Differential and fuzzy differential sandwich theorems involving quantum calculus operators

I. R. Silviya, K. Muthunagai

School of Advanced Sciences, VIT University, Chennai-600 127, Tamil Nadu, India

Abstract

The principle of subordination is useful in comparing two holomorphic functions when the range of one holomorphic function is a subset of the other and they comply at a single point. The subordination, when spoken in fuzzy set theory, becomes fuzzy subordination as the comparison between two holomorphic functions is made using the fuzzy membership function. In this article, differential and fuzzy differential Subordination, superordination, and sandwich theorems have been discussed for the classes defined by using q-derivative and symmetric q-derivative operators.

DOI: 10.46481/jnsp.2024.1832

Keywords: Differential subordination; Differential superordination; q- calculus operators; Fuzzy differential subordination

Article History :
Received: 09 October 2023
Received in revised form: 07 December 2023
Accepted for publication: 27 December 2023
Published: 19 January 2024

© 2024 The Author(s). Published by the Nigerian Society of Physical Sciences under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Communicated by: B. J. Falaye

1. Introduction

Let \(\mathcal{H}(\mathbb{U}) \) consist of all analytic functions in the open unit disc \(\mathbb{U} := \{z : |z| < 1\} \) and for \(n \in \mathbb{Z}^+, a \in \mathbb{C} \) let \(\mathcal{H}[a,n] = \{f(z) : f(z) = a + \sum_{\nu=0}^{\infty} a_{\nu}z^\nu\} \). Clearly \(\mathcal{H}[a,n] \subset \mathcal{H} \) and \(\mathcal{H}[0,1] = \mathcal{A} \), the class of all normalized analytic functions. According to the principle of subordination, if \(f_1, f_2 \in \mathcal{H} \) with \(f_1(0) = f_2(0) \), then \(f_1 \) is subordinate to \(f_2 \), if \(\exists \) a Schwarz function \(w_1 \ni w_1(0) = 0, |w_1(z)| < 1 \) and \(f_1(z) = f_2(w_1(z)) \), \(\forall z \in \mathbb{U} \) and we write \(f_1 \prec f_2 \).

Let \(h_1 \in \mathcal{S} \), a subclass of \(\mathcal{A} \) that comprises of all univalent functions and let \(\phi : \mathbb{C}^2 \times \mathbb{U} \rightarrow \mathbb{C} \). If \(p_1 \) and \(\phi(p_1(z),zp_1'(z)); z \in \mathbb{U} \) and if \(p_1 \) satisfies the (first-order) differential superordination

\[
h_1(z) < \phi(p_1(z),zp_1'(z)); z \in \mathbb{U}, \tag{1}
\]

then \(p_1 \) is called an integral of the differential superordination in (1). An analytic function \(q_1 \) is called subordinant of the integrals of the differential superordination if \(q_1 < p_1 \). A subordinant \(\tilde{q}_1 \) with \(q_1 < \tilde{q}_1 \) for all subordinants of \(q_1 \) of (1) is said to be the best subordinant.

fuzzy di
volving integral operators can be found in the work of El-Deeb[8]. The renowned theory of differential subordination was developed by Miller and Mocanu[9]. They introduced the concept of differential subordination and differential superordination[10].

The results of Miller and Mocanu motivated Bulboaca[11,12] to study the first-order differential superordination for certain classes and superordination preserving integral operators. Thus, the topics subordination and superordination became the focal point for many researchers. The study of quantum calculus has been captivating the interest of researchers since 1707. Though Leonard Euler and Carl Gustav Jacobi laid foundation to the study of q-calculus, it was a publication of Albert Einstein that made q-calculus popular because of its applications to quantum Mechanics after 1905. Unlike conventional calculus, q-calculus does not require continuity. In quantum calculus, the notion of limits is not considered.

The q-derivatives and q-integrals were first introduced by Jackson[13,14]. The contributions of Srivastava to q-calculus for analytic functions and also to q-hypergeometric functions in function theory were remarkable. All his contributions were mentioned in his book[15]. Ismail et al.[16] have studied about starlike functions using q-calculus. Abelman et al.[17] have made use of fractional q-calculus operators on a class of non-Bazilevic functions to study the subordination conditions. A study on starlike functions in q-calculus and an extension of it to q-starlikeness for particular subclasses of starlike functions have been carried out by Agrawal and Sahoo[18]. For more details one can refer to Refs.[19–22].

On the other hand, Zadeh[23] introduced the concept of fuzzy in 1965. The notions of fuzzy subordination and fuzzy differential subordination were initially introduced by Oros and Oros[24–26]. This new initiative associates fuzzy set theory with geometric function theory. The duplet notion of fuzzy differential superordination was studied in Ref. [27].

Wanas and Majeed[28] have proved certain results on fuzzy differential subordination of analytic functions using generalized differential operator. Fuzzy differential subordinations involving integral operators can be found in the work of El-Deeb and Lupas[29]. Also El-Deeb and Oros[30] have studied fuzzy differential subordinations using linear operator. Lupas and Catas[31] have obtained the results on fuzzy subordination for analytic functions associated with the Atangana-Baleanu fractional integral of Bessel functions. For further study, see Refs.[32–34].

For results on a subclass of analytic and bi-univalent functions, using the symmetric q-derivative operator one can refer to Refs. [35–39]. The theory of symmetric q-calculus has its applications in various fields, specifically in fractional calculus and quantum physics. The importance of symmetric q-calculus in areas like quantum mechanics has been discussed in Ref. [40,41].

Following are some of the q-analogues in complex (or real) analysis which we need for our work:

Definition 1. [13] For $0 < q < 1$, the Jackson’s q-derivative operator of a function is defined as

$$(D_qf)(z) = \begin{cases} \frac{f(zq)-f(z)}{(1-q)z} & \text{for } z \neq 0 \\ f'(0) & \text{for } z = 0, \end{cases}$$

where $D_qf(0) = f_1'(0)$, if $f_1'(z)$ exists.

It is to be noted that $(D_qf)(z) = 1 + \sum_{i=2}^{\infty} [t_qa_z z^{i-1}]$, where $|t_q| = \frac{1-q}{1-q'}$.

Definition 2. [41] The symmetric q-derivative operator is defined by $(D_qf)(z) = \frac{f(qz)-f(z)}{(q-1)z}$; if $z \neq 0$ and $(D_qf)(0) = f_1'(0)$ provided $f_1'(0)$ exists.

It is to be observed that $(\tilde{D}_qf)(z) = 1 + \sum_{i=2}^{\infty} [t_qa_z z^{i-1}]$, where $|t_q| = \frac{q-q^{-1}}{q-q'}$.

Definition 3. [23] A pair (K,F_K), with $F_K : Y \to [0,1], K = \{x \in Y : 0 < F_K(x) \leq 1\}$ is said to be fuzzy subset of Y. F_K is called the membership function of (K,F_K).

Definition 4. [24] Consider two functions $f_1, g_1 \in H(D), D \subseteq \mathbb{C}$ and $z_0 \in D$ being a fixed point. f_1 is said to be fuzzy subordinate to g_1 (i.e) $f_1 \prec_F g_1$ otherwise $f_1(z) \prec_F g_1(z)$ if the following conditions are satisfied.

$$f_1(z_0) := g_1(z_0), \quad (2)$$

$$f_{g_1(D)}(f_1(z)) \leq F_{g_1(D)}(g_1(z)), \quad (z \in D), \quad (3)$$

where

$$f_1(D) = \text{supp}(D, f_1(D)) = \left\{ z \in \mathbb{C} : 0 < F_{f_1}(D)(z) \leq 1 \right\},$$

$$g_1(D) = \text{supp}(D, g_1(D)) = \left\{ z \in \mathbb{C} : 0 < F_{g_1}(D)(z) \leq 1 \right\}.$$
Definition 7. [42] Denote by Q, the set of all functions f_1 that are analytic and injective on $\mathbb{U} - E(f_1)$, where $E(f_1) = \{ \zeta \in \partial U : \lim_{z \to \infty} f_1(z) = \infty \} \neq 0$, $\zeta \in \partial U - E(f_1)$.

In this article, two classes of functions have been defined by using Quantum Calculus operators and Differential and Fuzzy Differential Sandwich theorems have been discussed.

2. Subordination results

In this section we have defined two classes $R(q)$ and $\tilde{R}(q)$ and have proved the subordination, superordination and sandwich theorems for the classes defined.

Definition 8. The function $f_1 \in \mathcal{A}$ is said to be in the class $R(q)$, if

$$\Re \left[1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)} \right] > 0, \quad z \in \mathbb{U}. $$

Definition 9. The function $f_1 \in \mathcal{A}$ is said to be in the class $\tilde{R}(q)$, if

$$\Re \left[1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)} \right] > 0, \quad z \in \mathbb{U}. $$

Theorem 2.1. Let $q_1(z)$ be analytic and univalent with $q_1(0) = 1$ such that $\frac{zq_1''(z)}{q_1(z)}$ is starlike univalent in \mathbb{U} and $\alpha_j \in \mathbb{C}$ ($j = 1, 2, 3$), $\alpha_3 \neq 0$. Let $q_1(z)$ satisfy

$$\Re \left[\frac{\alpha_2}{\alpha_3} q_1(z) + 1 + \frac{zq_1''(z)}{q_1'(z)} - \frac{zq_1'(z)}{q_1(z)} \right] > 0. $$

If $f_1 \in \mathcal{A}$ satisfies

$$\Delta^{(\alpha_j)}(f_1) = \Delta(f_1, \alpha_1, \alpha_2, \alpha_3) < \alpha_1 + \alpha_2 q_1(z) + \alpha_3 \frac{zq_1'(z)}{q_1(z)}, $$

where

$$\Delta^{(\alpha_j)}(f_1) = \alpha_1 + \alpha_2 \left[1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)} \right] + \alpha_3 \left[\frac{z(D_q f_1)'(z)}{(D_q f_1)(z) + z(D_q f_1)'(z)} + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z) + z(D_q f_1)'(z)} \right] - \frac{[z(D_q f_1)'(z)]^2}{(D_q f_1)(z)((D_q f_1)(z) + z(D_q f_1)'(z))} \right], $$

then

$$1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)} < q_1(z) $$

and q_1 is the best dominant.

Proof

$$p_1(z) := 1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)} \quad (z \in \mathbb{U}).$$

Here $p_1(0) = 1$ and p_1 is analytic in \mathbb{U}. Using Eq. (10)

$$\alpha_1 + \alpha_2 \left[1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)} \right] + \alpha_3 \left[\frac{z(D_q f_1)'(z)}{(D_q f_1)(z) + z(D_q f_1)'(z)} \right] + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z) + z(D_q f_1)'(z)} - \frac{[z(D_q f_1)'(z)]^2}{(D_q f_1)(z)((D_q f_1)(z) + z(D_q f_1)'(z))} \right] = \alpha_1 + \alpha_2 p_1(z) + \alpha_3 \frac{zp_1'(z)}{p_1(z)}. $$

By using Eq. (11) in Eq. (7), we have

$$\alpha_1 + \alpha_2 p_1(z) + \alpha_3 \frac{zp_1'(z)}{p_1(z)} < \alpha_1 + \alpha_2 q_1(z) + \alpha_3 \frac{zq_1'(z)}{q_1(z)}. $$

By setting $\theta(\omega) := \alpha_1 + \alpha_2 \omega$ and $\phi(\omega) := \frac{\alpha_3}{\omega}$, we noticed that $\theta(\omega)$ and $\phi(\omega)$ are analytic in $\mathbb{C} - \{0\}$ and $\phi(\omega) \neq 0$.

Let

$$Q_1(z) := zq_1'(z) \phi(q_1(z)) = \alpha_3 \frac{zq_1'(z)}{q_1(z)}.$$

and

$$h_1(z) := \theta(q_1(z)) + Q_1(z) = \alpha_1 + \alpha_2 p_1(z) + \alpha_3 \frac{zp_1'(z)}{p_1(z)}.$$

Since $Q_1(z)$ is starlike univalent in \mathbb{U} with

$$\Re \left\{ \frac{zq_1'(z)}{q_1(z)} \right\} = \Re \left\{ \frac{\alpha_2}{\alpha_3} q_1(z) + 1 + \frac{zq_1''(z)}{q_1'(z)} - \frac{zq_1'(z)}{q_1(z)} \right\} > 0,$$

the results follow by the application of [42]. Theorem 3.4, p.132] and by the assumption of Theorem 2.1.

If $q_1(z) = \frac{1+Az}{1+Bz}$, $(-1 \leq B < A \leq 1)$ in the previous result, we get the following

Corollary 1. Let $\alpha_j \in \mathbb{C}$ ($j = 1, 2, 3$), $\alpha_3 \neq 0$, q_1 be univalent with $q_1(0) = 1$, and (6) be true. If $f_1 \in \mathcal{A}$ and

$$\Delta^{(\alpha_j)}(f_1) < \alpha_1 + \alpha_2 \left[\frac{1+Az}{1+Bz} \right] + \alpha_3 \left[\frac{(A-B)z}{(1+Az)(1+Bz)} \right],$$

then

$$1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)} < \frac{1+Az}{1+Bz}$$

and $\frac{1+Az}{1+Bz}$ is the best dominant.

Assigning $\alpha_1 = 1; \alpha_2 = 0$ in the previous result, we obtain the following corollary.

Corollary 2. Let $\alpha_j \in \mathbb{C}$ ($j = 1, 2, 3$), $\alpha_3 \neq 0$, q_1 be univalent with $q_1(0) = 1$, and

$$\Re \left\{ 1 + \frac{zq_1'(z)}{q_1(z)} - \frac{zq_1'(z)}{q_1(z)} \right\} > 0.$$

If $f_1 \in \mathcal{A}$ and

$$1 + \alpha_3 \left[\frac{zq_1'(z)}{(D_q f_1)(z) + z(D_q f_1)'(z)} + \frac{zq_1'(z)}{(D_q f_1)(z) + z(D_q f_1)'(z)} \right] - \frac{[z(D_q f_1)'(z)]^2}{(D_q f_1)(z)((D_q f_1)(z) + z(D_q f_1)'(z))} < 1 + \alpha_3 \left[\frac{(A-B)z}{(1+Az)(1+Bz)} \right],$$

then

$$1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)} < \frac{1+Az}{1+Bz}$$

and the best dominant is $\frac{1+Az}{1+Bz}$.
Corollary 3. Let q_1 be univalent with $q_1(0) = 1$, $\alpha_j \in \mathbb{C}$ ($j = 1, 2, 3$) ($\alpha_3 \neq 0$) and let (6) hold good. If $f_1 \in \mathcal{A}$ and
\[
\Delta^{(\alpha_3)}(f_1) < \alpha_1 + \alpha_2 \left(\frac{1 + 4\alpha_3}{1 + \alpha_3} \right) < \alpha_3 \left(\frac{2\alpha_3}{1 - \alpha_3}\right),
\]then
\[
1 + \frac{z(D_{f_1})y(z)}{(D_{f_1})x(z)} < \left(\frac{1 + 4\alpha_3}{1 + \alpha_3} \right) \quad \text{is the best dominant.}
\]

2.1. Superordination Results

Theorem 2.2. Consider $\alpha_j \in \mathbb{C}$ ($j = 1, 2, 3$), ($\alpha_3 \neq 0$) and $q_1 \in \mathcal{S}$ with $q_1(0) = 1 \equiv \frac{zq_j(z)}{q_1(z)}$ is starlike univalent and assume that
\[
\text{Re}\left\{\frac{\alpha_2}{\alpha_3} q_1(z)\right\} \geq 0.
\]
If $f_1 \in \mathcal{A}$, $\frac{z(D_{f_1})y(z)}{(D_{f_1})x(z)} \in \mathcal{H}[1, 1] \cap Q$, $\Delta^{(\alpha_3)}(f_1)$ is univalent in \mathbb{U} and
\[
\alpha_1 + \alpha_2 q_1(z) + \alpha_3 \frac{zq_j(z)}{q_1(z)} < \Delta^{(\alpha_3)}(f_1),
\]where, $\Delta^{(\alpha_3)}(f_1)$, is given by Eq. (8), then
\[
q_1(z) < 1 + \frac{z(D_{f_1})y(z)}{(D_{f_1})x(z)},
\]
and q_1 represents the best subordinant.

Proof: Define
\[
p_1(z) := 1 + \frac{z(D_{f_1})y(z)}{(D_{f_1})x(z)} (z \in \mathbb{U}).
\]
By simple computation, we get
\[
\Delta^{(\alpha_3)}(f_1) = \alpha_1 + \alpha_2 p_1(z) + \alpha_3 \frac{zq_j(z)}{p_1(z)}.
\]
Then
\[
\alpha_1 + \alpha_2 q_1(z) + \alpha_3 \frac{zq_j(z)}{q_1(z)} < \alpha_1 + \alpha_2 p_1(z) + \alpha_3 \frac{zq_j(z)}{p_1(z)}.
\]
By setting $v(\omega) = \alpha_1 + \alpha_2 \omega$ and $\phi(\omega) = \frac{\alpha_2}{\alpha_3}$, it is easily observed that $v(\omega)$ is analytic in \mathbb{D}. Also $\phi(\omega)$ is analytic in $\mathbb{D} - \{0\}$ and $\phi(\omega) \neq 0$.

Using q_1 is convex univalent function in \mathbb{U} and $\alpha_3 \neq 0$, we have,
\[
\text{Re}\left\{\frac{v'(\omega)}{\phi(q_1(z))}\right\} = \text{Re}\left\{\frac{\alpha_2}{\alpha_3} q_1(z)\right\} > 0.
\]

We get Theorem 2.2 by applying [10] (Theorem 8, p. 822). The following result is obtained when we replace $q_1(z)$ by $\frac{1 + A_3}{1 + B_3}$, $(-1 \leq B < A \leq 1)$ in Theorem 2.2.

Corollary 4. Consider $\alpha_j \in \mathbb{C}$ ($j = 1, 2, 3$), ($\alpha_3 \neq 0$), q_1 a univalent function with $q_1(0) = 1$, and (13) holds true. If $f_1 \in \mathcal{A}$ and
\[
\alpha_1 + \alpha_3 \frac{1 + A_3}{1 + B_3} + \alpha_3 \frac{(A - B_3)(1 + A_3) + (1 + B_3)}{(1 + A_3)(1 + B_3)} < \Delta^{(\alpha_3)}(f_1),
\]then
\[
\frac{1 + A_3}{1 + B_3} < 1 + \frac{z(D_{f_1})y(z)}{(D_{f_1})x(z)}
\]
and the best subordinant is $\frac{1 + A_3}{1 + B_3}$.

2.2. Sandwich Theorems

Theorem 2.3. Consider two univalent functions q_2 and q_3 in \mathbb{U} and $\alpha_j \in \mathbb{C}$ ($j = 1, 2, 3$), ($\alpha_3 \neq 0$). Let q_2 satisfy (6), q_3 satisfy (13), $f_1 \in \mathcal{A}$, \((1 + \frac{z(D_{f_1})y(z)}{(D_{f_1})x(z)}(1 + \frac{zq_j(z)}{q_1(z)}) \in \mathcal{H}[1, 1] \cap Q \text{ and } \Delta^{(\alpha_3)}(f_1) by (8) be univalent in \mathbb{U} satisfying
\[
\alpha_1 + \alpha_2 q_2(z) + \alpha_3 \frac{zq_j(z)}{q_1(z)} < \Delta^{(\alpha_3)}(f_1) < \alpha_1 + \alpha_2 q_3(z) + \alpha_3 \frac{zq_j(z)}{q_1(z)},
\]
then
\[
q_2(z) = 1 + \frac{z(D_{f_1})y(z)}{(D_{f_1})x(z)} < q_3(z)
\]
and q_2 and q_3 seem to be the best subordinant and dominant.

3. Fuzzy Differential Subordination Results

Theorem 3.1. Let $\alpha_j \in \mathbb{C}(j = 1, 2, 3)$, ($\alpha_3 \neq 0$) and $q_1(z) be analytic and univalent with $q_1(0) = 1$. Assume that $\frac{zq_j(z)}{q_1(z)}$ is starlike univalent in \mathbb{U}. Consider
\[
\text{Re}\left\{\frac{\alpha_2}{\alpha_3} q_1(z) + 1 + \frac{zq_j(z)}{q_1(z)} - \frac{zq_j(z)}{q_1(z)}\right\} > 0 (z \in \mathbb{U}),
\]
and $\Delta^{(\alpha_3)}$ is defined by (8). If q_1 satisfies the following fuzzy subordination
\[
F^{\Delta^{(\alpha_3)}(f_1)} \leq F_{q_1(z)}(\alpha_1 + \alpha_2 q_1(z) + \alpha_3 \frac{zq_j(z)}{q_1(z)})
\]
for $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{C}, \alpha_3 \neq 0$, then
\[
F\left(\frac{1 + \frac{zq_j(z)}{q_1(z)}}{(D_{q_1}(f(z))}\right) \left(1 + \frac{z(D_{f_1})y(z)}{(D_{f_1})x(z)}\right) \leq F_{q_1(z)}(z) \in \mathbb{U},
\]
and q_1 is the fuzzy best dominant.

Proof: Let
\[
p_1(z) := 1 + \frac{zq_j(z)}{(D_{f_1})x(z)}, \quad z \neq 0.
\]
After computation, we have
\[
\alpha_1 + \alpha_2 p_1(z) + \alpha_3 \frac{zq_j(z)}{p_1(z)} = \Delta^{(\alpha_3)}(f_1).
\]
where $\Delta^{(\alpha_3)}(f_1)$ is given by (8). By using the above inequality into (17), we have
\[
F_{q_1(z)}(\alpha_1 + \alpha_2 p_1(z) + \alpha_3 \frac{zq_j(z)}{p_1(z)}) \leq F_{q_1(z)}(\alpha_1 + \alpha_2 q_1(z) + \alpha_3 \frac{zq_j(z)}{q_1(z)}).
\]
Considering $\theta(\omega) := \alpha_1 + \alpha_2 \omega$; $\phi(\omega) := \frac{\alpha_2}{\alpha_3}$, it is noticed that $\theta(\omega)$ and $\phi(\omega)$ in $\mathbb{C} - \{0\}$ are analytic & $\phi(\omega)$ not equal to zero. Consider
\[
Q_1(z) := zq_j(z)\phi(q_1(z)) = \alpha_3 \frac{zq_j(z)}{q_1(z)}
\]
and
\(h_1(z) := \theta(q_1(z)) + Q_1(z) = \alpha_1 + \alpha_2 q_1(z) + zq_1'(z) \).

Since \(Q_1 \) is starlike univalent defined in \(U \) with

\[
\text{Re} \left[\frac{zq_1'(z)}{q_1(z)} \right] = \text{Re} \left[\frac{\alpha_2}{\alpha_3} q_1(z) + 1 + \frac{zq_1'(z)}{q_1'(z)} - \frac{zq_1''(z)}{q_1(z)} \right] > 0. \tag{21}
\]

By using proposition 2.1 of Ref. [43], we get \(F_{p_1(U)} p_1(z) \leq F_{q_1(U)} q_1(z) \) and using (19) we obtain

\[
F \left(\frac{zDq f_1(y(z))}{(Dq f_1(z))} \right) \leq F_{q_1(U)} q_1(z),
\]

and \(q_1 \) indicates the fuzzy best dominant.

Corollary 5. Consider \(\alpha_j \in \mathbb{C} \) \((j = 1, 2, 3) \) \((\alpha_3 \neq 0)\). Assume that (16) holds. If \(F_{\Delta^{\alpha_j_1}} \leq F_{q_1(U)} \left(\alpha_1 + \alpha_2 \left(\frac{1 + A_z}{1 + B_z} \right) + \alpha_3 \frac{(A - B_z)}{(1 + A_z)(1 + B_z)} \right) \), then

\[
F \left(\frac{zDq f_1(y(z))}{(Dq f_1(z))} \right) \leq F_{q_1(U)} \left(1 + \frac{zDq f_1(y(z))}{(Dq f_1(z))} \right), \quad z \in U
\]

and \(\frac{1 + A_z}{1 + B_z} \) represents the best fuzzy dominant.

Proof: In Theorem 3.1, assign \(q_1(z) = \frac{1 + A_z}{1 + B_z}, -1 \leq B < A \leq 1 \) to obtain the above corollary.

Theorem 3.2. Let \(q_1(z) \) be analytic and univalent in \(U \) such that \(q_1(0) \neq 0 \) and \(zq_1'(z) \) defines a starlike univalent in \(U \). Assume that

\[
\text{Re} \left(\frac{\alpha_2}{\alpha_3} q_1(z) \right) > 0. \tag{22}
\]

Let \(\Delta^{(\alpha_j_1)}(f_1) \in U \) be univalent and \(1 + \frac{zDq f_1(y(z))}{(Dq f_1(z))} \in \mathcal{H}[1, 1] \cap Q \) where \(\Delta^{(\alpha_j_1)}(f_1) \) has been introduced in (8), then

\[
F_{q_1(U)} \left(\alpha_1 + \alpha_2 q_1(z) + zq_1'(z) \right) \leq F \left(\frac{zDq f_1(y(z))}{(Dq f_1(z))} \right) \left(1 + \frac{zDq f_1(y(z))}{(Dq f_1(z))} \right)
\]

implies

\[
F_{q_1(U)} q_1(z) \leq F \left(\frac{zDq f_1(y(z))}{(Dq f_1(z))} \right) \left(1 + \frac{zDq f_1(y(z))}{(Dq f_1(z))} \right)
\]

and \(q_1 \) represents the best fuzzy subordinant.

Proof: \(p_1(z) = 1 + \frac{zDq f_1(y(z))}{(Dq f_1(z))}; z \in U \). Define \(v(\omega) = \alpha_1 + \alpha_2 \omega \) and \(\phi(\omega) = \frac{\alpha_1}{\alpha_3}. \) It is observed that \(v(\omega) \) is analytic in \(\mathbb{C} \), \(\phi(\omega) \) is analytic in \(\mathbb{C} - \{0\} \) and \(\phi(\omega) \neq 0 \).

Under these conditions \(\frac{v'(q_1(z))}{\phi(q_1(z))} = \frac{\alpha_2}{\alpha_3} q_1(z) \implies \text{Re} \left(\frac{\phi(q_1(z))}{\phi(q_1(z))} \right) = \text{Re} \left(\frac{\alpha_2}{\alpha_3} q_1(z) \right) > 0 \)

and we obtain,

\[
F_{q_1(U)} \left(\alpha_1 + \alpha_2 q_1(z) + zq_1'(z) \right) \leq F_{p_1(U)} \left(\alpha_1 + \alpha_2 p_1(z) + zq_1'(z) \right).
\]

Applying Theorem 2.15 of Ref. [27], the result is obtained.

Theorem 3.3. Let \(\alpha_j \in \mathbb{C} \) \((j = 1, 2, 3) \); \(\alpha_3 \neq 0 \), \(q_2 \) and \(q_3 \) be univalent in \(U \), \(q_2 \) satisfy (16) and \(q_3 \) satisfy (22). Let \(f_1 \in A \), \(1 + \frac{zDq f_1(y(z))}{(Dq f_1(z))} \in \mathcal{H}[1, 1] \cap Q \) and \(\Delta^{(\alpha_j_1)}(f_1) \) given by (8) be univalent in \(U \) satisfying

\[
F_{q_2(U)} \left(\alpha_1 + \alpha_2 q_2(z) + zq_2'(z) \right) \leq F_{p_1(U)} \left(\alpha_1 + \alpha_2 p_1(z) + zq_1'(z) \right).
\]

Then

\[
F_{q_2(U)} q_2(z) \leq F \left(\frac{zDq f_1(y(z))}{(Dq f_1(z))} \right) \left(1 + \frac{zDq f_1(y(z))}{(Dq f_1(z))} \right) \leq F_{q_1(U)} q_3(z),
\]

and \(q_2 \) and \(q_3 \) are fuzzy best subordinant and best fuzzy dominant.

To get the following result choose \(q_2(z) = \frac{1 + A_{1z}}{1 + B_{1z}} \) and \(q_3(z) = \frac{1 + A_{2z}}{1 + B_{2z}} \); \(-1 \leq B_2 < B_1 < A_1 < A_2 \leq 1 \) in Theorem 3.3.

Corollary 6. Let \(\alpha_j \in \mathbb{C} \) \((j = 1, 2, 3) \); \(\alpha_j \neq 0 \). Assume that (16) and (22) hold. If \(1 + \frac{zDq f_1(y(z))}{(Dq f_1(z))} \in \mathcal{H}[1, 1] \cap Q \) and

\[
F_{q_1(U)} \left(\alpha_1 + \alpha_2 \left(\frac{1 + A_{1z}}{1 + B_{1z}} \right) + \alpha_3 \frac{(A_{1z} - B_{1z})}{(1 + A_{1z})(1 + B_{1z})} \right) \leq F_{\Delta^{(\alpha_j_1)}} \leq F_{q_2(U)} \left(\alpha_1 + \alpha_2 \left(\frac{1 + A_{2z}}{1 + B_{2z}} \right) + \alpha_3 \frac{(A_{2z} - B_{2z})}{(1 + A_{2z})(1 + B_{2z})} \right),
\]

where \(\Delta^{(\alpha_j_1)}(f_1) \) has been introduced in (8), then

\[
F_{q_1(U)} \left(1 + \frac{zDq f_1(y(z))}{(Dq f_1(z))} \right) \leq F_{q_2(U)} \left(1 + \frac{zDq f_1(y(z))}{(Dq f_1(z))} \right) \leq F_{q_1(U)} \left(\frac{1 + A_{1z}}{1 + B_{1z}} \right),
\]

and \(\frac{1 + A_{1z}}{1 + B_{1z}} \) and \(\frac{1 + A_{2z}}{1 + B_{2z}} \) are the best fuzzy subordinant and best fuzzy dominant respectively.

4. **Subordination results for Symmetric q-derivative operator.**

Theorem 4.1. Let \(q_1(z) \) be analytic and univalent with \(q_1(0) = 1 \) such that \(\frac{zq_1'(z)}{q_1(z)} \) is starlike univalent in \(U \) and \(\alpha_j \in \mathbb{C} \) \((j = 1, 2, 3) \); \(\alpha_3 \neq 0 \). Let \(q_1(z) \) satisfy

\[
\text{Re} \left(\frac{\alpha_2}{\alpha_3} q_1(z) + 1 + \frac{zq_1'(z)}{q_1(z)} - zq_1'(z) \right) > 0, \quad (z \in U). \tag{23}
\]

If \(f_1 \in A \) satisfies

\[
\Delta^{(\alpha_j_1)}(f_1) = \Delta(f_1, \alpha_1, \alpha_2, \alpha_3) < \alpha_1 + \alpha_2 q_1(z) + z \frac{zq_1'(z)}{q_1(z)} - zq_1'(z), \tag{24}
\]

where \(\Delta^{(\alpha_j_1)}(f_1) \) is defined by (8) then
and \(q_1 \) is the best dominant.

Proof: Let

\[
p_1(z) := 1 + \frac{z(\tilde{D}_q f_1)'(z)}{(\tilde{D}_q f_1)(z)}, \quad (z \in \mathbb{U}).
\]

Then the function \(p_1 \) is analytic in \(\mathbb{U} \) and \(p_1(0) = 1 \). By using Eq. (25), we get

\[
\alpha_1 + \alpha_2 p_1(z) + \alpha_3 \frac{z p_1'(z)}{p_1(z)} = \alpha_1 + \alpha_2 \left[1 + \frac{z(\tilde{D}_q f_1)'(z)}{(\tilde{D}_q f_1)(z)} \right] + \alpha_3 \frac{z^2(\tilde{D}_q f_1)'(z)}{(\tilde{D}_q f_1)(z) + z(\tilde{D}_q f_1)'(z))} - \frac{[z(\tilde{D}_q f_1)'(z)]^2}{(\tilde{D}_q f_1)(z)(\tilde{D}_q f_1)(z) + z(\tilde{D}_q f_1)'(z))}
\]

By using (26) in (24), we have,

\[
\alpha_1 + \alpha_2 p_1(z) + \alpha_3 \frac{z p_1'(z)}{p_1(z)} = \alpha_1 + \alpha_2 q_1(z) + \alpha_3 \frac{z q_1'(z)}{q_1(z)}.
\]\n
Taking \(\theta(\omega) = \alpha_1 + \alpha_2 \omega \) and \(\phi(\omega) := \frac{\alpha_3}{\omega} \), we note that \(\theta(\omega) \) and \(\phi(\omega) \) are analytic in \(\mathbb{C} - \{0\} \) and \(\phi(\omega) \neq 0 \). We also notice that

\[
Q_1(z) := q_1(z) \phi(q_1(z)) = \alpha_3 \frac{z q_1'(z)}{q_1(z)}.
\]

and

\[
h_1(z) := \theta(q_1(z)) + Q_1(z) = \alpha_1 + \alpha_2 p_1(z) + \alpha_3 \frac{z p_1'(z)}{p_1(z)}.
\]

Clearly, \(Q_1(z) \) is univalent starlike in \(\mathbb{U} \) and

\[
\text{Re}\left(\frac{z q_1'(z)}{q_1(z)} \right) = \text{Re}\left[\frac{\alpha_3}{\alpha_3} q_1(z) + 1 + \frac{z q_1'(z)}{q_1(z)} - \frac{z q_1'(z)}{q_1(z)} \right] > 0.
\]

By the assertion of the Theorem 4.1, the result follows by the application of [Ref. [42] Theorem 3.4h, p. 132]. By taking \(\alpha_1 = 0 \) and \(\alpha_2 = 1 \) in above result, we obtain the following corollary.

Theorem 4.2. Let \(\alpha_j \in \mathbb{C} (j = 1, 2, 3), (\alpha_3 \neq 0) \), \(q_1 \) be univalent with \(q_1(0) = 1 \) such that \(\frac{z q_1'(z)}{q_1(z)} \) is starlike univalent and assume that

\[
\text{Re}\left(1 + \frac{\alpha_2}{\alpha_3} q_1(z) \right) \geq 0.
\]

If \(f_1 \in \mathcal{A}; \left(1 + \frac{z(\tilde{D}_q f_1)'(z)}{(\tilde{D}_q f_1)(z)} \right) \in \mathcal{H}[1, 1] \cap Q, \Delta^{(\alpha_3)}(f_1) \) be univalent in \(\mathbb{U} \) and

\[
\Delta^{(\alpha_3)}(f_1) < \Delta^{(\alpha_3)}(f_1),
\]

where \(\Delta^{(\alpha_3)}(f_1) \) is defined in (8), then

\[
q_1(z) < \left(1 + \frac{z(\tilde{D}_q f_1)'(z)}{(\tilde{D}_q f_1)(z)} \right) \tag{29}
\]

and \(q_1 \) said to be the best subordinant.

Proof: Let

\[
p_1(z) = \left(1 + \frac{z(\tilde{D}_q f_1)'(z)}{(\tilde{D}_q f_1)(z)} \right) \quad z \in \mathbb{U}; \quad z \neq 0,
\]

with \(q_1(z) \) be analytic in \(\mathbb{C} \) and \(\phi(\omega) = \frac{\alpha_3}{\omega} \) be analytic in \(\mathbb{C} - \{0\} \) and \(\phi(\omega) \neq 0 \). Under these conditions \(\frac{z q_1'(z)}{q_1(z)} \triangleq \frac{\alpha_3}{\alpha_3} q_1(z) \)

\[
\Rightarrow \text{Re}\left(\frac{z q_1'(z)}{q_1(z)} \right) = \text{Re}\left(\frac{\alpha_3}{\alpha_3} q_1(z) \right) > 0,
\]

and we obtain,

\[
\alpha_1 + \alpha_2 q_1(z) + \alpha_3 \frac{z q_1'(z)}{q_1(z)} \leq \alpha_1 + \alpha_2 p_1(z) + \alpha_3 \frac{z p_1'(z)}{p_1(z)}.
\]

Applying [Ref. [10], Theorem 8, p. 822], we obtain, \(q_1(z) < p_1(z) \) and \(q_1 \) is the best subordinant. Replacing \(q_1(z) \) by \(\frac{1 + \alpha_2}{1 + \alpha_2} \), \(-1 \leq B < A \leq 1 \) in Theorem 4.2, the following result is obtained:

Corollary 7. Consider \(\alpha_j \in \mathbb{C} (j = 1, 2, 3), (\alpha_3 \neq 0) \) and let \(q_1 \) be univalent with \(q_1(0) = 1 \), and (28) be true. If \(f_1 \in \mathcal{A} \) and

\[
\alpha_1 + \alpha_2 \frac{1 + \alpha_2}{1 + \alpha_2} + \alpha_3 \frac{(A-B)(1+\alpha_2)}{1+\alpha_2} < \Delta^{(\alpha_3)}(f_1),
\]

then

\[
\frac{1 + \alpha_2}{1 + \alpha_2} < 1 + \frac{z(\tilde{D}_q f_1)'(z)}{(\tilde{D}_q f_1)(z)}
\]

and \(\frac{1 + \alpha_2}{1 + \alpha_2} \) represents the best subordinant.

Sandwich theorem is obtained by using Theorems 4.1 and 4.2.

Theorem 4.3. Let \(q_2 \) and \(q_3 \) be univalent in \(\mathbb{U} \), \(\alpha_j \in \mathbb{C} (j = 1, 2, 3), (\alpha_3 \neq 0) \), \(q_2 \) satisfy (22) and \(q_3 \) satisfy (28). Let \(f_1 \in \mathcal{A} \), \(\left(1 + \frac{z(\tilde{D}_q f_1)'(z)}{(\tilde{D}_q f_1)(z)} \right) \in \mathcal{H}[1, 1] \cap Q \) and \(\Delta^{(\alpha_3)}(f_1) \) defined by (8) be univalent in \(\mathbb{U} \) satisfying

\[
\alpha_1 + \alpha_2 q_2(z) + \alpha_3 \frac{z q_2'(z)}{q_2(z)} < \Delta^{(\alpha_3)}(f_1) < \alpha_1 + \alpha_2 q_3(z) + \alpha_3 \frac{z q_3'(z)}{q_3(z)},
\]

then

\[
q_2(z) < 1 + \frac{z(\tilde{D}_q f_1)'(z)}{(\tilde{D}_q f_1)(z)} < q_3(z),
\]

and the best subordinant and best dominant are \(q_2 \) and \(q_3 \).

5. Fuzzy Differential Subordination for Symmetric q-derivative operator

Theorem 5.1. Let \(q_1(z) \) be an analytic and univalent function with \(q_1(z) \) such that \(\frac{z q_1'(z)}{q_1(z)} \in \mathbb{U} \) is starlike univalent and \(\alpha_j \in \mathbb{C} (j = 1, 2, 3), (\alpha_3 \neq 0) \). Let

\[
\text{Re}\left[\frac{\alpha_2}{\alpha_3} q_1(z) + 1 + \frac{z q_1'(z)}{q_1(z)} - \frac{z q_1'(z)}{q_1(z)} \right] > 0, \quad (z \in \mathbb{U}), \tag{30}
\]

|
and $\Delta^{(a_j)}_1(f_1)$ be defined as in Eq. (8). If q_1 satisfies the following fuzzy subordination
\begin{equation}
F_{\Delta^{(a_j)}_1(f_1)} \leq F_{q_1(U)}\left(\alpha_1 + \alpha_2 q_1(z) + \alpha_3 \frac{z q''_1(z)}{q_1(z)}\right), \tag{31}
\end{equation}
where $(\alpha_1, \alpha_2, \alpha_3) \in \mathbb{C}$ and $(\alpha_3 \neq 0)$, then
\begin{equation}
F\left(1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)}\right) \leq F_{q_1(U)} q_1(z) \quad z \in \mathbb{U}, \tag{32}
\end{equation}
and q_1 represents the best fuzzy dominant.

Proof: Let
\begin{equation}
p_1(z) = \left(1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)}\right) \quad z \in \mathbb{U}; \quad z \neq 0. \tag{33}
\end{equation}
Here the function p_1 is analytic with $p_1(0) = 1$. Simple calculation leads to
\begin{equation}
\alpha_1 + \alpha_2 p_1(z) + \alpha_3 \frac{z p_1'(z)}{p_1(z)} = \Delta^{(a_j)}_1(f_1), \tag{34}
\end{equation}
where $\Delta^{(a_j)}_1(f_1)$ is given by (8). By using above inequality in (31) we have
\begin{equation}
F_{p_1(U)}\left(\alpha_1 + \alpha_2 p_1(z) + \alpha_3 \frac{z p_1'(z)}{p_1(z)}\right) \leq F_{q_1(U)}\left(\alpha_1 + \alpha_2 q_1(z) + \alpha_3 \frac{z q_1''(z)}{q_1(z)}\right). \tag{35}
\end{equation}
By considering $\theta(\omega) := \alpha_1 + \alpha_2 \omega$ and $\phi(\omega) := \frac{\alpha_3}{\alpha_2} \omega$, it is evident that $\theta(\omega), \phi(\omega) \in \mathbb{C} - \{0\}$ are analytic and $\phi(\omega) \neq 0$.

Consider
\begin{equation}
Q_1(z) := z q_1'(z) \phi(q_1(z)) = \alpha_3 \frac{z q''_1(z)}{q_1(z)}. \tag{36}
\end{equation}
We deduce that Q_1 is starlike univalent in \mathbb{U} and
\begin{equation}
Re\left(\frac{z h_1(z)}{Q_1(z)}\right) = Re\left[\frac{\alpha_2}{\alpha_3} q_1(z) + 1 + \frac{z q_1'(z)}{q_1(z)} - \frac{z q''_1(z)}{q_1(z)}\right] > 0. \tag{37}
\end{equation}
By [proposition 2.1, Ref. [43]] $F_{p_1(U)} p_1(z) \leq F_{q_1(U)} q_1(z)$ and using (35) we obtain
\begin{equation}
F\left(1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)}\right) \leq F_{q_1(U)} q_1(z) \quad z \in \mathbb{U} \tag{38}
\end{equation}
and q_1 is the best dominant.

Corollary 8. Let $\alpha_j \in \mathbb{C}$ ($j = 1, 2, 3$), $(\alpha_3 \neq 0)$. Assume that
\begin{equation}
\Delta^{(a_j)}_3(f_1) \leq F_{q_1(U)}\left(\alpha_1 + \alpha_2 \frac{1 + A_j}{1 + B_j} + \alpha_3 \frac{(A - B_j)}{(1 + A_j)(1 + B_j)}\right) \tag{39}
\end{equation}
then
\begin{equation}
F\left(1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)}\right) \leq F_{q_1(U)}\left(1 + \frac{A_j}{1 + B_j}\right) \quad z \in \mathbb{U}, \tag{40}
\end{equation}
and $\frac{1 + A_j}{1 + B_j}$ is the fuzzy best dominant.

Theorem 5.2. Let $\frac{z q''_1(z)}{q_1(z)}$ be starlike univalent in \mathbb{U} and $q_1(z)$ be analytic and univalent in \mathbb{U}. Assume that
\begin{equation}
Re\left(\frac{\alpha_2}{\alpha_3} q_1(z)\right) > 0. \tag{41}
\end{equation}
Let $\Delta^{(a_j)}_1(f_1)$ be univalent in \mathbb{U} and $1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)} \in H[q_0, 1] \cap Q$ where $\Delta^{(a_j)}_1(f_1)$ is given by (8). Then
\begin{equation}
F_{q_1(U)}\left(\alpha_1 + \alpha_2 q_1(z) + \alpha_3 \frac{z q''_1(z)}{q_1(z)}\right) \leq F_{\Delta^{(a_j)}_1(f_1)} \leq F\left(1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)}\right) \tag{42}
\end{equation}

\[\implies F_{q_1(U)} q_1(z) \leq F\left(1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)}\right) \tag{43}\]

and q_1 is said to be the fuzzy best subordinant.

Proof: $p_1(z) = 1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)}$ ($z \in \mathbb{U}$).
Taking $\nu(\omega) := \alpha_1 + \alpha_2 \omega$ and $\phi(\omega) := \frac{\alpha_3}{\alpha_2} \omega$. Also knowing that, $\nu(\omega)$ is analytic in \mathbb{C}, $\phi(\omega)$ is analytic in $\mathbb{C} - \{0\}$, $\phi(q_1(z)) = \frac{\alpha_3}{\alpha_2} q_1(z)$ and $\phi(\omega) \neq 0$, we have $\nu'(q_1(z)) = \frac{\alpha_3}{\alpha_2} q_1(z)$ \implies $Re\left(\frac{\nu'(q_1(z))}{\nu(q_1(z))}\right) = Re\left(\frac{\alpha_3}{\alpha_2} q_1(z)\right) > 0$. We obtain
\begin{equation}
F_{q_1(U)}\left(\alpha_1 + \alpha_2 q_1(z) + \alpha_3 \frac{z q''_1(z)}{q_1(z)}\right) \leq F_{p_1(U)}\left(\alpha_1 + \alpha_2 p_1(z) + \alpha_3 \frac{z p_1'(z)}{p_1(z)}\right). \tag{44}
\end{equation}

Applying [Theorem 2.15 of Ref. [27]], we get $F_{q_1(U)} q_1(z) \leq F_{p_1(U)} p_1(z)$ and q_1 is the fuzzy best subordinant.

Theorem 5.3. Consider the univalent functions q_2 and q_3 in \mathbb{U}, $\alpha_j \in \mathbb{C}$ ($j = 1, 2, 3$), $(\alpha_j \neq 0)$ with q_1 satisfying (30) and q_2 satisfying (36). Let $f_1 \in \mathcal{A}\left(1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)}\right) \in H[1, 1] \cap Q$ and $\Delta^{(a_j)}_1(f_1)$ given by (8) be univalent in \mathbb{U} satisfying
\begin{equation}
F_{q_2(U)}\left(\alpha_1 + \alpha_2 q_2(z) + \alpha_3 \frac{z q''_2(z)}{q_2(z)}\right) \leq F_{\Delta^{(a_j)}_1(f_1)} \leq F_{q_3(U)}\left(\alpha_1 + \alpha_2 q_3(z) + \alpha_3 \frac{z q''_3(z)}{q_3(z)}\right). \tag{45}
\end{equation}
Then
\begin{equation}
F_{q_2(U)} q_2(z) \leq F\left(1 + \frac{z(D_q f_1)'(z)}{(D_q f_1)(z)}\right) \tag{46}
\end{equation}

and q_3 represent fuzzy best subordinant and fuzzy best dominant.

6. **Conclusion**

In this article, we have defined two classes using quantum calculus operators. We have stated and proved the theorems on differential subordination and superordination. Sandwich theorems have also been stated and proved. These results have been extended to fuzzy set theory as fuzzy differential subordination, superordination, and sandwich theorems.
References

