1993-1995,
there was no case of infection reported [6, 7]. However, number
of reported cases rebounded in 1996 when from the countries in
western and central Africa, there was a report of 133 infections
while there was 511 reported cases in 1997. Sadly, from 1998-
2002, there was a rise in reported number of cases of human
Monkeypox infection. though absence of laboratory confirma-
tion which could not be ruled out in some of these reported
cases gave indication that some of these cases were as a result
of VZV infections [2, 7]. On the other hand, in the spring of
year 2003, in western hemisphere, there was emergence of hu-
man Monkeypox virus where there was a reportage of a cluster
of cases in the United States [8, 9]. At the end of the outbreak,
there was a reportage of some 72 cases made up of confirmed
cases that were 37 in number in the Midwestern part of United
States [9]. Whereas, it was ascertained that the origin of the
virus was from importation of rodents from Ghana, however, it
was ascertained that the origin of human exposure to the dis-
ease was from prairie dogs which were accommodated close to
rodents that were infected with the disease prior to when they
were taking to pet market [2, 3, 10]. The transmission of the
virus to humans during this disease outbreak, from the vectors
occurred primarily through direct contact with the vectors by

indirect exposure via aerosol or fomites [3, 10].
It is noteworthy to state that illness due to Monkeypox virus

is similar to that of smallpox, the illness of the disease which
usually takes effect between 1-3 days is characterized with the
symptoms that are: tiredness, fever, malaise, lymphadenopa-
thy, and upper respiratory tract illness begin to manifest after
incubation period of 10-14 days [2, 11]. This will be followed
by 0.5-1.0 cm diameter lesions rashes over a 2-4 week period
which progressed through some stages [1, 3, 11].

This rashes has its origin being trunk from where it spreads
to the limbs and occasionally to the oral mucosa and genitalia
[2, 3]. The major way human Monkeypox virus disease can
be basically differentiated from smallpox (variola) and VZV is
unilateral or bilateral lymphadenopathy [1–3]. It is pertinent to
note the fact that arising from complications form human Mon-
keypox virus disease, the individuals under its attack will suf-
fer from recurrent fever coagulation disorders, ocular lesions,
secondary skin or soft tissue infection, encephalitis and multi-
organ failure resulting to fatal outcome which is mortality com-
monly estimated to be 10% [2, 3, 11]. Indication from relevant
data is that primates act only as incidental hosts while reser-
voir hosts are rodent species indigenous to West and Central
Africa [12–15]. In the United States, the vaccine that has been
approved and licensed for use is JYNNEOSTM also known as
Imvamune or Imvanex while for its treatment for now, small-
pox drugs such as tecovirimat (TPOXX) are adopted since there
is no clinically proven drug for Monkeypox treatment for now
[15]. Tremendous efforts on how human Monkeypox virus
is transmitted in a heterogeneous population have been made,
some of which includes Emeka et al. [16] who developed a
model with vaccine compartment to study the dynamics of this
disease. Sulaiman et al. [17] proposed a mathematical model
incorporating control strategies made of combined vaccine and
treatment parameters. Olumuyiwa et al. [18] formulated a
model that considered human and rodent populations. Bankuru
et al. [19] established a two-population model; including both
the squirrel and human populations.

Whereas, there are many published works on models for
animal-to-human and human-to-animal transmission of MPXV
such as those in Refs. [15, 16] among others, despite the fact
that there exist in literature human-to-human transmission of
MPXV [15], to the best of our knowledge, only very few re-
searchers have proposed epidemiological models on human-
to-human transmission dynamics of MPXV. They include Olu-
muyiwa et al. [20] who formulated model with control strate-
gies to combat the human-to-human spread of Monkeypox and
mitigate the burden associated with the deadly disease. Olu-
muyiwa et al. [21] proposed an epidemiological model incorpo-
rating some effective optimal control strategies through which
the deadly disease can be controlled in a human population.
They went further to procure cost effective strategies that helped
extend the frontiers of the control of transmission dynamics of
Monkeypox disease in a region where the disease is endemic.
Alakunle et al. [22] and Grant et al. [23] contributed sig-
nificantly to formulation of model to control human-to-human
spread of Monkeypox disease. It then becomes highly impera-
tive that we extend studies in this area. Consequently, the key
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contributions of this work is as follows:

(i) We carefully did a model-building that captures the trans-
mission dynamics of human-to-human MPXV in the
presence of vaccine, in a heterogeneous population.

(ii) The model so built was analysed for its features: show-
ing positivity of its state variables and feasibility of the
solution of the model at all times.

(iii) Thorough analysis of the vaccination model for its lo-
cal and global asymptotic stability so as to ascertain the
threshold that defines the spread of the disease in the het-
erogeneous population under study.

(iv) Numerical simulation of the model was carried out so as
to corroborate the analytical results earlier obtained.

(v) A robust interpretation of the plots obtained from the nu-
merical simulation of the model was done so as to draw
meaningful epidemiological inferences from the study
that helped in making recommendations to policy mak-
ers towards mitigating the effect of the affliction of the
disease.

Organisation of the remaining part of the article are: Section
2 deals with model building. We carried out theoretical analy-
sis of the model in Section 3, bifurcation analysis in Section 4
while Section 5 is all about numerical simulations of the model
so as to corroborate some of the analytic findings. In Section 6,
we presented the discussion, recommendations and conclusion
of this work.

2. Model building

In the society under consideration the total number of indi-
viduals at time t, represented by N(t), is broken into groups of
susceptible new-borns S (t), susceptible individuals vaccinated
against the disease V(t), exposed people latently infected E (t),
infected people that are asymptomatic (not showing symptoms
of the disease) IA (t), people that are symptomatic IS (t), and
those recovered from the disease R (t). Consequently, we have:

N(t) = S (t) + V(t) + E(t) + IA(t) + IS (t) + R(t).

We incorporate parameters as follows. The population of
susceptible S grows with a recruitment rate π (as an effect of
the influx of new-borns), and is reduced by progression of sus-
ceptible individuals to vaccinated individuals at a per capita rate
of α. Furthermore, the per capita rate of susceptible that be-
come infected is λ, and the per capita death rate for the sus-
ceptible as well as for all other compartments is µ. The per
capita progression rate from the class of exposed individuals
to the class of (either asymptomatic or symptomatic) infected
individuals is denoted with σ. The population of class IA is
reduced by individuals who progress from this class to the class
IS of symptomatic individuals, at a per capita rate γ; reduction
also occurs at a per capita rate of δ due to death by affliction
of the disease. The recovery rate from the asymptomatic and

Figure 1. Schematic diagram of the model, showing state variables and param-
eters on each directed arrow.

symptomatic infectious classes by virtue of treatment are repre-
sented by KA and Ks, respectively. The fraction of people who
progressed from class E to IA is represented with η. Adopting
the established notations and parameters, the vaccination model
for human Monkeypox virus is given by:

dS
dt
= π − (α + µ) S − λS ,

dV
dt
= αS − µV,

dE
dt
= λS − (σ + µ) E, (1)

dIA

dt
= ησE − (γ + KA + δ + µ) IA,

dIS

dt
= (1 − η)σE + γIA − (KS + δ + µ) IS ,

dR
dt
= KAIA + KS IS − µR,

where

λ =
β (IA + IS )

N
. (2)

The schematic diagram for model (1) is depicted in Figure
1, and the description of variables used in the model building
and their corresponding values are presented in Table 1.

2.1. Model assumptions
(i) Vaccinated susceptible individuals (S ) either receive the

vaccine for the virus, thus acquiring vaccine-induced im-
munity or naturally recover from the virus after initially
having been infected, or they may also die.

(ii) Once any individual take the vaccine it does not wane,
thus recovery from the scourge of the virus confers
permanent immunity against re-infection of the virus
[17, 19].
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Table 1. Description of the state Variables and Parameters.
Variable Interpretation Values (source)
S (t) Susceptible individuals at any time t. -
V (t) Vaccinated Individuals. -
E (t) Number of individuals latently infected. -
IA (t), IS (t) Individuals that are asymptomatically infectious and symp-

tomatically infectious, respectively.
-

R (t) Number of individuals who recovered from the disease. -
Parameters Interpretation Values (source)
π Recruitment rate 0.029 [16]
α Vaccination rate 0.0455 [16]
λ Force of infection -
β Transmission rate 0.00063 [16]
σ Progression rate from exposed to infectious class 0.095 [16]
η Part of individuals that progresses from the exposed class to

the class of asymptomatically infected individuals
0.43 [17]

KA,
KS

Recovery rate from the class of asymptomatically infected in-
dividuals and symptomatically infected individuals by virtue
of treatment, respectively

0.0023 [16]
0.0015 [17]

γ Progression rate from asymptomatic infectious to symp-
tomatic infectious class

0.51 [17]

δ Disease-induced death rate 0.1 [17]
µ Natural death rate 0.000312 [16]

(iii) There are several reasons why individuals can miss vacci-
nation for human Monkeypox; these include but are not
limited to logistics, poor public health campaign (as it
often occurs in some African countries), economics and
religious sentiments.

(iv) Those in the exposed class (E) are individuals that are in-
fected when they make contact with an infected individ-
ual. Thus, those in classes IA and IS comprises of those
cohorts non-vaccine-derived human Monkeypox cases.

(v) Against a breakthrough infection, the vaccine against the
virus is supposed to be perfect [17, 19].

(vi) There is natural death in all groups, which occurs at the
same rate.

(vii) The death rates arising from affliction of the disease oc-
curs only in the two classes of infected individuals IA and
IS , and are taken to be the same.

2.2. Basic properties
In order for the established model (1) to be biologically valid,
it is pertinent to show that the values of the variables used in
the model formulation will be non-negative at all-time t ≥ 0, as
follows:
Given that the number of people living in the community under
study at a time t is given by:

N(t) = {(S (t) + V(t) + E(t) + IA(t) + IS (t) + R(t)) ≥ 0} ∈ R6
+,

and
dN
dt
=

dS
dt
+

dV
dt
+

dE
dt
+

dIA

dt
+

dIS

dt
+

dR
dt
. (3)

We consider the theorem below in order to obtain this region.

Theorem 1. For the system (1) to have all its solutions feasible
for all time t > 0, then the solution must be in the invariant
region Ω, given by:

Ω=
{
I ∈ R6

+ : S > 0,V > 0, E > 0, IA > 0, IS > 0, R > 0,N ≤ π
µ

}
,

where I = (S ,V, E, IA, IS ,R).

Proof. Let Ω = (S , V, E, IA, IS ,R) ∈ R6
+ be any solution with

non-negative initial conditions. Suppose there is no disease-
induced death (i.e δ = 0). Equation (3) becomes:

dN
dt
+ µN ≤ π.

Finding the integrating factors, (IF) = e
∫
µdt = eµt; we have:

d
(
Neµt

)
dt

≤ πeµt.

Integrating both sides yield:

N ≤
π

µ
+ ce−µt, (4)

where c is a constant of integration. Applying the initial condi-
tions; where t = 0, N (0) = N0, the inequality holds N0 −

π
µ
≤ c,

then eqn. (4) becomes;

N ≤
π

µ
+

(
N0 −

π

µ

)
e−µt. (5)

Applying the theorem of inequality in Birkhoff et al. [24], we
obtain 0 ≤ N ≤ π

µ
as t → ∞. The total population approaches

k = π
µ

as t → ∞, which is commonly termed as the carrying
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capacity. Therefore, the feasible solution set of the model falls
within the region Ω. Hence, the established model is biologi-
cally feasible, for all N > π

µ
. Then N < 0 implies the popula-

tion diminishes asymptotically to the carrying capacity and for
all N ≤ π

µ
, all solutions whose initial conditions are contained

in the region Ω will remain there at all time when t > 0, so the
model is said to be well posed in Ω. Hence, the region Ω is said
to be positively-invariant and biologically valid.

3. Theoretical analysis

Next, we analyzed theoretically the stability (i.e., locally
and globally) of the proposed model.

3.1. Local Asymptotic stability of Disease-free Equilibrium

The Disease-Free Equilibrium (DFE) of the model for Mon-
keypox is its disease-free state, that is, a point at which there
is absence of disease in the system [18]. In the absence of
Monkeypox infection, all infection-related parameters are set
to zero, i.e., E = IA = Is = 0.
For example, we derive the DFE for the susceptible class as
follow,

dS
dt
= π − (α + µ) S = 0,

π − (α + µ) S = 0,

∴ S ∗ =
π

α + µ
.

In a similar reasoning, we compute the DFE for every other
compartment in equation (1). See Sowole et al. [25] for a step-
by-step guide on DFE computation.
Given that the DFE of the system (1) is,

ε0 = (S ∗,V∗, E∗, IA
∗, IS

∗R∗) =
(
π

α + µ
,
µαπ + απ

µ (α + µ)
, 0, 0, 0, 1/µV

∗

)
.

The local stability of DFE (ε0) can be determined using the next
generation matrix approach [26]. Thus,

F =

 0 βS ∗

S ∗+V∗+R
βS ∗

S ∗+V∗+R
0 0 0
0 0 0


and

V =

 P1 0 0
−ησ P2 0
−P3 −γ P4

 ,
where P1 = (σ + µ), P2 = (δ + γ + KA + µ), P3 = (1 − η)σ and
P4 = (δ + KS + µ).
The threshold quantity called the basic reproduction number R0
is defined as:

R0 = ρ
(
FV−1

)
,

where ρ is the largest eigenvalue of FV−1. Hence,

R0 =
βµ[α+µ][ησ(δ+γ+κS+µ)+(1−η)σ(δ+γ+κA+µ)]

µ(α+µ)(ρ+µ)(δ+γ+κA+µ)(δ+κS+µ)
. (6)

In mathematics, R0 is a threshold parameter for the stabil-
ity of DFE and is closely related to an epidemic’s final size
and its peak. The reproduction number R0 can be defined as
the expected number of subsequent cases of infection in a sus-
ceptible population as a result of the primary case [27]. If
R0 < 1(R0 > 1), then the number of infected persons brought
into a susceptible population will on average die out/reduce
(spread out/increase). Yet, in many epidemiological models,
the prevalence of infected hosts and the final size of the epi-
demic are brought about by increase in R0 making it a useful
measure of spread. To check the stability of the model, we will
apply the Theorem 2 of Van den Driessche et al. [26].

Theorem 2. The Disease-free equilibrium (ε0) of the model (1)
is Locally-Asymptotically stable (LAS) if R0 < 1 and unstable if
R0 > 1.

Proof. The Jacobian matrix of system (1) evaluated at ε0 is
given as:

J1 (ε0) =



− (α + µ) 0 0 βS ∗

S ∗+V∗+R∗
βS ∗

S ∗+V∗+R∗ 0
α −µ 0 0 0 0
0 0 −P1

βS ∗

S ∗+V∗+R∗
βS ∗

S ∗+V∗+R∗ 0
0 0 ησ −P2 0 0
0 0 P3 γ −P4 0
0 0 0 κA κS −µ


,

where P1 = (σ + µ) , P2 = (δ + γ + KA + µ) , P3 =

(1 − η)σ and P4 = (δ + KS + µ) .
It is necessary to show that the entire Eigen values of the Jaco-
bian matrix at (ε0) is negative. The second column of J1 (ε0)
contain only the diagonal term which form the negative eigen-
value −µ needed. Therefore, the other five eigenvalues can be
obtained from the sub-matrix J2 (ε0), which is formed by ex-
cluding the second row and column of J1 (ε0). We have:

J2 (ε0) =


− (α + µ) 0 0 βS ∗

S ∗+V∗+R∗
βS ∗

S ∗+V∗+R∗

α −µ 0 0 0
0 0 −P1

βS ∗

S ∗+V∗+R∗
βS ∗

S ∗+V∗+R∗

0 0 ησ −P2 0
0 0 P3 γ −P4


.

Similarly, the second column of J2(ε0) contain only the diago-
nal term which form the negative eigenvalue − (ϕ + µ) needed.
Therefore, the other four eigenvalues can be obtained from the
sub-matrix J3 (ε0), which is formed by excluding the second
row and column of J2 (ε0).

J3 (ε0) =


− (α + µ) 0 0 βS ∗

S ∗+V∗+R∗
βS ∗

S ∗+V∗+R∗

0 0 −P1
βS ∗

S ∗+V∗+R∗
βS ∗

S ∗+V∗+R∗

0 0 ησ −P2 0
0 0 P3 γ −P4


.
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The first column of J3 (ε0) contain only the diagonal term which
form the negative eigenvalue − (α + µ) needed. Hence, the
other three eigenvalues can be obtained from the sub-matrix
J4 (ε0), which is formed by excluding the first row and column
of J3 (ε0). We obtained

J4 (ε0) =


−P1

βµ(α+µ)
µ(α+µ)

βµ(α+µ)
µ(α+µ)

ησ −P2 0
P3 γ −P4

 .
The eigenvalues of the matrix J4 (ε0) are the root of the charac-
teristic polynomial given below:

λ3 + a1λ
2 + a2λ + P1P2P4(1 − R0) = 0, (7)

where

a1 = P1 + P2 + P4, a2 = P1 (P2 + P4) + P2P4

−
βµ (α + µ) (ησ + P3)

µ (α + µ)
.

Applying the Routh-Hurwitz criterion [28], which asserts
that all roots of the polynomial (7) have negative real parts if
and only if the coefficient a1 > 0, P1P2P4 > 0 and a1a2 >
P1P2P4 . All these conditions will be satisfied if R0 < 1. There-
fore, by Routh-Hurwitz criterion, the DFE of Model (1) is lo-
cally asymptotically stable.

Epidemiological significance of the Theorem 2 is that
whenever the reproduction number of the disease is less than
unity, an influx of at least a single Monkeypox infected individ-
uals will will fail to replicate itself and consequently will not
lead to epidemic of the disease in the human population.

3.2. Global Asymptotic Stability
Consider the following theorem:

Theorem 3. The DFE of the model (1) is globally asymptoti-
cally stable if R0 ≤ 1 and unstable if R0 ≥ 1.

Proof. Constructing a Lyapunov function as follows:

V =
[
µ (α + µ) (ησ (γ + P4) + P2P3)

]
E

+
[
(α + µ) µP1 (γ + P4)

]
IA

+
[
(α + µ) µP1P2

]
IS ,

where, P1 = (σ + µ), P2 = (δ + γ + KA + µ), P3 = (1 − η)σ
and P4 = (δ + KS + µ),

V̇ =
[
µ (α + µ) (ησ (γ + P4) + P2P3)

]
Ė

+
[
(α + µ) µP1 (γ + P4)

]
İA

+
[
(α + µ) µP1P2

]
İS ,

V̇ =
[
µ (α + µ) (ησ (γ + P4) + P2P3)

]
(λS − P1E)

+
[
(α + µ) µP1 (γ + P4)

]
(ησE − P2IA) +

[
(α + µ) µP1P2

]
+

[
(α + µ) µP1P2

]
(P3E + γIA − P4IS ) ,

V̇ =
[
µ (α + µ) (ησ (γ + P4) + P2P3)

]
(λS )

−
[
(α + µ) µ (ησ (γ + P4))

]
P1E

+ ((µ (α + µ) P1 (γ + P4)) ησE − (α + µ) µP1 (γ + P4)) P2IA

+ ((α + µ) µP1P2) P1E

+ ((α + µ) µP1P2) γE − ((α + µ) µP1P2) P4IS ,

V̇ =
[
µ (α + µ) (ησ (γ + P4) + P2P3)

]
(λS )

−
[
(α + µ) µP1P2P4

]
(IA + IS ) ,

note that S (t) ≤ N(t) in Ω, so that

V̇ ≤ βµ (α + (α + µ)) (ησ (γ + P4) + P2P3) (IA + IS )

− ((α + µ) µP1P2P4) (IA + IS ) ,

= (IA + IS ) ((α + µ) µP1P2P4)
(

PX

µ (α + µ) P1P2P4
− 1

)
,

where PX = βµ (α + (α + µ) ) (ησ (γ + P4) + P2P3) and

V̇ = (IA + IS ) ((α + µ) µP1P2P4) (R0 − 1) ≤ 0, (8)

for R0 ≤ 1.

Since we have been able to show that the established model pa-
rameters will never be negative at all time, consequently,

.
V ≤ 0

when R0 ≤ 1. Therefore, V is a Lyapunov function in the in-
variant region. By the LaSalle’s invariance principle [29], every
solution to systems (1), with condition in the invariant region,
will approach ε0 as t → ∞. Arising from Theorem 3 is the
fact that, epidemiologically, for the elimination of this disease,
Monkeypox virus from the population, the necessary and suf-
ficient condition is that R0 ≤ 1. This means that the disease
will be eradicated from the population so long that the value of
reproduction number can be kept less than unity.

3.3. Endemic Equilibrium (EE)
The endemic equilibrium (EE) can be derived for the model (1)
when

(
S ∗∗,V∗∗, E∗∗, I∗∗A , IS

∗∗,R∗∗
)
= 0. To establish the nec-

essary conditions for endemic equilibrium point, we solve the
system (1) in terms of the force infection, that is,

λ∗∗ =
β(IA

∗∗ + IS
∗∗)

N∗∗
, (9)

with

S ∗∗ =
π

α + µ
,

V∗∗ =
1
µ

(
µαπ + απ

(α + µ) µ2

)
,

E∗∗ =
λ∗∗π (λ∗∗ + µ + α)

(λ∗∗ + µ) (λ∗∗ + α + µ) P1
,

IA
∗∗ =

λ∗∗πησ (λ∗∗ + µ + α)
(λ∗∗ + µ) (λ∗∗ + α + µ) P1P2

,

IS
∗∗ =

λ∗∗π (λ∗∗ + µ + α) (ησγ + P2P3)
(λ∗∗ + µ) (λ∗∗ + α + µ) P1P2

,

R∗∗ =
Z1 + πP1P2P4[α (λ∗∗ + µ) + α]
(λ∗∗ + µ) (λ∗∗ + α + µ) µP1P2P4

,

(10)

and P1 = (σ + µ), P2 = (δ + γ + KA + µ), P3 = (1 − η)σ,P4 =

(δ + KS + µ) , and
6
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Z1 = λ
∗∗π (σ + µ) (λ∗∗ + µ + α) ((ησγ + P2P3) κS + ησκAP4).

Substituting the variables in eqn. (10) into eqn. (9), we obtain:

f (λ∗∗) = A (λ∗∗)2
+ Bλ∗∗ +C = 0, (11)

where

A = π (σ + µ) ((ησγ + P2P3) (κS + µ)

+ησκAP4 + µP4 (P2 + ησ)) ,

B = π (σ + µ) ((µ + α) (ησγ + P2P3) (κS + µ)

+ησκAP4 + µP4 (P2 + ησ))

+P1P2P4 (α + µ) − βµ (ησκAP4 + ησγ + P2P3) ,

C = π (α + µ) (σ + µ) µP1P2P4 (1 − R0) .

From eqn. (11), the root λ∗∗ = 0 corresponds to the DFE point
(in Subsection 3.1).

It follows from here that, the model (1) whose equilibria
are different from zero is satisfied by eqn. (11). Consequently,
regardless of the sign of B in eqn. (11), the quadratic equation
has a unique and non-negative root for all R0 > 1.

Remark 1. From polynomial in equation (11), it could be ob-
served that B has a positive coefficient always, and so do C
whenever R0 < 1, while it will be negative whenever R0 > 1 re-
spectively. Structure of the polynomial (11) is suggestive of the
phenomenon of bifurcation, which is typically characterized by
existence of a stable DFE and a stable EE at the same time
whenever the associated reproductive number is not up to 1.
The major public health implication of this phenomenon is that
the classical epidemiological requirement of having R0 < 1,
as necessary as it is, it is no longer sufficient for the effective
and adequate control of the spread of the disease in the given
population under this scenario.

4. Bifurcation analysis

A bifurcation can be described as a qualitative change in
the nature of the solution trajectories of epidemiological models
occasioned by a parameter change. The bifurcation point is the
point at which this change occurs. To inquire into the nature of
the bifurcation exhibited by our model, we consider the method
introduced by Castillo-Chavez et al. [30].

Theorem 4. Given a general system of ordinary differential
equations with parameter φ:

dx
dt
= f (x, φ), f : R→ Rn, f ∈ C2(Rn × R), (12)

where x = 0 is an equilibrium point for eqn. (12). That is,
f (0, φ) ≡ 0 for all φ.
With the following assumption:

M1 : A = Dx f (0, 0) = (∂ f
/
∂x j

)(0, 0),

being the value of system given by eqn. (12) when linearized
around the equilibrium 0 and φ evaluated at 0. The simple

eigenvalue of A is zero while the values of other eigenvalues
of A have non-positive real parts.
M2 : Matrix A has a positive right eigenvector w combine with a
left eigenvector corresponding to the zero eigenvalue. Suppose
that fk is the kth component of f and

a =
n∑

k,i, j=1

vkwiw j
∂2 fk
∂xi∂x j

(0, 0) and

b =
n∑

k,i=1

vkwi
∂2 fk
∂xi∂β∗

(0, 0) . (13)

Conventionally, a and b determines the local dynamics of equa-
tion (12) around 0.

(i) For a > 0, b > 0. When parameter φ < 0 with |φ| << 1,
0 is locally asymptotically stable and there is existence
of a nonnegative unstable equilibrium; when 0 < φ <<
1, 0 is unstable and there is existence of a non-positive,
locally asymptotically stable equilibrium.

(ii) For a < 0, b < 0. When parameter φ < 0with |φ| << 1,
0 is not stable; when 0 < φ << 1,0 is locally asymp-
totically stable equilibrium, and there is existence of a
nonnegative non-stable equilibrium.

(iii) For a > 0, b < 0. When φ < 0 with |φ| << 1, 0 is not
stable, and there is existence of a locally asymptotically
stable non-positive equilibrium, when 0 < φ << 1, 0
is stable, and there is an appearance of a positive non-
stable equilibrium.

(iv) For a < 0, b > 0. When there is a change in the
value of φ from negative to positive, 0 changes its stability
from stable to unstable. Corresponding non-positive non-
stable equilibrium becomes positive and locally asymp-
totically stable.

In particular, we have forward bifurcation if a < 0 and b > 0,
while we have backward bifurcation if a > 0 and b > 0. By
using the approach stated above as contained, we claimed the
following result.

Theorem 5. The model (1) exhibits backward bifurcation at
R0=1 whenever a bifurcation coefficient as denoted by a in the-
orem 4 is positive.

Proof. Let εa = (S ∗∗,V∗∗, E∗∗, IA
∗∗, IS

∗∗,R∗∗) denotes an arbi-
trary endemic equilibrium point of the complete model system
in model (1). We investigate the existence of backward bifurca-
tion using the centre manifold theory [30].
For convenience, we carry out the following change of variables
before applying the theory: let S = x1,V = x1, E = x3, IA =

x4, IS = x5, and R = x6 so that the total population becomes:

N =
6∑

i=1

xi,

It then follows that the model (1) can be rewritten as:
.

x1 = π − (α + µ) x1 − λx1 ≡ f1,
7
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.

x2 = fα − (ρ + µ) x2 ≡ f2,
.

x4 = λx1 − (σ + µ) x4 ≡ f4, (14)
.

x5 = ησx4 − (γ + KA + δ + µ) x5 ≡ f5,
.

x6 = (1 − η)σx4 + γx5 − (KS + δ + µ) x6 ≡ f6,
.

x7 = KAx5 + KS x6 + ρx2 − µx7 ≡ f7,

where λ = β(x5 + x6)∑6
i=1 xi

.
We consider the case with β = β∗, a bifurcation parameter. By
solving for β = β∗ from R0 yields:

β = β∗ =
(α + µ) (ϕ + µ) P1P2P4

µ ((1 − f )αθ + (ϕ + µ)) (ησ (P4 + γ) + P2P3)
, (15)

where P1 = (σ + µ), P2 = (δ + γ + KA + µ), P3 = (1 − η)σ and
P4 = (δ + KS + µ) .

Evaluating the Jacobian of the transformed system (13) esti-
mated at DFE (ε0) with β = β∗ to obtain:

J∗ = J (ε0)|β,β∗ =



− (α + µ) 0 0 β∗x∗1
x∗1+x∗2+x∗3

β∗x∗1
x∗1+x∗2+x∗3

0
α −µ 0 0 0 0
0 0 −P1

β∗x∗1
x∗1+x∗2+x∗3

β∗x∗1
x∗1+x∗2+x∗3

0
0 0 ησ −P2 0 0
0 0 P3 γ −P4 0
0 0 0 κA κS −µ


,

with P1 = (σ + µ), P2 = (δ + γ + KA + µ), P3 = (1 − η)σ and
P4 = (δ + KS + µ) .
The matrix J∗ above has a simple zero eigenvalue and the re-
maining eigenvalues having real part, indicating that the “cen-
ter manifold theory” is applicable. It is noted that matrix J∗

has a right eigenvector given by: w = (w1,w2, ...w7)T , where

w1 = −
µβ∗ (ησ (P4 + γ) + P2P3)

(α + µ)2 P2P4
w3,

w2 = −
µβ∗ (ησ (P4 + γ) + P2P3) (αµ + (α + µ)α)

µ2 (α + µ) ρ (ρ + µ) P2P4
w3,

w3 > 0,w4 = −
ησ

P2
w3,

w5 = −
(ησγ + P2P3)

P2P4
w3,

w6 = −
µ2 (α + µ)2 (ρ + µ) (ησ (P4 + γ) + P2P3) − µρβ∗ (αµ + α (α + µ)) (ησ (P4 + γ) + P2P3)

µ2 (α + µ)2 (ρ + µ) P2P4
w3.

Similarly, J∗ has a left Eigen vectors v = (v1, v2, . . . , v6)
satisfying v · w = 1 with

v1 = 0, v2 = 0, v3 = v3 > 0,

v4 = −
(µ (α + µ) P1P4 − µβ

∗P3 (α + µ))
µ (α + µ) ησP4

v3,

v5 = −
µβ∗ (α + µ)
µ (α + µ) P4

v3,

v6 = 0. (16)

It then follows that there is a need to compute the associated
partial derivatives of f (x) that are different from zero evaluated
at the DFE (ε0) with β = β∗, by taking into account the ex-
pression for β∗ = 1, where v3 is computed to ensure that the
eigenvectors satisfy the condition v · w = 1. Since the first two
components of v are zero, there is no need for the differential
coefficients f1 and f2. From the remaining differential coeffi-
cients f4 and f5 the nonzero are as follows:

∂2 f3
∂x1∂x4

(0, 0) = ∂2 f3
∂x4∂x1

(0, 0) = β∗

x∗1+x∗2+...x
∗
6
−

β∗x∗1
(x∗1+x∗2+...x

∗
6)

2 ,

∂2 f3
∂x1∂x5

(0, 0) = ∂2 f3
∂x5∂x1

(0, 0) = β∗

x∗1+x∗2+...x
∗
6
−

β∗x∗1
(x∗1+x∗2+...x

∗
6)

2

(17)

By putting these values in eqn. (17) into eqn. (12) we obtained:

a =
∑n

k,i, j=1 vkwiw j
∂2 fk
∂xi∂x j

(0, 0) = v4w1w5
∂2 f4
∂x1∂x5

+ v4w1w6
∂2 f4
∂x1∂x6

,

where N∗ = x1
∗ + x2

∗ + x6
∗.

Consequently, by putting the value of w1,w5 and w6 into
this and tidy up, we obtained:

a = 2v4w2
4

(
β∗x∗1
N∗2
−
β∗

N∗2

) (
µβ∗ (ησ (P4 + γ) + P2P3)

(α + µ)2 P2P4

)
×(

ησ

P2
+
ησγ + P2P3

P2P4

)
. (18)

From the reference point, the derivatives f4, f5 and f6 are
nonzero, and the non-zero derivatives are:

∂2 f3
∂x4∂β∗

(0, 0) =
x∗1

x∗1 + x∗2 + ...x
∗
6

and

∂2 f3
∂x5∂β∗

(0, 0) =
x∗1(

x∗1 + x∗2 + ...x
∗
6

)2

8
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Figure 2. Forward bifurcation diagram for the model showing force of infection
against R0.

By substituting these values into eqn. (12) likewise and noting
that N∗ = x1

∗ + x2
∗ + x6

∗, to obtain b is as follows:

b =
n∑

k,i=1

vkwi
∂2 fk
∂xi∂β∗

(0, 0) = v4w5
∂2 f3
∂x4∂β∗

+ v4w6
∂2 f3
∂x5∂β∗

= v4w5
x1
∗

N∗2
+ v4w6

x1
∗

N∗2
,

∴ b = v4w2
4

x∗1
N∗2

(
ησ (P4 + γ) + P2P3

P2P4

)
> 0. (19)

Biologically, one observes that for all feasible parameters,
b > 0. Consequently, the direction of the bifurcation at β = β∗

for R0 = 1 depends only on the sign of a. From eqn. (18),
sincew5,w6, andw1 are positive and if the negative term domi-
nates the positive term, then a will be negative. Hence, there is
an exhibition of forward bifurcation by our model and there is
existence of not less than one stable endemic equilibrium when
R0 > 1 . The forward bifurcation exhibited by model (1) is as
shown in Figure 2:

5. Numerical results

Using the parameter values as obtained from previous
works in the literature as contained in Table 1, and by adopt-
ing MATLAB software, we conducted numerical simulation of
the model so as to be able to observe the transmission dynam-
ics of human Monkeypox virus model over time. By using this
simulation, we were able to do illustration of some theoretical
results that were earlier obtained in the previous sections of this
study.

Figure 3 verifies the effect of vaccination on each of these
classes, invariably it affects the population of the inhabitants of
the community under study at DFE. From Figure 3(a) – 3(c), it
is observed that the increase in the rate of vaccination on the

susceptible, vaccinated, and exposed populations, the slower
the rate of progression to infectious classes. The lower the rate
of vaccination, the faster the progression to infectious classes.
From Figure 3(c), it is observed that among the exposed indi-
viduals, it is seen that as many individuals progress from the
susceptible class to the exposed class, at increased vaccination
rate, it decreases the time it takes for infectiousness with the
virus. In Figure 3(d), the observation is that, the number of
symptomatically infected individuals decreases exponentially
with time. From Figure 3(e), the observation is that, the num-
ber of asymptomatically infected individuals increases (grow
exponentially) in few days after being infected up to equilib-
rium level but gradually start decreasing with time perhaps due
to the efficacy of the vaccination. From Figure 3(f), it is ob-
served that at high vaccination rate, the number of people who
recovered from the Monkeypox infection increases with time.

Intuitively, as vaccine are been administered, the individ-
uals in susceptible class becomes vaccinated, while the vacci-
nated individuals at equilibrium points decreases. In addition,
the susceptible class also experience natural death [17]. The re-
covered class on the other hand witnessed significant increase
in the population as a result of the vaccination intervention.

In Figures 4(a) and 4(f), one would observe that there is
significant impact of change in the vaccination rate and recov-
ery from symptomatic infectious class by virtue of treatment
of the population of the susceptible population and recovered
population as shown in the wide gap between the two curves.
Here, with increase in the three parameters, the population of
susceptible individuals rapidly decrease exponentially while the
population of the recovered individuals grows exponentially. In
Figures 4(c) and 4(d), observe that there is very little impact of
change in the vaccination rate and recovery from symptomatic
infectious class by virtue of treatment of the population of the
susceptible population and recovered population as shown in
the near overlapping of the two curves. This means that with
increase in the two parameter values, the population of Exposed
and infected asymptomatic remains almost unchanged. In Fig-
ures 4(c) and 4(d), observe that there is no impact of change in
the vaccination rate and recovery from symptomatic infectious
class by virtue of treatment of the population of the exposed
and infected asymptomatic population as shown in the overlap-
ping of the two curves. This means that with increase in the
three parameter values, the population of Exposed and infected
asymptomatic remains unchanged.

6. Summary, Findings, Recommendations and Conclusion

6.1. Summary

A new deterministic compartmental vaccination model
was proposed and rigorously analysed to gaining insight into
human-to-human transmission dynamics of Monkeypox virus
in a population in sub-Saharan Africa.

Proposed model was discovered to exhibit two equilibria,
the disease-free equilibrium which is asymptotically stable (i.e.,
locally and globally) when the associated reproductive number
is less than one and, likewise, it was discovered that when the

9
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Figure 3. The dynamics of each state variables showing the change in the dynamics of each sub-population with respect to time in the model by using the parameters
in Table 1. In the Figure (a) susceptible population, (b) Vaccinated population, (c) exposed population, (d) Simulation of Infected Asymptomatic population, (e)
Simulation of Infected symptomatic population, (f) recovered population.

reproductive number was greater than one, the endemic equi-
librium is locally asymptotically stable. By adopting parameter
values as obtained from the literature, we carried out the numer-
ical simulation of the proposed model so as to confirm some
analytical results earlier gotten in the study.

6.2. Findings
1) The model was found to undergo forward bifurcation

meaning that the classical epidemiological requirement
that its reproduction number be less than unity for the
control of the disease is not sufficient for its control in
the population.

2) It is discovered that among the vaccinated individuals and
those that missed vaccination, the difference is clear, in
the sense that, among individuals with increased vaccina-
tion, the loss of individuals to infectiousness is invariably
lower to those with a lower rate of vaccination.

3) Expectedly, it was discovered that at high vaccination
rate, the number of people who recovered from the Mon-
keypox infection increases (grows exponentially) with
time.

4) When there is increase in the two parameters: vaccina-
tion rate (α) and Recovery rate from symptomatic infec-

tious class by virtue of treatment (KS ), in the model, this
has great impact on susceptible population and recovered
population; while it is of no impact on exposed popula-
tion and infected asymptomatic population.

6.3. Recommendations

Over the years Monkeypox virus has become a threat and
causing great havoc in the developing and under developing
countries, especially in sub-Saharan Africa, consequently, aris-
ing from this study and findings, it is recommended that:

1) There should be more public awareness campaign on the
dangers of Monkeypox and policy makers in the sector
should set strategies on how to control its spread and
cure.

2) There should be establishment of a strong policy on the
vaccination against Monkeypox and make it mandatory
in hospitals and health centres for new-born babies and
other age categories.

3) Strong health education on personal hygiene should be
carried out.

10
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Figure 4. Plots showing the change in the dynamics of each sub-population with respect to time by varying the vaccination rate (α) of the model and Recovery
rate from symptomatic infectious class by virtue of treatment (KS ), where panel (a) susceptible population, (b) Vaccinated population, (c) exposed population, (d)
Simulation of Infected Asymptomatic population, (e) Simulation of Infected symptomatic population, (f) removed population.

6.4. Conclusion
In this paper, we studied the Monkeypox virus and designed

a novel vaccination model for the transmission dynamics of the
virus. As a major contribution, we focused on human-to-human
transmission model which to the best of our knowledge, this is
the first time this is done, thus this is the novelty of our work.
We proved theoretically the proposed model stability conditions
(i.e., local and global stability) at equilibrium level. It is discov-
ered that the model undergoes forward bifurcation which is de-
scribed as a qualitative change in the nature of the solution tra-
jectories of epidemiological models occasioned by a parameter
change. Based on the findings from the study, expectedly, it is
observed that if there are no pharmaceutical interventions (i.e.,
vaccination) to control the spread of the virus, the virus will not
be wiped out of the population. Conclusively, we observed that
when efforts are geared at adequate vaccination of individuals in
the heterogeneous population, the loss of people to the scourge
of the virus would be greatly reduced. Unlike other works that
considers human-to-animal models, it is discovered that when
there is increase in vaccination rate, vaccination-induced recov-
ery rate and Recovery rate from symptomatic infectious class
by virtue of treatment in the proposed model has great impact
on susceptible population and recovered population.

In study of dynamics of how communicable diseases are
transmitted, scientists have been deploying mathematical mod-
els which has proven to be a very useful tool for understanding
the dynamics of diseases, works such as those in Refs. [1–
7, 19, 25, 31]. In future work, this work can be extended by in-
corporating time dependent optimal control strategies into the
model with a view to procuring optimal strategies to combat-
ing the transmission dynamics of the disease. Furthermore, the
model can be reformulated as Caputo based or Atagana Baleanu
based fractional order model and solve the resulting system of
non-linear fractional order model using appropriate numerical
schemes towards obtaining more novel findings that will ulti-
mately help in curtailment of the spread of the deadly disease
in sub-Saharan Africa.
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