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Abstract

This study underscores the crucial role of COVID-19 vaccinations in managing the pandemic, with a specific focus on Nigeria. Employing a
fractional-order mathematical modeling approach, the research assesses vaccination efficacy, minimum effectiveness, and duration. The model’s
numerical solution is derived through the Laplace Adomian Decomposition Method (LADM), utilizing rapidly converging infinite series. Simula-
tion results illustrate the impact of COVID-19 transmission and vaccination rates. The study concludes that implementing a vaccination strategy in
an integer order proves to be the most effective approach to controlling the spread of COVID-19. These findings have significant implications for
researchers, policymakers, and healthcare workers. They emphasize the central role of fractional calculus in facilitating vaccine implementation
in the ongoing battle against COVID-19. The study calls for global efforts to maximize vaccination implementation for the overall benefit of
public health.
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1. Introduction

Nigeria was completely affected by the COVID-19 epi-
demic. As it has in many countries around the world, the virus
is continuing to spread and disrupt daily life [1–4]. One of the
most effective strategies to combat the spread of the virus and
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mitigate its societal effects is vaccination. However, Nigeria has
faced several challenges in implementing its vaccination pro-
gram, including issues related to its healthcare infrastructure,
vaccine hesitancy, and the spread of misinformation. Despite
these hurdles, the African Union has secured vaccine supplies
for the continent through initiatives like the Nigeria Vaccine
Acquisition Trust, and vaccination efforts are gaining momen-
tum.

The COVID-19 vaccine has played a crucial role in Nigeria
by significantly reducing the incidence of severe illness, hos-
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pitalizations, and fatalities among those who have received it.
Research conducted in Morocco, for example, found that vac-
cination reduced the risk of mortality by an impressive 91% and
lowered the likelihood of hospitalization by 81% [5–7]. Simi-
larly, studies in South Africa revealed that immunization led
to an 80% reduction in hospitalization and a 60% decrease in
mortality [8–11]. Given these amazing results, it is critical to
investigate the impact of the COVID-19 epidemic on Nigeria
further. In light of the present epidemic, this study aims to ana-
lyze the medical advantages of keeping up regular vaccinations
among young people in Nigeria. We specifically want to assess
the chance of obtaining a severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection when attending routine
vaccination treatment locations, taking into account both high-
and low-impact scenarios. Nigeria has been devastated by the
COVID-19 epidemic. Drawing from successful vaccination
strategies in other countries, such as Israel, which achieved a
rapid rollout of vaccines with impressive coverage rates [12],
we aim to provide insights that can inform Nigeria’s ongoing
efforts. Additionally, it is important to recognize that Nigeria
faces significant challenges. Nevertheless, several waves of the
COVID-19 pandemic have also affected other countries in the
geographical region, including Bangladesh, India, Indonesia,
Nepal, Malaysia, and Myanmar, frequently with less study em-
phasizing these experiences.

Understanding the nuances of these different contexts is
vital for crafting effective responses and ensuring the health
and well-being of all affected populations. The emergence of
the Omicron variant has raised concerns about the ongoing
COVID-19 pandemic. The study sets the stage for an evalu-
ation of Omicron’s effects in six specific regions: South Asia,
Southeast Asia, and Oceania. aims to assess the reproduction
number and infection fatality rate (IFR) in these areas using a
model that accounts for susceptibility, vaccination, exposure,
infection, hospitalization, death, and recovery with a variable
transmission rate [13, 14]. Omicron’s swift spread across these
six countries highlights its increased transmissibility and poten-
tial for new pandemic waves. As vaccination coverage grows,
simulations suggest the Omicron impact may be reduced, less-
ening severe illness and fatalities [15]. A novel multi-strain SV
EAIR epidemic model has been established in the pursuit of un-
derstanding and effectively managing the spread of multi-strain
infectious diseases [16]. This model extends the traditional
susceptible-exposed-infectious-recovered (SEIR) model to ac-
count for individuals with natural immunity (N) and those who
have been immunized (V), allowing for simulations of disease
dynamics involving various strains. These models are essential
in predicting the transmission of viral diseases, especially ones
where several strains spread concurrently. In addition, COVID-
19 vaccination efforts in Nigeria have had a significant posi-
tive influence on lowering serious disease, hospitalizations, and
deaths while also curbing the virus’s spread. However, there re-
mains a pressing need to accelerate vaccination roll out efforts
to prevent the emergence of new variants. Collaboration be-
tween governments and international organizations is essential
to overcome the challenges hindering the vaccination campaign
and ensure equitable access to vaccines. Understanding public

sentiment towards COVID-19 booster vaccinations is critical to
shaping vaccination policies. Research indicates that the accep-
tance rate of booster shots in Algeria is moderate, with varia-
tions among demographic groups, including higher reluctance
and acceptance rates among males, individuals over 60, and
those with chronic illnesses [17]. These findings underscore the
importance of addressing psychological factors related to vac-
cine efficacy and safety in vaccination promotion efforts. In the
realm of epidemiology, fractional-order modeling has gained
attention due to its ability to capture complex and nonlinear
disease dynamics [18–24]. This approach offers an alternative
to conventional integer-order models by considering memory
effects, such as immunity among recovered individuals, and
varying infection and recovery rates over time [25–27]. The
Caputo-Fabrizio model and the Atangana-Baleanu model are
two examples of fractional order models that offer understand-
ing of disease dynamics, the effects of vaccines, and healthcare
capacity’s role in disease spread. However, further research is
needed to validate and refine these models for accurate predic-
tion of disease spread.

Mathematical models have become indispensable tools in
understanding and predicting the COVID-19 pandemic’s be-
havior. Because of their capacity to take into consideration
non-locality and memory effects, fractional-order mathemati-
cal models have gained acceptance, assisting in a more exact
portrayal of the pandemic’s growth [28–32]. In order to simu-
late the COVID-19 epidemic and inform methods for promoting
health, these models have proven to be quite helpful. Accord-
ing to Ref. [33], the article simulates COVID-19 transmission
using the Caputo fractional derivative, providing conditions and
stability. Laplace Adomian decomposition approximates solu-
tions. The graphical interpretation in Mathematical indicates
disease control options through rate modifications, providing
insights and practical consequences for management. Nonethe-
less, the vaccine compartment was not considered. According
to Ref. [34], a fractional-order COVID-19 model is analyzed
using the combination of the q-homotopy analysis method (q-
HAM) and Sumudu transform techniques, incorporating the
Liouville-Caputo method for the fractional operator. To assess
model equilibrium stability, a numerical analysis using the ex-
tended Adams-Bashforth-Moulton approach is performed. Au-
thors According to Ref. [35], using the Caputo fractional-order
derivative to examine a COVID-19 mathematical model with
lockdown. It proves solution uniqueness, explores equilibrium
stability, and uses the residual power series approach to approx-
imate a fractional power series. Theoretical discoveries are val-
idated by numerical and graphical evidence. In mathematical
modeling, researchers widely use the Caputo fractional differ-
ential operator to characterize disease transmission dynamics,
considering memory effects, long-term dependencies, repeated
patterns and trends in disease propagation to improves forecast
accuracy during numerical simulations [36], However, caution
is advised, as highlighted in Ref. [37], regarding the careful
selection of the fractional operator and addressing challenges
related to non-locality, requiring specialized numerical meth-
ods. Ref. [38] illustrates applying the Caputo fractional order
in COVID-19 modeling, demonstrating a versatile framework
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for analyzing complex dynamics within a population without
constraints using high-risk quarantine measures. The effective-
ness of Caputo fractional order operators is further emphasized
by successful applications in various scenarios, including Lassa
fever outbreak modeling [39], tuberculosis modeling [40], and
diphtheria transmission [41]. These successes validate our de-
cision to use the Caputo fractional order in our study, providing
a more flexible framework for capturing the underlying dynam-
ics that the classical derivative cannot fully capture. Numerical
simulation is vital in mathematical modeling, particularly for
disease trend forecasting. Before simulation, models are usu-
ally solved using semi-analytic or numerical techniques. For
example in Refs. [42, 43], the authors utilize compact finite dif-
ferences and shifted Gegenbauer polynomials for discretizing
time derivatives in space fractional order diffusion equations.
They extend to shifted Vieta-Lucas polynomials, addressing
generalized-fractional integro-differential equations with non-
local boundary conditions through the Galerkin method. Their
findings demonstrate that the closed-form approximate solution
converges to the exact solution of the problem. due to inher-
ent nonlinearity. Common methods include the homotopy per-
turbation method [44] and the Laplace-Adomian decomposi-
tion method (LADM) [45], using polynomials to handle non-
linear systems. In fractional differential equations, LADM is
preferred for efficiency, using the Laplace transform to convert
differential operators into solvable algebraic equations. Exist-
ing literature [46] confirms LADM’s reliability in describing
patterns in immunology and fractional-order epidemic models.
Our study adopts LADM to solve a proposed fractional-order
COVID-19 model for a reliable approximate solution, facilitat-
ing easy parameter adjustment during simulation. In summary,
this study uses advanced mathematical modeling, including Ca-
puto’s fractional-order derivative analysis, to assess COVID-19
vaccination efficacy in Nigeria. Simulation results show the
impact of transmission and vaccination rates, emphasizing the
pivotal role of full vaccination. It has global implications for
researchers, policymakers, and healthcare workers in the fight
against COVID-19.

2. Preliminaries

Some fundamental definition from fractional calculus This
section presents essential concepts and definitions from frac-
tional calculus but suggests referring to additional resources for
a more comprehensive understanding of the topic.

Definition 1. Fractional integration [18]:

(Jξt0 f )(t) = 1
Γ(ξ)

∫
(t − w)ξ−1 f (w)dw, ξ ≥ 0, t ≥ t0.

Definition 2 [18]. The gamma function Γ(ξ) =∫ ∞
o tξ−1ℓ−tdt, is continuous for all ξ ≥ 0.

Definition 3 [18]. The Riemann-Liouville fractional inte-
gration of order ξ ≥ 0 for a real positive function is given by

Jξt f (t) = 1
Γ(n−ξ)

(
d
dy

)n ∫ t
a (t − y)n−ξ−1 f (y)dy.

Definition 4 [38]. The Laplace transform of function h(t)
with order η is defined as L[hη(t)] = ξηL[h(t)] − ξη−1h(0) −
ξη−2h′(0) − ξη−3ξ′′(0).

The inverse Laplace transform of h(s)
s is L−1 h(s)

s =
∫ t

0 h(t)dt.
The Laplace transform of f (t) = tλ is L(tλ) = Γ(λ+1)

sλ+1 and the
inverse transform is L−1

(
1

sλ+1

)
= tλ
Γ(λ+1) .

Definition 5 [38]. The Adomian polynomials denoted by
X0, X1,....Xn, consists in the decomposition of the unknown func-
tion p(t) whose series can be expressed asp(t) = q0 + q1 + q2 +

· · · qn is given as:

Xn =
1
n

dn

dλn

H(t)
n∑

j=0

p jλ
j


λ=0

.

3. Methods

3.1. The formulation of the model

To investigate the effects of COVID-19 vaccination efforts
and other epidemiological factors on the transmission of the
virus in Nigerian, a non-linear mathematical model was de-
signed. To better comprehend COVID-19 dynamics, the model
was analyzed using deterministic mathematical analysis.

Utilizing S , S V , E, I,H,D, and R,

N(t) = S (t) + S V (t) + E(t) + I(t)+H(t) + D(t) + R(t). (1)

The force of infection is a measure of the rate at which sus-
ceptible individuals become infected in a population, and it is
computed by multiplying the population’s infectious individu-
als by the chance of transmission from an infected individual to
someone who is susceptible and by the rate of contact between
the two people.

β(S + S V )I
N

. (2)

A member of the susceptible population is someone who is at
risk of contracting a disease. The recruitment of active individ-
uals or new births causes the population of susceptible individ-
uals to increase, while natural death causes the population to
reduce. Therefore, the rate of change of the susceptible popula-
tion is provided by

dαS (t)
dt

= −
βI(t)S (t)

N
− vS + ψS v + θR. (3)

The description of the interpersonal transmission coefficient as
the rate of transmission per unit time per individual is given in
the statement. It then explains how the population of vaccinated
individuals changes over time, increasing with the rate of vacci-
nation and decreasing with the rate of vaccination loss (deaths
due to vaccination). The rate of change in the vaccinated popu-
lation is then expressed mathematically.

dαS V (t)
dt

= −
βI(t)S V (t)

N
+ vS (t) − ψS v(t) − ρS V (t). (4)

The statement explains the population of Exposed (E) individu-
als, which are infected but not yet infectious. Due to the force of
infection, the population increases. β(S (t)+S V (t))I(t)

N , which infects
susceptible individuals, and decreases at rate σ as individuals
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leave the exposed class. The rate of change of the exposed pop-
ulation is then expressed mathematically.

dαE(t)
dt

=
β

N
(S + S V I)(t) − σE(t). (5)

Individuals displaying COVID-19 symptoms are infectious,
with their risk of contracting the virus increasing upon exposure
.The rate of change of the infected population is then expressed
mathematically.

dαI(t)
dt
= σE(t) − γI(t). (6)

The statement explains that the population of hospitalized indi-
viduals with COVID-19 symptoms increases from exposure to
the virus via human-to-human transmission from symptomatic
and super-spreader individuals. It further notes that this popu-
lation decreases due to the natural death rate.

dαH(t)
dt

= ϕγ(I(t) − κH(t)). (7)

The death compartment in COVID-19 modeling represents in-
dividuals who have died from the disease and is a vital part of
understanding the pandemic’s impact on public health. Accu-
rately modeling the death compartment helps policymakers de-
velop effective strategies for controlling the spread of the virus.

dαD(t)
dt

= εϕκH(t). (8)

The statement explains that the population of recovered indi-
viduals consists of those who have recovered from COVID-
19. This population increases at the recovery rate of non-
hospitalized patients, while the recovery rate of hospitalized
patients decreases.

dαR(t)
dt

= (1−ϕ)γI(t)+ (1−εϕ)κH(t)+ρS V (t)−θR(t). (9)

The seven-compartment model of COVID-19 tracks the move-
ment of individuals between compartments using differential
equations that describe transmission, from susceptible to re-
covery. The model considers the impact of vaccination, with
a compartment for vaccinated individuals that increases with
recruitment and decreases with vaccination loss. The force of
infection calculates the rate of transmission from infected to
susceptible individuals.

dαS (t)
dt

= −
β

N
S (t)I(t) + ψS V (t) − vS (t) + θR(t),

dαS V (t)
dt

= −
β

N
S V (t)I(t) − ψS V (t) + vS (t) − ρS V (t),

dαE(t)
dt

=
β

N
(S (t)I(t) + S V (t)I(t)) − σE(t),

dαI(t)
dt
= −γI(t)σE(t),

dαH(t)
dt

= γϕI(t) − κH(t),

dαD(t)
dt

= εϕκH(t),

dαR(t)
dt

= γ(1 − ϕ)I(t) + ρS V (t) + (1 − εϕ)κH(t) − θR(t).

(10)

Table 1. Variables, parameters, descriptions and their values.
Variable Description Values Refs
S (t) Individual susceptible to the

disease at time t
47000 [47]

S v(t) Vaccinated individual who
are susceptible to the disease
at time t

5000 [47]

E(t) Infected individuals not yet
infectious at time t

2003 [47]

I(t) Individual who are currently
infected and able to transmit
at time

416 [47]

H(t) Individuals who require hos-
pitalization due to severe
symptoms at time t

300 [47]

D(t) Death individual at time t 150 [47]
R(t) Individual at time t are those

were previously infected
380 [47]

Parameter Description Values Refs
β Time-varying transmission

rate
0.001 [47]

ν Vaccination rate 0.125 [47]
ψ Vaccine efficacy rate 0.05 [47]
κ Rate of removal from the

severity stage
0.001 [47]

ρ Booster rate 0.9 [47]
σ Rate of infectiousness onset

after exposure
0.08 [47]

θ Recovery rate 0.07 [47]
γ Rate of loss of infectiousness 0.02 [47]
ϕ Infection severity case ratio 0.02 [47]
ε Severity case mortality ratio 0.027 [47]

The process of reformulating and analyzing the derivative in
the Caputo fractional order mathematical model of the equation
leads to model (11).

C Jα1 S = − βIS
N − vS (t) + ψS V + θR,

C Jα2 S V = −
βIS V

N + vS − ψS V − ρS V ,
C Jα3 E = β(S+S V I

N − σE,
C Jα4 I = σE − γI,
C Jα5 H = ϕγ(I − κH),
C Jα6 D = εϕκH,
C Jα7 R = (1 − ϕ)γI + (1 − εϕ)κH + ρS V − θR.

(11)

Table 1 presents the definition of each compartment and pro-
vides a description of each variable and parameter utilized in
the model.

4. Model analysis

In this section, we will carry out a qualitative analysis of
the mathematical model using an integer-order method. As a
result, we will be able to thoroughly examine the attributes of
the mathematical model and demonstrate how it may be put to
use in actual scenarios.
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4.1. Solution positivity and boundedness
The lemma that follows shows that the solutions to the equa-

tions in Model (11) are positive and bounded.
Lemma 1. Let t0 > 0. If there are initial conditions in

Model (11) such that S (0) > 0, S v(0) > 0, E(0) > 0, I(0) > 0,
H(0) > 0, D(0) > 0, and R(0) > 0, then for all t ∈ [0, t0], S (t),
S v(t), E(t), I(t), H(t), D(t), and R(t) will remain bounded and
positive in R7

+.
Proof.
The model (11)’s first equation:

C Jα1 S (t) = −
β

N
S (t)I(t) + ψS v(t) − vS (t) + ψR(t). (12)

Solving for S (t) yields:

S (t) > S (0)ℓ−(ν+ β
N )

∫
I(t)dt > 0.

The second equation of the model (11)

C Jα2 S v(t) = −
β

N
S v(t)I(t) + vS (t) − ψS v(t) − bS V (t). (13)

Solving for S v(t) yields:

S V (t) > S V (0)ℓ−(ψ+ β
N )

∫
I(t)dt > 0.

The model (11)’s third equation:

C Jα3 E(t) =
β

N
(S (t)I(t) + S v(t)I(t)) − σE(t). (14)

Solving for E(t) yields:

E(t) > E(0)e−σt > 0.

The fourth equation of the model (11):

C Jα4 I(t) = −γI(t) + σE(t). (15)

Solving for I(t) yields:

I(t) > I(0)e−γt > 0.

The fifth equation of the model (11):

C Jα5 H(t) = −γH(t) + ϕγI(t). (16)

Solving for H(t) yields:

H(t) > H(0)e−γt > 0.

The sixth equation of the model (11):

C Jα6 D(t) = rϕκH(t). (17)

Solving for D(t) yields:

D(t) > D(0)et > 0.

The seventh equation of the model (11):

C Jα7 R(t) = γ(1−ϕ)I(t)+κ(1−rϕ)H(t)+bS v(t)−ψR(t).(18)

Solving for R(t) yields:

R(t) > R(0)e−ψt > 0.

All these seven solutions have constants of integration given
by S (0) S V (0), E(0), I(0), H(0), D(0) and R(0). Therefore for
any time period [0; t0], S (t), S V (t), E(t), I(t),H(t),D(t) and R(t)
will be positive. It can be demonstrated that all seven equations
will eventually be bounded for some value of t. As a result,
Model (11) is both bounded above and bounded below. Since
the model is positive and bounded, it is well-posed from both a
mathematical and epidemiological perspective within the given
region

4.2. Existence and uniqueness of model solution

In order to establish the existence and uniqueness of solu-
tions for the fractional order system, we verify the Local Lips-
chitz condition, as provided by the preceding theorem.

Theorem 1: The system of equations satisfies the local Lip-
schitz condition if there is a constant Z for all t, t′in the neigh-
borhood W of the initial conditions and for all ω ∈ (0, 1) such
that: ∣∣∣∣∣∣ Jα [S (t), S V (t), E(t), I(t),H(t), F(t),R(t)]

−Jα [S (t′), S V (t′), E(t′), I(t′),H(t′), F(t′),R(t′)]

∣∣∣∣∣∣
≤

Z

∣∣∣∣∣∣ [S (t), S V (t), E(t), I(t),H(t), F(t),R(t)]
− [S (t′), S V (t′), E(t′), I(t′),H(t′), F(t′),R(t′)]

∣∣∣∣∣∣ .
Proof: From equation (10), let:

g1 = −
βI(t)S (t)

N − vS (t) + ψS v(t) + θR(t),
g2 = −

βI(t)S V (t)
N + vS (t) − ψS v(t) − ρS V (t),

g3(S , S V , E, I,H, F,R) = β(S (t)+S V (t))I(t)
N − σE(t),

g4 = σE(t) − γI(t),
g5 = ϕγ(I(t) − κH(t),
g6 = εϕκH(t),
g7 = (1 − ϕ)γI(t) + (1 − εϕ)κH(t) + ρS V (t) − θR(t).

Then the following inequality hold:

∣∣∣∣∣∣∣∣
g(S , S V , E, I,H, F,R)
−

g(S ′, S ′V , E
′, I′,H′, F

′

,R′ )

∣∣∣∣∣∣∣∣ ≤ L

√√√√√√√√√√√√√ (S − S ′)2 +
(
S V − S ′V

)2

+ (E − E′)2 + (I − I′)2

+ (H − H′)2 + (F − F′)2

+ (R − R′)2 .

,

where N ≥ max (N1, N2,N3,N4,N5,N6,N7) and
N1, N2,N3,N4,N5,N6,N7are the Lipchitz constants of each
state variables.

Now, let:

N1 = max
(
|∂g1/∂S | , |∂g1/∂S V | , |∂g1/∂E| , |∂g1/∂I| ,
|∂g1/∂H| , |∂g1/∂F| , |∂g1/∂R|

)
,

N2 = max
(
|∂g2/∂S | , |∂g2/∂S V | , |∂g2/∂E| , |∂g2/∂I| ,
|∂g2/∂H| , |∂g2/∂F| , |∂g2/∂R|

)
,

N3 = max
(
|∂g3/∂S | , |∂g3/∂S V | , |∂g3/∂E| , |∂g3/∂I| ,
|∂g3/∂H| , |∂g3/∂F| , |∂g3/∂R|

)
,

N4 = max
(
|∂g4/∂S | , |∂g4/∂S V | , |∂g4/∂E| , |∂g4/∂I| ,
|∂g4/∂H| , |∂g4/∂F| , |∂g4/∂R|

)
,
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N5 = max
(
|∂g5/∂S | , |∂g5/∂S V | , |∂g5/∂E| , |∂g5/∂I| ,
|∂g5/∂H| , |∂g5/∂F| , |∂g5/∂R|

)
,

N6 = max
(
|∂g6/∂S | , |∂g6/∂S V | , |∂g6/∂E| , |∂g6/∂I| ,
|∂g6/∂H| , |∂g6/∂F| , |∂g6/∂R|

)
,

N7 = max
(
|∂g7/∂S | , |∂g7/∂S V | , |∂g7/∂E| , |∂g7/∂I| ,
|∂g7/∂H| , |∂g7/∂F| , |∂g7/∂R|

)
.

Then,

N1 = max
(∣∣∣∣∣−v −

β

N

∣∣∣∣∣ , |ψ| , 0, ∣∣∣∣∣− βN
∣∣∣∣∣ , 0, 0, |θ|) ,

N2 = max
(∣∣∣∣∣v − β

N

∣∣∣∣∣ , |ψ + ρ| , 0, 0, 0, 0, 0) ,
N3 = max

(∣∣∣∣∣βI
N

∣∣∣∣∣ , ∣∣∣∣∣βI
N

∣∣∣∣∣ , |σ| , ∣∣∣∣∣β(S + S V )
N

∣∣∣∣∣ , 0, 0, 0, 0) ,
N4 = max (0, 0, |σ| , |γ| , 0, 0, 0) ,

N5 = max (0, 0, 0, |ϕγ| , |κ| , 0, 0) ,

N6 = max (0, 0, 0, 0, |εϕκ| , 0, 0) ,

N7 = max (0, |ρ| , 0, |(1 − ϕ)γ| , |(1 − εϕ)κ| , |θ|) .

Since the Lipchitz, condition is satisfied if there exist a
constant N ≥ max (N1,N2,N3,N4,N5,N6,N7). Therefore,
there is a unique solution for the system. Furthermore,
since,max (N1,N2,N3,N4,N5,N6,N7) ≤ N ≤ ∞, this shows
that the model’s solution is bounded and exists for all time
within the neighborhood of N.

Before arriving at an analytical answer, one must manip-
ulate many mathematical concepts in order to find an exact,
closed-form mathematical statement. In order to clearly explain
the dynamics of the system, this approach seeks to express the
solution in terms of well-known mathematical functions.

4.3. Disease free equilibrium point
The disease-free equilibrium point of the model is given as

E0 =

(
ψ + ρ

υ
, 0, 0, 0, 0, 0,

ρ

θ

)
.

4.4. Endemic equilibrium state
The endemic equilibrium, alternatively referred to as a non-

zero equilibrium condition, arises when a disease continues to
exist within a population. In contrast to the disease-free state
S V = E = I = H = D = R , 0. Thus, the endemic equilibrium
state yields:

S ∗∗ =
(εγϕ2ψ + εγϕ2ρ + β)Nγ

(εγϕ2ψ + εγϕ2ρ + εγϕ2υ + β)β
,

S V
∗∗ =

εγϕ2Nγ2υ

(εγϕ2ψ + εγϕ2ρ + εγϕ2υ + β)β
,

E∗∗ =
N

εϕ2σ
, I∗∗ =

N
εϕ2γ

,

H∗∗ =
N
εϕκ

, D∗∗ =
N
σϕγ

,

D∗∗ =
N
σϕγ

,

R∗

N(ε2γ2ϕ4ρυ − βε2γϕ4ψ − βε2γϕ4ρ − βε2γϕ4υ
+βεγϕ2ψ + βε2γϕ4ρ + βε2γϕ4υ − β2εϕ2 + β2)

θ(εγϕ2ψ + εγϕ2ρ + εγϕ2υ + β)βεϕ2 .

4.5. Basic reproduction number

The basic reproduction ration of the system is obtained as

R0 =
β(ψ + ρ)
γυ

.

5. Model solution via Laplace-Adomian Decomposition
Method application (LADM)

In this section, the LADM shall be applied to obtain the
approximate solution for the mathematical model (11) analyti-
cally. This is initiated by taking the Laplace transforms of both
sides of model (11) to obtain

L{C Jα1 S (t)} = L{−
βI(t)S (t)

N
− vS (t) + ψS v(t) + ψR(t)},

L{C Jα2 S V (t)} = −L{
βI(t)S V (t)

N
+ vS (t) − ψS v(t) − bS V (t)},

L{C Jα3 E(t)} = L{
β(S (t) + S V (t))I(t)

N
− σE(t)},

L{C Jα4 I(t)} = L{σE(t) − γI(t)},

L{C Jα5 H(t)} = L{ϕγ(I(t) − γH(t))},

L{C Jα6 D(t)} = L{rϕκH(t)},

L{C Jα7 R(t)} = L{(1 − ϕ)γI(t) + (1 − rϕ)κH(t) + bS V (t) − ψR(t)}.

Applying Definition 4 to the preceding equation and then
simplifying, we obtain

S = S −1S (0) +
1

S α1
L
{
−
βIS
N
− vS + ψS v + ψR

}
,

S V = S −1S V (0) +
1

S α2
L
{
−
βIS V

N
+ vS − ψS v − bS V

}
,

E = S −1E(0) +
1

S α3
L
{
β(S + S V )I

N
− σE

}
,

I = S −1I(0) +
1

S α4
L {σE − γI} ,

H = S −1H(0) +
1

S α5
L {ϕγ(I − γH)} ,

D = S −1D(0) +
1

S α6
L {rϕκH} ,

R = S −1R(0) +
1

S α7
L {(1 − ϕ)γI + (1 − rϕ)κH + bS V − ψR} .

(19)

6
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Representing the solutions S (t), S V (t), E(t), I(t), H(t), D(t) and
R(t) in the form of infinite series:

S (t) =
∞∑

n=0

S n, S V (t) =
∞∑

n=0

S Vn ,

E(t) =
∞∑

n=0

En, I(t) =
∞∑

n=0

In,

H(t) =
∞∑

n=0

Hn, D(t) =
∞∑

n=0

Dn,

R(t) =
∞∑

n=0

Rn.

(20)

The nonlinear terms of the model S (t)I(t), S V (t)I(t) can be de-
composed by Adomain polynomials given by Definition 5:

S (t)I(t) =
∞∑

n=0

An, S V (t)I(t) =
∞∑

n=0

Bn, (21)

where An, Bn are Adomain polynomials given by

An =
1

Γ(n + 1)
dn

dt

 n∑
k=0

λkIk

n∑
k=0

λnS k

 λ, (22)

Bn =
1

Γ(n + 1)
dn

dt

 n∑
k=0

λkS Vk

n∑
k=0

λnIk

 λ. (23)

Evaluating equation (19) using equations (20) and (21) yields

S = S −1S (0) + 1
S α1 L{−KAn − vS n + ψS V n + θRn},

S V = S −1V(0) + 1
S α2 L{−KBn + vS n − ψS V n − bS V n},

E = S −1E(0) + 1
S α3 L{K(An + Bn) − σEn},

I = S −1I(0) + 1
S α4 L{σEn − γIn},

H = S −1P(0) + 1
S α5 L{ϕγIn − κHn},

D = S −1A(0) + 1
S α6 L{rϕκHn},

R = S −1H(0) + 1
S α7 L{(1 − ϕ)γIn,

+(1 − rϕ)κHn − bS V − θRn}.

(24)

Using initial conditions in equation (24), we have:

S (t) =
n1

S
+

1
S α1

L{−KAn − vS n + ψS V n + θRn},

S V (t) =
n2

S
+

1
S α2

L{−KBn + vS n − ψS V n − bS V n},

E(t) =
n3

S
+

1
S α3

L{K(An + Bn) − σEn},

I(t) =
n4

S
+

1
S α4

L{σEn − γIn},

H(t) =
n5

S
+

1
S α5

L{ϕγIn − κHn},

D(t) =
n6

S
+

1
S α6

L{rϕκHn},

R(t) =
n7

S
+

1
S α7

L{(1 − ϕ)γIn + (1 − rϕ)κHn − bS V − θRn}.

(25)

To get the solution of each compartment, we iterate the
terms in equation (25) and take the Laplace inverse to give the
general formula for the model:∑∞

n=0 S n+1 = L
−1

[
1

S α1L{−KAn − vS n + ψS V n + θRn}
]
,∑∞

n=0 S V n+1 = L
−1

[
1

S α2L{−KBn + vS n − ψS V n − bS V n}
]
,∑∞

n=0 En+1 = L
−1

[
1

S α3L{K(An + Bn) − σEn}
]
,∑∞

n=0 In+1 = L
−1

[
1

S α4L{σEn − γIn}
]
,∑∞

n=0 Hn+1 = L
−1

[
1

S α5L{ϕγIn − κHn}
]
,∑∞

n=0 Dn+1 = L
−1

[
1

S α6L{rϕκHn}
]
,∑∞

n=0 Rn+1 = L
−1

[
1

S α8L{(1 − ϕ)γIn

]
,

+
[
(1 − rϕ)κHn − bS V − θRn}

]
.

(26)

The following values were obtained from system (26):

S 0 = n1, S V 0 = n2, E0 = n3, I0 = n4,

H0 = n5, D0 = n6, R0 = n7.
(27)

S 1 = (−Kn4n1 − vn1 + ψn2 + θn7)
tα1

Γ(α1 + 1)
,

S V1 = (−Kn2n4 + vn1 − ψn2 − bn2)
tα2

Γ(α2 + 1)
,

E1 = (K(n4n1 + n4n2) − σn2)
tα3

Γ(α3 + 1)
,

I1 = (σn2 − γn4)
tα4

Γ(α4 + 1)
,

H1 = (ϕγn4 − κn5)
tα5

Γ(α5 + 1)
,

D1 = (rϕκn5)
tα6

Γ(α6 + 1)
,

R1 = ((1 − ϕ)γn4 + (1 − rϕ)κn5 − bn2 − θn7)
tα7

Γ(α7 + 1)
.

Evaluating the results obtained with the baseline parame-
ter values provided in Table 1, we derive the following series

7
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Figure 1. Effect of fractional order α on S (t).

solution of arbitrary order:

S = 47000 − 5750.919622tα
Γ(α+1) + 622.4360875t2α

Γ(2α+1) ,

S V = 500 + 10277.49791tα
Γ(α+1) − 10189.05057t2α

Γ(2α+1) ,

E = 2003 − 400.021787tα
Γ(α+1) − 31.99000457t2α

Γ(2α+1) ,

I = 416 + 316.80tα
Γ(α+1) +

758.8398328t2α

Γ(2α+1) ,

H = 300 + 41.300tα
Γ(α+1) +

31.638700t2α

Γ(2α+1) ,

D = 150 + 0.400500tα
Γ(α+1) +

0.00055135500t2α

Γ(2α+1) ,

R = 380 − 4484.70400tα
Γ(α+1) − 8904.098090t2α

Γ(2α+1) .

(28)

5.1. Numerical simulations

Experiment I: Fractional order analysis of the model trans-
mission dynamics

The fractional order analysis of the COVID-19 model, de-
picted in Figures 1 to 7, provides crucial insights. These figures
illustrate integral curves of state variables across a range of al-
pha values (0.55–1), unveiling distinct patterns.

In Figure 1, a notable declination of susceptibility is ob-
served as alpha increases (0.55–1), this is attributed to a more
effective vaccination and enhanced disease control measures.
Figure 2 sheds light on the dynamics of vaccination growth.
Vaccination growth is slower at integer orders and acceler-
ates at fractional orders, emphasizing the critical role of pre-
cise timing and comprehensive vaccine coverage in pandemic

Figure 2. Effect of fractional order α on V(t).

Figure 3. Effect of fractional order α on E(t).

management. Figures 3, 4 and 5 draw attention to the expo-
sure–infection–hospital conversion rate. This process occurs
more rapidly at higher α values and more slowly at lower frac-
tional orders, highlighting the significance of alpha in pandemic
progression. In Figure 6, a reduction in the death rate at the
integer level is evident, showcasing the positive influence of
vaccination on lowering mortality. Simultaneously, Figure 7 il-
lustrates a substantial rise in the recovery level of individuals as

8
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Figure 4. Effect of fractional order α on I(t).

Figure 5. Effect of fractional order α on H(t).

the fractional order increases.
Experiment II: Assessment of Transmission Rate in Sus-

ceptible, Vaccinated, and Exposed Populations
The simulation results depicted in Figures 8, 9, 10, 11, 12

and 13 explore the influence of the transmission rate on suscep-
tible, vaccinated, and exposed populations under both integer
and fractional-order scenarios. We analyze how this parame-
ter affects disease spread in classical and fractional-order mod-

Figure 6. Effect of fractional order α on D(t).

Figure 7. Effect of fractional order α on R(t).

els. The results reveal an increase in the recovery rate of indi-
viduals with the growth of α, while human susceptibility tends
to decrease in fractional-order scenarios. Furthermore, the ob-
served trends show a rapid decrease in the exposed population
in classical order, whereas the vaccinated population is lower in
fractional-order transmission rates.

Experiment III: Assessment of the Rate of Vaccine in a Sus-
ceptible Vaccinated Population

9
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Figure 8. Effect of Transmission Rate β on S (t). Classical sense.

Figure 9. Effect of Transmission Rate β on S (t). Fractional sense.

We investigate the decline in immunity post-initial vaccine
doses and the dynamics of first-dose vaccination in our effort
to reduce new COVID-19 cases. Numerical experiments us-
ing our model offer insights into how these factors influence
disease prevalence. The analysis is complemented by Figures
14, 15, 16, and 17, which highlight the vaccine administration
rate and the impact of classical and fractional-order frameworks
on individuals. This assessment enhances our understanding of

Figure 10. Effect of Transmission Rate β on V(t). Classical sense.

Figure 11. Effect of transmission rate β on V(t) fractional sense.

vaccination dynamics underscoring that higher fractional order
value of α and increased vaccination rates will lead to enhanced
disease control.

6. Discussion of results and conclusion

6.1. Discussion of results
The study uses numerical simulations with the Caputo-

derivative operator in a COVID-19 model with fractional orders
10
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Figure 12. Effect of Transmission Rate β on E(t). Classical sense.

Figure 13. Effect of Transmission Rate β on E(t). fractional sense

to model vaccination campaign effectiveness. The simulations
use the Laplace-Adomian decomposition method. The research
validates the Caputo fractional order derivative’s effectiveness
through convergence analysis. The fractional order COVID-19
model, depicted in Figures 1 through 7, shows enhanced adapt-
ability, enabling outcome customization within model compart-
ments.

The manuscript additionally underscores an intriguing ob-

Figure 14. Effect of Vaccination Rate υ on S (t). Classical sense.

Figure 15. Effect of Vaccination Rate υ on S (t). Fractional sense.

servation pertaining to the anticipation of exceedingly low ini-
tial values. It underscores the considerable attention garnered
by the impact of vaccination on COVID-19. Empirical evi-
dence demonstrates that higher vaccination rates correlate with
reduced mortality rates, as evidenced by the graphical represen-
tations in Figures 8 through 17. Vaccines function by bolstering
an individual’s immune system, rendering them less susceptible
to the virus, and mitigating symptom severity. Widespread vac-
cination curtails virus transmission, leading to diminished inci-
dence and fatalities. Furthermore, vaccination initiatives con-
tribute to the establishment of herd immunity, a pivotal factor
in curtailing community-wide virus transmission. Using Maple
18’s Runge-Kutta order four (RK-4) solution, Figure 18 illus-
trates a comparison between the LADM (α = 1) and RK-4 so-
lutions for the susceptible class. The significant level of cor-
relation emphasizes the effectiveness of LADM in solving the
mathematical model.

The transmission rate emerges as a pivotal determinant

11
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Figure 16. Effect of vaccination Rate υ on V(t) classical sense.

Figure 17. Effect of vaccination Rate υ on V(t) fractional sense.

of the COVID-19 model’s mortality rate. Lowering this rate
through measures such as social distancing, mask-wearing, and
improved ventilation is pivotal in reducing the number of cases
and fatalities. In conclusion, vaccination exerts a pivotal in-
fluence on diminishing COVID-19-related fatalities. However,
manipulating the fractional order value yields superior out-
comes, notably decreasing the mortality rate with a lower trans-
mission rate. Varying fractional order α in the model used in

Figure 18. Comparison graph of standard numerical scheme RK−4 and LADM
at fractional order α = 1.

this study captures complex dynamics and non-linear interac-
tions, allowing for the modeling of heterogeneous transmis-
sion patterns, memory effects, and intricate host-pathogen dy-
namics. Despite challenges in parameter estimation, it shows
promise in understanding disease spread and optimizing inter-
ventions, and it aims to enhance the realistic depiction of epi-
demiological systems.

In summary, our findings indicate that employing fractional
order modeling associated with vaccination campaign is linked
to a general pattern of heightened susceptibility, increased rates
of recovery, and a decrease in the overall number of infected
individuals.

6.2. Conclusion

The convergent solution for mathematical models based
on systems of differential equations may be computed more
quickly using the Laplace-Adomian decomposition method,
and this is a crucial point to remember. The unconditionally
convergent Laplace-Adomian Decomposition Method (LADM)
scheme for evaluating the vaccine impact on coronavirus dis-
ease is dynamically consistent, easy to implement, and exhibits
good agreement to analyze the impact of corona viruses for a
long period of time and depicts their dynamical behavior graph-
ically. The positivity and boundedness of the solutions, as well
as the usage of LADM to arrive at the analytical solution, were
all used to quantify the model’s validity. After the model’s as-
sumption regarding the rate of vaccination was taken into ac-
count, these calculations were further supported. Numerical
simulations are run in order to confirm the model’s real-world
behavior.
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