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Abstract

In this paper, we extend fractional-order derivative for the shifted Vieta-Lucas polynomial to generalized-fractional integro-differential equations
involving non-local boundary conditions using Galerkin method as transformation technique and obtained N − ⌈δ⌉ + 1 system of linear algebraic
equations with λi, i = 0, . . . ,N unknowns, together with ⌈δ⌉ non-local boundary conditions, we obtained (N + 1)− linear equations. The accuracy
and effectiveness of the scheme was tested on some selected problems from the literature. Judging from the table of results and figures, we
observed that the approximate solution corresponding to the problem that has exact solution in polynomial form gives a closed form solution
while problem with non-polynomial exact solution gives better accuracy compared to the existing results.
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1. Introduction

Integro-differential equations (IDEs) surface in Mathemat-
ical sciences such as modeling some phenomena (science and
engineering), financial Mathematics, control theory and many
more. In recent decades, various numerical approaches have
been developed by various researchers for solving IDEs prob-
lems, some of these researchers are Dzhumabaev [1] who
developed a new general solutions for solving linear Fred-
holm integro-differential equations, Issa et al. [2–4] employed

∗Corresponding author: Tel.: +234-803-655-4437

Email address: issa.kazeem@kwasu.edu.ng (Kazeem Issa )

shifted Chebyshev polynomial of first and fourth kinds to solve
IDEs via perturbed Galerkin method, accuracy of Chebyshev
Galerkin method was investigated by Biazar & Salehi [5] in the
solution of IDEs.

Fractional-order calculus is an important tools in area of ap-
plied and computational Mathematics to investigate the myriad
of problems that emanate from various aspect of studies, such
as physics, mathematical modeling, engineering [6], statisti-
cal mechanics, finance, biophysics, hydrology, bio-engineering,
control theory, and cosmology. Ionescu & Kelly [7] presented
synopsis of fractional calculus tools for characterising respira-
tory mechanics.

Recently, more attentions are given to the studies of
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fractional-order differential equations (FDE) and fractional-
order integro-differential equations (FIE). Different approaches
have been studied to solve FIE. Ghosh [8] employed Katugam-
pola fractional operator to investigate analytical approach for
the fractional-order Hepatitis B model, Ghosh & Kumar [9] in-
vestigated the accuracy of fractional Covid-19 model via spec-
tral collocation method, Jani et al. [10] investigated the ac-
curacy of numerical solution of FIE with non-local conditions
using Bernstein polynomials, Zaky [11] proposed improved tau
method to investigate the accuracy of multi-dimensional frac-
tional Rayleigh-Stokes problem, Wang & Zhu [12] proposed
Euler wavelet operational matrix method for solving non-linear
Volterra integro-differential equations, Huang et al. [13] tested
the effectiveness of Taylor expansion method on the solution of
FIE, Bayram & Daşciog̈lu [14, 15] investigated the accuracy of
fractional linear Volterra-Fredholm IDEs via Laguerre polyno-
mials as an approximation, Mittal & Nigam [16] investigated
the accuracy of Adomian decomposition method (ADM) in the
solution of FIE.

Convergence of Jacobi spectral collocation method was in-
vestigated in the solution of FIE by Huang et al. [17, 18],
FIE with weakly singular kernel was studied using legendre
wavelets method by Yi et al. [19], spline collocation method
was used to solve fractional weakly singular IDEs by Pedas
et al. [20]. Two-dimensional non-linear Volterra-Fredholm
IDEs was investigated using variational ADM by Hendi &
Al-Qarni [21], He et al. [22, 23] studied a system of lin-
ear Fredholm integral equations using Bernstein and improved
Block-Pulse functions, collocation method couple with con-
vergence was employed to solve generalized FIE by Sharma
et al. [24], Turut [25] adopted pade approximation technique
to solve FIE with non-local boundary conditions, modified
Laplace decomposition method was developed to solve frac-
tional Volterra-Fredholm IDEs by Hamoud & Ghadle [26],
Gupta & Pandey [27] proposed adaptive huber method for
weakly singular fractional integro-differential equations, anal-
ysis of the error involved in 1D Fredholm integro-differential
equations was studied by Fairbairn & Kelmanson [28] using
Volterra-transformation method, Wang et al. [29] proposed
a method based on Laplace transform for finding an approx-
imate solution to Fredholm-type integro-differential equation
with Atangana-Baleanu fractional derivative in Caputo sense,
Toma & Postavaru [30] transformed IDEs to algebraic form us-
ing Newton’s iterative method then investigate the accuracy of
the proposed method.

The focus of this paper is finding approximate solution to
the generalized fractional-order integro-differential equations
(GFIE) of the form:

Dδy(x) + Ψ1(x)y(x) + ς1

∫ x

0
S 1(x, t)y(t)dt

+ ς2

∫ 1

0
S 2(x, t)y(t)dt = Ψ2(x),

r − 1 < δ ≤ r, a ≤ x ≤ b, r ∈ N (1)

with non-local boundary conditions given by:

r∑
k=1

(
βnky(k−1)(a) + αnky(k−1)(b)

)
+ γn

∫ b

a
Kn(x)y(x)dx = ρn, n = 1, 2, . . . , r, (2)

where Kn(x) is a continuous function, Ψm(x), S m(x),m =
1, 2 are holomorphic functions, βnk, αnk , γn and ρn are con-
stants, Dδ is the fractional differential operator of order δ
and y(x) is the unknown function. In Eq. (1), If ς1 =

0 or ς2 = 0, then the equation becomes fractional Fred-
holm or Volterra integro-differential equation respectively, via
shifted Vieta-Lucas polynomials by employing fractional-order
derivative for the shifted Vieta-Lucas polynomial to remove
the fractional-order and Galerkin method in transforming the
integro-differential equations to algebraic linear equations.

This paper is organized as follows. In section 1 we intro-
duced FIE, in section 2, we discussed the preliminaries of the
scheme, which includes review of some frequently used orthog-
onal polynomials and Caputo fractional differentiation opera-
tor. Formulation of scheme is presented in section 3, in section
4 application of the scheme is presented with table of results
and figures to show the effectiveness and the accuracy of the
scheme, discussion of results and concluding remarks are given
in section 5.

2. Preliminaries

2.1. Some frequently used orthogonal polynomials

Some of frequently used orthogonal polynomials Φi(x) are
reviewed here: Φi(x) is an orthogonal polynomial with refer-
ence to the weight function ω(x), x ∈ [a, b], if the inner product
of Φi(x) satisfies the following:

⟨Φi(x),Φ j(x)⟩ =
∫ b

a
ω(x)Φi(x)Φ j(x)dx =


0, i , j

λ j, i = j.
(3)

Some of the prominent orthogonal polynomials Φi(x) are de-
scribed below.

2.1.1. Shifted Legendre polynomials
Polynomial Pi(p), is an orthogonal with respect to ω(p) = 1

satisfying the recurrence formula:

Pi+1(p) = 1
i+1

[
(2i + 1)P1(p)Pi(p) − iPi−1(p)

]
, i ≥ 1, (4)

with P0(p) = 1, P1(x) =
2p − (a + b)

b − a
, p ∈ [a, b] [31].

2.1.2. Laguerre polynomials
The generalized Laguerre polynomial L(γ)

i (p) of degree i in
γ with ω(p) = pγe−p, γ > −1, p ∈ [0, ∞) is defined as:

L(γ)
i (p) =

i∑
j=0

(−1) j
(
i + γ
i − j

)
p j

j!
. (5)

2



Issa et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 1821 3

The first two of the polynomials are L(γ)
0 (p) = 1, L(γ)

1 (p) =
γ + 1 − p with recurrence relation

L(γ)
i+1(p) =

1
i + 1

[
(γ + 2i + 1 − p)L(γ)

i (p) − (γ + i)L(γ)
p−1(p)

]
. (6)

The most frequently used Laguerre polynomial is under the
condition γ = 0 defined as:

Li(p) =
i∑

j=0

(−1) j
(
i
j

)
p j

j!
, (7)

with recurrence relation:

Li+1(p) =
1

i + 1
[
(2i + 1 − p)Li(p) − iLi−1(p)

]
, (8)

and the inner product is given as [15, 32]:

⟨L(γ)
i (p), L(γ)

j (p)⟩ =
∫ ∞

0
ω(p)pγe−pL(γ)

i (p)L(γ)
j (p)dp

=


0, i , j

i!Γ( j+γ+1)
Γ(γ+1) , i = j.

(9)

2.1.3. χ-th shifted Chebyshev polynomials

Given p =
(

2u − (a + b)
b − a

)
, then the χ-th shifted Chebyshev

polynomials are orthogonal polynomials reference to their re-
spective weight function ω(p), p ∈ [a, b], the prominent ones
are given here:

Φi(p) =



Ti(p) = cos(ip), ω(p) =
1√

1 − p2
, χ = 1

Ui(p) =
sin (i + 1) p

sin (p)
, ω(p) =

√
1 − p2, χ = 2

Vi(u) =
cos

(
i + 1

2

)
p

cos
(

p
2

) , ω(p) =
√

1 + p
1 − p

, χ = 3

Wi(p) =
sin

(
p + 1

2

)
p

sin
(

p
2

) , ω(p) =
√

1 − p
1 + p

, χ = 4.

(10)

The inner product for the χ−th kinds Chebyshev polynomials
Φi(p), p ∈ [−1, 1] are given as [33–35]:

⟨Φi(p),Φ j(p)⟩ =



⟨Ti(p),T j(p)⟩ =
∫ 1
−1

1√
1−p2

Ti(p)T j(p)dp =

0, i , j
π
2 , i = j,

⟨Ui(p),U j(p)⟩ =
∫ 1
−1

√
1 − p2Ui(p)U j(p)dp =

0, i , j
π
2 , i = j,

⟨Vi(p),V j(p)⟩ =
∫ 1
−1

√
1+p
1−p Vi(p)V j(p)dp =

0, i , j
π, i = j,

⟨Wi(p),W j(p)⟩ =
∫ 1
−1

√
1−p
1+p Wi(p)W j(p)dp =

0, i , j
π, i = j.

(11)

2.1.4. Shifted Gegenbauer polynomials
The shifted Gegenbauer polynomial C(α)∗

m (p), p ∈ [a, b] is
given as:

C(α)∗
i+1 (p) =

1
i + 1

[
2(i + α)

(
2p − (a + b)

b − a

)
C(α)∗

i (p)

−(i + 2α − 1)C(α)∗
i−1 (p)

]
, i ≥ 1, (12)

where C(α)∗
0 (p) = 1, C(α)∗

1 (p) = 2α
(

2p−(a+b)
b−a

)
.

The corresponding analytical form in the interval p ∈ [0, 1]
is given as:

C(α)∗
i (p) =

∑i
j=0

(−1) jΓ(2α + 2i − j)Γ(α + 1
2 )

(i − j)!Γ( j + 1)Γ(i − j + α + 1
2 )Γ(2α)

pi− j. (13)

and with the corresponding inner product [36, 37]:

⟨C(α)∗
i (p), C(α)∗

j (p)⟩ =
∫ 1

0

(
p − p2

)(α− 1
2 )

C(α)∗
i (p)C(α)∗

j (p)dp

=


0, for i , j

π21−4αΓ( j+2α)
j![Γ(α)]2( j+α)

, for i = j
(14)

2.1.5. Shifted Vieta-Lucas polynomials
The shifted Vieta-Lucas polynomials VL∗i (p), p ∈ [a, b] is

an orthogonal reference toω(p) = b−a

2
(√

(b−a)2−(2p−a−b)2
) satisfying

the recurrence relation:

VL∗i+1(p) = VL∗1(p)VL∗i (p) − VL∗i−1(p), i = 1, 2, . . . , (15)

where VL∗0(p) = 2,VL∗1(p) =
4p − 2(a + b)

b − a
.

The analytical form corresponding to Eq. (15) in the inter-
val p ∈ [0, 1] is [38, 39]:

VL∗i (p) = 2i
i∑

j=0

(−1) j4i− jΓ(2i − j)
Γ( j + 1)Γ(2i − 2 j + 1)

pi− j, (16)

the inner product corresponding to Eq. (16) is given as:

⟨VL∗i (p), VL∗j(p)⟩ =
∫ 1

0

(
p − p2

)− 1
2 VL∗i (p)VL∗j(p)dp

=


0, i , j , 0
2π, i = j , 0
4π i = j = 0.

(17)

2.2. Caputo fractional differentiation operator (CFDO)
CFDO Dδ, of order δ is defined as:

Dδ f (p) =
1

Γ(k − δ)

∫ p

0

f (k)(p)
(p − t)δ+1−k dt,

δ > 0, k − 1 < δ < k, k ∈ N. (18)

with the linearity property:

Dδ(σ f (p) + ςg(p)) = σDδ f (p) + ςDδg(p), (19)

where, σ and ς are constants.
We obtained the following:

Dδpi =


0, i ∈ N0 , i < ⌈δ⌉

Γ(i+1)
Γ(i+1−δ) pi−δ, i ∈ N0 , i ≥ ⌈δ⌉,

(20)

where ⌈δ⌉ is the smallest integer greater than or equal to δ.
3
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Theorem 2.1. Suppose VL∗j(p), p ∈ [0, 1] is a shifted Vieta-
Lucas polynomial, then the Caputo fractional derivative of
VL∗j(p) in terms of shifted Vieta-Lucas polynomial is:

Dδ
(
VL∗j(p)

)
=

∑ j−⌈δ⌉
k=0

(−1)k2i4 j−kΓ(2 j−k)Γ( j−k+1)
Γ(2 j−2k+1)Γ( j−k+1−δ)Γ(k+1) p j−k−δ. (21)

Proof is given in Ref. [38].

Theorem 2.2. Let the fractional derivative of g(p) of order N
be expressed in terms of shifted Vieta-Lucas polynomials:

Dδ (gN(p)) =
N∑

j=0

λ jDδ
(
VL∗j(p)

)
, (22)

then

Dδ (gN(p)) =
N∑

j=⌈δ⌉

j−⌈δ⌉∑
k=0

λ jΥ j,k p j−k−δ, (23)

where

Υ j,k =
(−1)k2i4 j−kΓ(2 j − k)Γ( j − k + 1)

Γ(2 j − 2k + 1)Γ( j − k + 1 − δ)Γ(k + 1)
. (24)

Proof is given in Ref. [38].

2.3. He’s fractional derivative operator

The He’s fractional derivative operator Dδ is defined as [40,
41]:

Dδ f (p) =
1

Γ(k − δ)
dδ

dpδ

∫ p

0
(s − p)k−δ−1 [

f0(s) − f (s)
]
ds,

δ > 0, k − 1 < δ < k, k ∈ N, (25)

where f0(x, p) is the solution of its continuous form of the prob-
lem with same initial condition.

3. Formulation of the numerical scheme

In this section, we consider the technique involved in the
formulation of the scheme for solution of the generalized FIE
via Galerkin method using shifted Vieta-Lucas polynomials as
an approximate polynomial.

The approximate solution yN(x) corresponding to the closed
form solution y(x) in Eq. (1) using Galerkin method as trans-
formation technique is derived as follows:

yN(x) =
N∑

i=0

λiVL∗i (x). (26)

Substituting Eq. (26) into Eq. (1), and applying theorem 2.1 to
the fractional part to the resulting equation, we obtain

N∑
i=⌈δ⌉

i−⌈δ⌉∑
j=0

λiΥi, jxi− j−δ + Ψ1(x)
N∑

i=0

λiVL∗i (x)

+ ς1

∫ x

0
S 1(x, t)

N∑
i=0

λiVL∗i (t)dt

+ ς2

∫ 1

0
S 2(x, t)

N∑
i=0

λiVL∗i (t)dt = Ψ2(x). (27)

Multiplying both sides of Eq. (27) with shifted Vieta-Lucas
polynomials VL∗j(x), j = ⌈δ⌉, ⌈δ⌉ + 1, . . . ,N, and integrating the
result obtained in the interval [a, b], we have:∫ b

a

 N∑
i=⌈δ⌉

i−⌈δ⌉∑
j=0

λiΥi, jxi− j−δ + Ψ1(x)
N∑

i=0

λiVL∗i (x)

+ ς1

∫ x

0
S 1(x, t)

N∑
i=0

λiVL∗i (t)dt

+ς2

∫ 1

0
S 2(x, t)

N∑
i=0

λiVL∗i (t)dt

 VL∗j(x)dx

=

∫ b

a
Ψ(x)VL∗j(x)dx. (28)

From Eq.(28), we obtain (N − ⌈δ⌉+ 1) algebraic equations with
N + 1 unknowns and the remaining equations are obtain from
non-local boundary conditions (2), given as:

r∑
k=1

βnk

 N∑
i=0

λi
dk−1

dxk−1 VL∗i (x)


x=a

+ αnk

 N∑
i=0

λi
dk−1

dxk−1 VL∗i (x)


x=b


+ γn

∫ b

a
Kn(x)

N∑
i=0

λiVL∗i (x)dx = ρn, n = 1, 2, . . . , r, (29)

to have (N + 1) equations, which will be solve to obtain the
unknowns λi, i = 0, 1, . . . ,N and subsequently, the approximant
yN(x). See Refs. [2, 5] for more explanation on the application
of Galerkin method to integro-differential equation.

4. Application to GFIE

The implementation of the technique involved in the formu-
lation of the scheme for the numerical solution of the general-
ized FIE via Galerkin method using shifted Vieta-Lucas poly-
nomials as an approximate polynomial is consider herein. The
scheme was implemented on some selected problems from the
literature. We compute the maximum absolute error κN for each
problem and compare the results of the present scheme (PS)
with the results in the literature. Maximum absolute error κN is
given as:

κN = max
0≤ℓ≤100

|y(xℓ) − yN(xℓ)| , xℓ = a + ih (30)

Example 4.1

Consider FIE [10, 25]:

D(0.5)y(x) − ex
∫ x

0
ty(t)dt +

x2

3
exy(x)

−

∫ 1

0
x2y(t)dt =

√
x

Γ(1.5)
−

1
2

x2, (31)

4
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with non-local condition:

y(0) = 3
∫ 1

0
ty(t)dt − y(1), (32)

and exact solution y(x) = x.
Comparing Eqs. (31) and (1), we have δ = 1

2 , seeking a
solution of the form (27), Eq. (31) becomes:

N∑
i=⌈δ⌉

i−⌈δ⌉∑
j=0

λiΥi, jxi− j−δ +
x2

3
ex

 N∑
i=0

λiVL∗i (x)


− ex

∫ x

0
t

 N∑
i=0

λiVL∗i (t)

 dt

−

∫ 1

0
x2

 N∑
i=0

λiVL∗i (t)

 dt =
√

x
Γ(1.5)

−
1
2

x2. (33)

Multiplying Eq. (33) by VL∗ι (x), ι = ⌈δ⌉, ⌈δ⌉ + 1, . . . ,N, then
integrating the obtained equation in the interval [0, 1], we have:∫ 1

0

 N∑
i=⌈δ⌉

i−⌈δ⌉∑
j=0

λiΥi, jxi− j−δ +
x2

3
ex

 N∑
i=0

λiVL∗i (x)

 (34)

−ex
∫ x

0
t

 N∑
i=0

λiVL∗i (t)

 dt −
∫ 1

0
x2

 N∑
i=0

λiVL∗i (t)

 dt

 VL∗ι (x)dx

=

∫ 1

0

[ √
x

Γ(1.5)
−

1
2

x2
]

VL∗ι (x)dx,

Eq. (34) gives:

−
470

1001
λ0 +

3659
2479

λ1 +
2259
596
λ2 −

735
1562

λ3 + 2525472λ4 =
576

4291

−
431

1459
λ0 +

626
649
λ1 +

6922
3941

λ2 +
5321
885
λ3 − 17741695λ4 =

568
6079

−
204

1031
λ0 +

540
769
λ1 +

431
357
λ2 +

147
46
λ3 +

1796
275
λ4 =

369
4816

−
431

2806
λ0 +

687
1241

λ1 +
668
743
λ2 +

243
104
λ3 +

2099
614
λ4 =

179
2906

(35)

From non-local boundary condition, we have:

y(0) + y(1) − 3
∫ 1

0
ty(t)dt =

N∑
i=0

λiVL∗i (0)

+

N∑
i=0

λiVL∗i (1) − 3
∫ 1

0
t

 N∑
i=0

λiVL∗i (t)

 dt = 0

⇒
1
2
λ0 − λ1 +

11
2
λ2 −

2
5
λ3 +

97
10
λ4 = 0.

(36)

Soving Eqs. (35) and (36) to obtain the values of the unknowns
λi, i = 0, . . . , 4, then substitute the values of λi, i = 0, . . . , 4 in
Eq. (26) to gives approximate analytical solution.

The same problem was solved in [25] and obtained approxi-
mate solution using Pade approximations with maximum abso-
lute error of 8.69×10−5, likewise [10] used Bernstein polynomi-
als as an approximating polynomial and obtained 4.90 × 10−11

as maximum absolute error at N = 4 while in the proposed
scheme, we obtain exact solution at N = 1.

Example 4.2

Consider FIE [10]:

D
1
3 y(x) =

∫ x

0
x2 exp(xt)y(t)dt+

3
2

x
2
3

Γ
(

2
3

)−1+exp(x2)−x2 exp(x2),

subject to non-local boundary condition

y(0) = 3 − 2y(1) − 3
∫ 1

0
ty(t)dt,

with the exact solution y(x) = x.
The same problem was solved in Ref. [10] using Bernstein

polynomial as an approximating polynomial and obtained max-
imum error of 3.31 × 10−7 while in the present scheme, exact
solution is obtain at N = 1.

Example 4.3

Consider FIE [10]:

D
5
4 y(x) = g(x) + (cos x − sin x) y(x) +

∫ x

0
sin(t)y(t)dt,

subject to non-local boundary conditions

y(0) + y(1) =
∫ 1

0
ty(t)dt −

1
2

y′(1) −
(

e + 1
e + 2

)
y′(0),

2 (y(0) + y(1)) = y′(1) −
( e
e + 1

)
y′(0).

The closed form solution is y(x) = x2, where g(x) =

8
3

x
3
4

Γ
(

3
4

) − 2x sin x + x2 sin x − cos x + 2.

The same problem was solved in Ref. [10] using Bernstein
polynomial as an approximating polynomial and obtained max-
imum error of 3.51 × 10−8 while in the present scheme, exact
solution is obtain at N = 4.

Example 4.4

Consider the following FIE [10]:

D
1
2 y(x) +

∫ x

0
ty(t)dt +

∫ 1

0
t2y(t)dt

= (erf(
√

x) + x − 1) exp(x) + exp(1) − 1.

with non-local boundary condition : y(0) −
∫ 1

0 ty(t)dt = 0.
The exact solution is y(x) = exp(x).

5
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Table 1. Maximum absolute errors for Example 4.3 at various
values of N.

N Ref. [10] PS

4 1.05 × 10−4 9.24 × 10−5

6 1.57 × 10−7 9.78 × 10−7

12 1.78 × 10−16 1.66 × 10−16

Figure 1. Exact and its corresponding approximants at various values of N for
example 4.4.

Figure 2. Asolute errors for example 4.4.

5. Discussion of results and conclusion

5.1. Discussion of Results

Table 1 depicts the absolute maximum errors obtained for
example 4.4 and Figure 1 is the corresponding figure while Fig-
ure 2 displays the absolute errors at various degree of approx-
imation. From Table 1, the proposed method is accurate and
effective as it compares favourably with the results obtained in

Ref. [10]. Figure 1 shows relationship between the exact and
its approximate while Figure 2 displays the accuracy at various
values of N. It was observed that all the numerical solutions to
examples 4.1 − 4.3 give closed form solutions while example
4.4 give very good accuracy of results compare to the results in
the literature.

5.2. Conclusion

In this paper, we proposed an extension of fractional-order
derivative for the shifted Vieta-Lucas polynomial to solve gen-
eralized FIE involving non-local boundary conditions using
Galerkin method to transform the IDEs to a system of alge-
braic equations and the fractional part of the IDE was removed
using Caputo properties. The equations were solved together
with the non-local boundary conditions to obtain the approxi-
mate solutions. For experiment, we implement the scheme on
existing problems selected from the literature. We obtained ex-
act results for problems with polynomial exact solutions and
obviously, from the numerical results obtained for the problem
with non-polynomial exact solution, shows the accuracy and
effectiveness of the proposed method.
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