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Abstract

The dynamics of tuberculosis within a population cannot be adequately represented by a single infectious class. Therefore, this study develops
a compartmental model encompassing latent, active, and drug-resistant populations to better capture tuberculosis dynamics in a community.
Model analysis reveals that the disease-free equilibrium point is locally asymptotically stable when the basic reproduction number is below one.
Moreover, the use of a suitable Lyapunov function demonstrates global asymptotic stability of the disease-free equilibrium point. An endemic
equilibrium emerges when the basic reproduction number exceeds one. Sensitivity analysis is conducted for each parameter associated with the
basic reproduction number, and optimal control analysis is employed to assess the impact of various control strategies on disease containment.
Numerical simulations are conducted to supplement theoretical findings, illustrating the practical implications of the proposed control strategies.
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1. Introduction

Tuberculosis (TB), an airborne contagious bacterial infec-
tion primarily affecting the lungs, is caused by the bacterium
M. Tuberculosis, which is transmitted through droplets expelled
during activities such as sneezing and coughing. Its historical
prevalence remains significant, with an estimated one-third of
the global population carrying the infectious organism, particu-
larly affecting regions with high rates of malnutrition, poverty,
and HIV/AIDS, resulting in substantial morbidity and mortal-
ity, particularly in developing countries [1]. The emergence of

∗Corresponding author tel. no: +2348123596460
Email address: aosangotola@bellsuniversity.edu.ng (A. O.

Sangotola )

multi-drug resistance poses additional challenges, making TB
management increasingly difficult even in regions traditionally
considered more equipped to handle it, such as Eastern Europe
and Central Asia.

Given TB’s complex natural history characterized by la-
tent infection and slow disease progression, its modeling ne-
cessitates multiple stages for accurate analysis [2]. Various
studies have explored mathematical models with multiple in-
fected classes, demonstrating the disease’s dynamics and po-
tential control strategies [3–7]. For instance, Ojo et al. devel-
oped a mathematical model with six compartments to control
TB epidemiology, while Ucakana et al. employed SIR, SEIR,
and BSEIR models for parameter estimation in TB analysis,
considering factors like vaccination and susceptibility [8, 9].

Das et al. investigated the transmission dynamics of TB
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with multiple reinfections, identifying conditions for backward
bifurcation and establishing eradication thresholds, supported
by numerical simulations [10]. Similarly, Mettle et al. [11]
formulated an SEIR model specific to TB transmission dynam-
ics in the Ashanti Region of Ghana, highlighting the efficacy
of early treatment initiation during the exposed stage in curb-
ing disease spread. Notably, the latent stage of TB infection
plays a pivotal role, despite individuals not exhibiting symp-
toms or transmitting the disease; however, gradual weakening
of the immune system during this stage may increase suscepti-
bility to other infections like HIV [12, 13].

In this paper, we propose a mathematical model for TB
transmission dynamics featuring three infected classes: latent,
active, and drug-resistant, incorporating optimal control strate-
gies focusing on prevention and early treatment during the la-
tent stage. Acknowledging the latent stage’s critical importance
in TB management, despite its lack of direct disease transmis-
sion, underscores the need for comprehensive approaches to ad-
dress TB’s complex dynamics and associated challenges [14–
17].

2. Model Description and Representation

The population is grouped into five segments: S denotes
the susceptible population (individuals who are yet to be in-
fected with TB); I1 denotes latent population (individuals who
are infected with TB but showing no symptoms); I2 denotes the
active infectious population (individuals who are infected and
showing symptoms), I3 denotes the drug resistant population
(Individuals who do not recover after successful application of
first line of treatment) and R denotes the recovered population
(individuals who have been successfully treated).

Individuals in susceptible section are recruited at rate of
Λ and there is reduction in the susceptible population through
contact with active infectious and drug resistant individuals at
rate β, which results in an increase in the latent class. The pa-
rameter 0 < ρ ≤ 1 is a modification factor which accounts for
the reduced likelihood of the individuals in the active infection
state to infect the susceptible population when compared to the
individuals in the drug resistant state.

There is a reduction in the latent class as a result of effec-
tiveness of early treatment at rate γ1 and progression to active
infectious stage or drug resistant stage at rate α1 and α2 respec-
tively. There is a reduction by effective treatment at rate γ2
in the active infectious class, progression at rate θ to drug re-
sistant stage and death by TB at rate δ1. Extensive treatment
application in the drug resistant class and death by TB reduce
the population at rate γ3 and δ2, respectively. Effective treat-
ment from the three infected classes contribute to an increase in
the recovered population and all compartments at rate µ expe-
rience natural death. The dynamical system described above is
illustrated in Figure ?? and represented below by the following

Figure 1: Flow diagram of the model.

differentials equations:

dS
dt

= Λ − βS (ρI2 + I3) − µS . (1)

dI1

dt
= βS (ρI2 + I3) − (α1 + α2 + γ1 + µ)I1. (2)

dI2

dt
= α1I1 − (θ + δ1 + γ2 + µ)I2. (3)

dI3

dt
= α2I1 + θI2 − (γ3 + δ2 + µ)I3. (4)

dR
dt

= γ1I1 + γ2I2 + γ3I3 − µR. (5)

with initial conditions: S (0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, I3(0) ≥
0,R(0) ≥ 0.

3. Results and Discussions

3.1. Invariant Region
This is done by obtaining the regionΩwhere the solution of

the model is bounded and every solution that starts inΩ remains
in Ω for all time t ≥ 0

Theorem 3.1. (Invariant region). All feasible solution of the
system (1)-(5) with initial values: S (0) ≥ 0, I1(0) ≥ 0, I2(0) ≥
0, I3(0) ≥ 0,R(0) ≥ 0 enters the region Ω represented by
{S (t), I1(t), I2(t), I3(t),R(t) ∈ R5

+ : N(0) ≤ N(t) ≤ Λ
µ
} and are

bounded.

Proof: The total population is given by N(t) = S (t)+ I1(t)+
I2(t) + I3(t) + R(t). Hence,

dN
dt
= Λ − µN − δ1I2 − δ2I3. (6)

In the absence of disease induced death, Eq. (6) becomes

dN
dt
≤ Λ − µN. (7)

Solving equation (7) gives:

0 ≤ N(t) ≤ N(0)e−µt +
Λ

µ
(1 − e−µt).

If N(0) ≤ Λ
µ

, then N(t) ≤ Λ
µ

as t → ∞. Hence,

N(0) ≤ N(t) ≤
Λ

µ
. (8)
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Table 1: Notation, description and values of parameters used.

Definition Symbol Value Source
Recruitment term Λ 0.6 Assumed
Rate of transmission β 0.12 [10]
Natural death rate µ 0.02041 Assumed
Transfer rate from latent to active infected stage α1 0.06 [10]
Transfer rate from latent to drug resistant stage α2 0.003 Assumed
Transfer rate from active to drug resistant stage θ 0.470104 [15]
Modification factor ρ (0,1) Variable
Treatment rate from latent infected class γ1 0.3 Assumed
Treatment rate from active infected class γ2 0.0575 [15]
Treatment rate from drug resistant stage γ3 0.1106456 [15]
TB death rate in active infected class δ1 0.01 [15]
TB death rate in drug resistant class δ2 0.0575 [15]

Thus, the feasible solution set of the model enters and remains
in the region Ω. Hence, the model under consideration is epi-
demiologically and mathematically well posed. The model dy-
namics can therefore be sufficiently studied in Ω. Thus Ω is a
positive invariant set.

3.2. Positivity of Solution
The initial condition of the system (1)-(5) is assumed to be

nonnegative and the positivity of solution of the system shall be
established.

Theorem 3.2. (Positivity of Solution) The solu-
tions S (t), I1(t), I2(t), I3(t),R(t) of (1)-(5) are nonneg-
ative for t ≥ 0 within the region Ω represented by
{S (t), I1(t), I2(t), I3(t),R(t) ∈ R5

+} with initial values:
S (0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, I3(0) ≥ 0,R(0) ≥ 0.

Proof: Solving (refeq1) gives:

dS
dt
= Λ − βS (ρI2 + I3) − µS ≥ −βS (ρI2 + I3) − µS ,

dS
dt
≥ −[β(ρI2 + I3) − µ]S ,

dS
S
≥ −[β(ρI2 + I3) − µ]dt,∫

dS
S
≥ −

∫
[β(ρI2 + I3) − µ]dt,

Applying separation of variables method gives

S (t) ≥ S (0)e−[
∫ t

0 Qdτ+µt] ≥ 0,

where Q = β(kI1 + I2).
Similar procedure can be used to show that I1(t) ≥ 0, I2(t) ≥
0, I3(t) ≥ 0,R(t) ≥ 0.
Hence, the solution of the model is positive.

3.3. Disease-free equilibrium
The disease-free equilibrium is obtained by equating (1)-(5)

to zero such that I1 = I2 = I3 = 0. It is given by

π0 = (S 0, I0
1 , I

0
2 , I

0
3 ,R

0) = (
Λ

µ
, 0, 0, 0, 0). (9)

3.3.1. Basic Reproduction number
It is computed by using the method described in Refs. [18,

19]. The notation F represents the appearance of new infection
while the notation V represents the transitional terms in the
infected compartments as shown below:

F =

 βS (ρI2 + I3)
0
0

 ,
V =

 (α1 + α2 + γ1 + µ)I1
−α1I1 + (θ + δ1 + γ2 + µ)I2
−α2I1 − θI2 + (γ3 + δ2 + µ)I3

 .
The linearized matrices F and V , computed at the disease-free
equilibrium from above gives

F =


0 ρβΛ

µ
βΛ
µ

0 0 0
0 0 0

 ,
and

V =

 (α1 + α2 + γ1 + µ) 0 0
−α1 (θ + δ1 + γ2 + µ) 0
−α2 −θ (γ3 + δ2 + µ)

 .
The basic reproduction number R0 is given by ρ(FV−1) where
ρ is the spectral radius. Thus,

R0 =
βΛ{α1[θ + ρ(γ3 + δ2 + µ)] + α2(θ + δ1 + γ2 + µ)}
µ(α1 + α2 + γ1 + µ)(θ + δ1 + γ2 + µ)(γ3 + δ2 + µ)

. (10)

3.3.2. Local stability of disease-free equilibrium
Theorem 3.3. (Local stability of disease-free equilibrium). The
disease-free equilibrium for the TB system under consideration
is locally asymptotically stable if R0 < 1 and unstable other-
wise.

Proof: We evaluate the Jacobian matrix of (1)-(5) at π0 and
it is given below:

−µ 0 −ρβΛ
µ

−βΛ
µ 0

0 −(α1 + α2 + γ1 + µ)
ρβΛ
µ

βΛ
µ 0

0 α1 −(θ + δ1 + γ2 + µ) 0 0
0 α2 θ −(γ3 + δ2 + µ) 0
0 γ1 γ2 γ3 −µ

 .
3
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The eigenvalues of the Jacobian matrix are found to be −µ and
−µ. The remaining eigenvalues can be obtained from the matrix
given below.
−(α1 + α2 + γ1 + µ)

ρβΛ
µ

βΛ
µ

α1 −(θ + δ1 + γ2 + µ) 0
α2 θ −(γ3 + δ2 + µ).


The characteristic equation is of the form:

p(λ) = λ3 + a1λ
2 + a2λ + a3 = 0.

where
a1 = (α1 + α2 + γ1 + µ) + (θ + δ1 + γ2 + µ) + (γ3 + δ2 + µ)
a2 = (α1 +α2 +γ1 +µ)(θ+ δ1 +γ2 +µ)+ (α1 +α2 +γ1 +µ)(γ3 +

δ2 + µ) + (θ + δ1 + γ2 + µ)(γ3 + δ2 + µ) −
(ρα1+α2)βΛ

µ

a3 = (α1 + α2 + γ1 + µ)(θ + δ1 + γ2 + µ)(γ3 + δ2 + µ)(1 − R0)
Applying Routh Hurwitz criterion gives a1 > 0, a2 > 0, and
a1a2 > a3.
Hence, the roots of the characteristic equation have a negative
real part which shows that the disease-free equilibrium point is
locally asymptotically stable if R0 < 1.

3.4. Endemic equilibrium

It occurs when the disease cannot be eradicated in the pop-
ulation. It is obtained by setting (1)-(5) to zero.

Theorem 3.4. (Existence of endemic equilibrium). The model
(1)-(5) has an endemic equilibrium when R0 > 1.

Proof: We used the notation E∗ = (S ∗, I∗1 , I
∗
2 , I
∗
3 ,R

∗) to de-
note the system’s endemic equilibrium. The endemic equilib-
rium of the model (1)-(5) is given by

S ∗ =
Λ

µR0
.

I∗1 =
Λ(R0 − 1)

R0(α1 + α2 + γ1 + µ)
.

I∗2 =
α1Λ(R0 − 1)

R0(α1 + α2 + γ1 + µ)(θ + δ1 + γ2 + µ)
.

I∗3 =
[α2(θ + δ1 + γ2 + µ) + α1θ]Λ(R0 − 1)

R0(α1 + α2 + γ1 + µ)(θ + δ1 + γ2 + µ)(γ3 + δ2 + µ)
.

R∗ =
Λ(R0 − 1)

µR0(α1 + α2 + γ1 + µ)
(α1 +

α1γ2

(θ + δ1 + γ2 + µ)
+

[α2(θ + δ1 + γ2 + µ) + α1θ]
(θ + δ1 + γ2 + µ)(γ3 + δ2 + µ)

).

The implication of this situation epidemiologically is that tu-
berculosis is established in the population provided that R0 > 1.

3.5. Global Stability

Here, we investigate the global asymptotic stability property
of the disease-free equilibrium for the epidemic model.

Theorem 3.5. (Global stability of disease-free equilibrium).
The disease free equilibrium of the model (1)-(5) is globally
asymptotically stable if R0 ≤ 1.

Figure 2: Numerical simulation of TB model showing effect of
prevention on susceptible class

Figure 3: Numerical simulation of TB model showing effect of
prevention on latent class

Proof: The global stability of the disease free equilibrium
is proved using the Lyapunov function V defined below.

V =
α2(θ + δ1 + γ2 + µ) + α1[θ + ρ(γ3 + δ2 + µ)]

(α1 + α2 + γ1 + µ)(θ + δ1 + γ2 + µ)
I1 +

θ + ρ(γ3 + δ2 + µ)
(θ + δ1 + γ2 + µ)

I2 + I3. (11)

Differentiating both sides gives:

V̇ =
α2(θ + δ1 + γ2 + µ) + α1[θ + ρ(γ3 + δ2 + µ)]

(α1 + α2 + γ1 + µ)(θ + δ1 + γ2 + µ)
[βS (ρI2 + I3)−

(α1 + α2 + γ1 + µ)I1] +
θ + ρ(γ3 + δ2 + µ)
(θ + δ1 + γ2 + µ)

(α1I1 − (θ + δ1 + γ2 + µ)I2)

+ α2I1 + θI2 − (γ3 + δ2 + µ)I3.

Simplifying gives

4
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Figure 4: Numerical simulation of TB model showing effect of
prevention on Active class

Figure 5: Numerical simulation of TB model showing effect of
prevention on Drug resistant class

V̇ =
α2(θ + δ1 + γ2 + µ) + α1[θ + ρ(γ3 + δ2 + µ)]

(α1 + α2 + γ1 + µ)(θ + δ1 + γ2 + µ)
[βS (ρI2 + I3)]

− (γ3 + δ2 + µ)(ρI2 + I3).

At S = S 0 =
Λ
µ

,
V̇ ≤ (γ3 + δ2 + µ)(ρI2 + I3)[R0 − 1].

Thus, V̇ ≤ 0 if R0 ≤ 1 with equality if and only if I2 = I3 = 0.
Every solution in with initial conditions in Ω as t → ∞

approaches π0 according to LaSalle’s Invariance Principle [20].

3.6. Sensitivity Analysis

Sensitivity analysis on basic parameters is examined so as
to quantify how each parameters contribute to the basic repro-
duction number. If a parameter p depends on X, the normalised

Figure 6: Numerical simulation of TB model showing effect of
early treatment on latent class

Table 2: Sensitivity index.

parameter Υ
R0
parameter

β 1

Λ 1

γ1
−γ1

(α1+α2+γ1+µ)

γ2
−γ2α1[θ+ρ(γ3+δ2+µ)]

α1[θ+ρ(γ3+δ2+µ)](θ+δ1+γ2+µ)+α2(θ+δ1+γ2+µ)2

γ3
−γ3[α1θ+α2(θ+δ1+γ2+µ)]

{α1[θ+ρ(γ3+δ2+µ)]+α2(θ+δ1+γ2+µ)}(γ3+δ2+µ)

δ1
−δ1α1[θ+ρ(γ3+δ2+µ)]

α1[θ+ρ(γ3+δ2+µ)](θ+δ1+γ2+µ)+α2(θ+δ1+γ2+µ)2

δ2
−δ2[α1θ+α2(θ+δ1+γ2+µ)]

{α1[θ+ρ(γ3+δ2+µ)]+α2(θ+δ1+γ2+µ)}(γ3+δ2+µ)

ρ α1ρ(γ3+δ2+µ)
α1[θ+ρ(γ3+δ2+µ)]+α2(θ+δ1+γ2+µ)

θ α1θ[(δ1+α2+µ)−ρ(γ3+δ2+µ)]
α1[θ+ρ(γ3+δ2+µ)](θ+δ1+γ2+µ)+α2(θ+δ1+γ2+µ)2

α1
α1[θ(γ1+µ)+ρ(γ3+δ2+µ)(α2+γ1+µ)−α2(γ2+µ)]

{α1[θ+ρ(γ3+δ2+µ)]+α2(θ+δ1+γ2+µ)}(α1+α2+γ1+µ)

α2
α2[α1(δ1+γ2+µ)+(γ1+µ)(θ+δ1+γ2+µ)−α1ρ(γ3+δ2+µ)]
{α1[θ+ρ(γ3+δ2+µ)]+α2(θ+δ1+γ2+µ)}(α1+α2+γ1+µ)

forward sensitivity index is defined as follows:

ΥX
p =
∂X
∂p
×

p
X
.

The sensitivity index is presented in Table 2 using the for-
mula defined above. The parameters Λ, β, ρ are directly propor-
tional to the basic reproduction number while the parameters
γ1, γ2, γ3, δ1, δ2 are inversely proportional to the basic repro-

5
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Table 3: Sensitivity index value

parameter Υ
R0
parameter

β 1
Λ 1
γ1 −0.7825
γ2 −0.9786
γ3 −0.1036
δ1 −0.0170
δ2 −0.2738
ρ 0.1071
θ −0.0351
α1 0.8333
α2 0.0446

Figure 7: Numerical simulation of TB model showing effect of
early treatment on Active class

Figure 8: Numerical simulation of TB model showing effect of
early treatment on Drug resistant class

duction number. The parameters θ, α1, α2 can be both directly
or inversely proportional to the basic reproduction number de-

Figure 9: Numerical simulation of TB model showing effect of
early treatment on Recovered class

pending on the values of the other parameters associated with
them.
Υ

R0
β = 1 shows that a 1% increase in the transmission rate

increases the basic reproduction number by 1% while ΥR0
β =

−0.7825 implies that increasing the effective treatment rate
from latent stage by 10% decreases the basic reproduction num-
ber by approximately 7.8% as shown in Table 3.
The values of the sensitivity index in Table 2 is presented in
Table 3 using parameter values in Table 1.

3.7. Optimal Control
Optimal control analysis is carried out by introducing two

control functions u1(t) and u2(t) which serves as control into
system (1)-(5). The aim of the first control is a preventive con-
trol to reduce the spread of tuberculosis among the susceptible
and the infectious classes while the second control is the effort
to ensure early detection and treatment at the latent stage. The
model (1)-(5) becomes

dS
dt

= Λ − β(1 − u1)S (ρI2 + I3) − µS . (12)

dI1

dt
= β(1 − u1)S (ρI2 + I3) − (α1 + α2 + γ1 + u2 + µ)I1. (13)

dI2

dt
= α1I1 − (θ + δ1 + γ2 + µ)I2. (14)

dI3

dt
= α2I1 + θI2 − (γ3 + δ2 + µ)I3. (15)

dR
dt

= (γ1 + u2)I1 + γ2I2 + γ3I3 − µR. (16)

The required optimization problem which involves obtaining
the best strategy at minimum cost that minimizes the popula-
tion within infection classes. This minimization problem can
be solved by execution of controls u1(t) and u2(t) within the
time horizon [0, T]. The objective functional is described as

J(u1, u2) =
∫ T

0
(lI1 + mI2 + nI3 + n1u2

1 + n2u2
2)dt, (17)

6
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where T denotes the final time and parameters l,m, n, n1, n2 are
positive weights to balance the factors.
We consider the state system (12)-(16) with the set of admissi-
ble control functions

U = {u1, u2 ∈ L1(0,T ) | 0 ≤ u1(t), u2(t) ≤ 1∀t ∈ [0,T ]}. (18)

Thus, an optimal control u∗1, u
∗
2 is obtained such that

J((u∗1, u
∗
2) = min{J(u1, u2) : (u1, u2) ∈ U}. (19)

The existence of the optimal control can be obtained using the
result of Fleming and Rishel [21]. The necessary condition that
an optimal control system must satisfy come from the Pontrya-
gin’s Maximum principle [22]. The principle converts (12)-(17)
into problem of minimizing pointwise a HamiltonianH relative
to u1 and u2.

Theorem 3.6. Problems (12)-(19) with initial values
S (0), I1(0), I2(0), I3(0),R(0) and final fixed time T admits a
unique optimal solution (S ∗(t), I∗1(t), I∗2(t), I∗3(t),R∗(t)) with an
associated optimal pair (u∗1, u

∗
2) on [0,T ]. There exists also

adjoint variables λ1, λ2, · · · , λ5 satisfying − ∂λi
∂t =

∂H
∂ j where

j = S , I1, I2, I3,R with tranversality conditions λi(T ) = 0.

Proof: We define our Hamiltonian as follows:

H = lI1+mI2+nI3+n1u2
1+n2u2

2+λ1
[
Λ − β(1 − u1)S (ρI2 + I3) − µS

]
+ λ2

[
β(1 − u1)S (ρI2 + I3) − (α1 + α2 + γ1 + u2 + µ)I1

]
+ λ3

[
α1I1 − (θ + δ1 + γ2 + µ)I2

]
+λ4

[
α2I1 + θI2 − (γ3 + δ2 + µ)I3

]
+λ5

[
(γ1 + u2)I1 + γ2I2 + γ3I3 − µR

]
,

where λ1, λ2, λ3, λ4, λ5 describes the associated adjoint func-
tions with the respective states. There exists adjoint functions
satisfying

dλ1

dt
= β(1 − u1)(ρI2 + I3)(λ1 − λ2) + λ1µ.

dλ2

dt
= −l + (α1 + α2 + γ1 + u2 + µ)λ2 − α1λ3 − α2λ4

− (γ1 + u2)λ5.

dλ3

dt
= −m + βρS (1 − u1)(λ1 − λ2) + (θ + δ1 + γ2 + µ)λ3

− θλ4 − γ2λ5.

dλ4

dt
= −n + βS (1 − u1)(λ1 − λ2) + (γ3 + δ2 + µ)λ4 − γ3λ5.

dλ5

dt
= µλ5.

with the terminal conditions

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0, λ4(T ) = 0, λ5(T ) = 0 (20)

Evaluating ∂H
∂u1
= 0 at u1 = u∗1, ∂H

∂u2
= 0 at u2 = u∗2 and applying

standard control arguments involving the bounds in U gives
the characterization u∗1, u

∗
2 as

u∗1 = min
(
u1max,max

(
0,
βS (ρI2 + I3)(λ2 − λ1)

2n1

))
.

u∗2 = min
(
u2max,max

(
0,

(λ2 − λ5)I1

2n2

))
.

3.8. Numerical Simulation
The numerical simulation of the optimal control analysis is

carried out using parameters and values in Table 1 with initial
values S (0) = 100, I1(0) = 30, I2(0) = 30, I3(0) = 10,R(0) = 0.
The objective function is optimized using the TB prevention
control and the results are presented in Figures 2-5. It was ob-
served with about 90 % in the effectiveness of the preventive
control, there is a high positive impact on the susceptible class
with about 20 % fewer people moving into the infected class
as seen in Figure 2. Similarly there is a positive impact in the
latent class, with about 50 % reduction at the peak of the class
before the end of the intervention as seen in Figure 3. Much im-
pact is not seen in the active class as seen in Figure 4 but a little
impact is seen in the drug resistant class as shown in Figure 5.

The impact of early treatment control is seen in the latent
compared to the uncontrolled case as seen in Figure 6. The out-
come is so significant that it reflected positively on the other
two infected classes and recovered class, as seen in Figures 7-
9. These strategies suggest that early detection and treatment of
TB at the latent stage can reduce the latent population by about
50 % at the peak of the infection when compared to the uncon-
trolled case. The reduction in latent population also decreases
rapidly within a shorter period during the intervention period
than in the uncontrolled case. A similar result is obtained for
the drug resistant population. The impact of the early control
also produced about three times recovery size than in the un-
controlled case.

4. Conclusion

In this research, we have developed a five-system first-order
nonlinear differential equation model to characterize tuberculo-
sis (TB) dynamics, incorporating three distinct infected classes.
We have rigorously analyzed the boundedness and positivity of
solutions, thereby enhancing the robustness of our model. No-
tably, our model improves upon existing frameworks by differ-
entiating between active and drug-resistant individuals, a dis-
tinction overlooked in previous studies by Ojo et al. [8] and
Das et al. [10]. The calculation of the basic reproduction num-
ber (R0), crucial for assessing disease transmission potential,
was achieved using the next-generation matrix approach. We
have established the local asymptotic stability of the disease-
free equilibrium for R0 < 1, with instability prevailing for
R0 > 1, indicating the existence of an endemic equilibrium in
such cases. Furthermore, employing a suitable Lyapunov func-
tion, we have demonstrated the global asymptotic stability of
the disease-free equilibrium when R0 < 1.

Our investigation extends to the characterization of optimal
control measures, particularly focusing on the impact of pre-
ventive and early treatment strategies, elucidated through nu-
merical simulations. The results indicate that both preventive
measures and early treatment serve as effective approaches in
managing TB infection.

In summary:

• The disease-free equilibrium of TB dynamics is both lo-
cally and globally asymptotically stable for R0 < 1.
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• A unique endemic equilibrium emerges for R0 > 1.

• Parameters directly proportional to R0, such as recruit-
ment rate and transmission rate, significantly influence
disease spread, while those inversely related, such as
treatment rate and disease-induced death, mitigate trans-
mission.

• Sensitivity analysis underscores the efficacy of early
treatment at both asymptotic and active stages in reduc-
ing R0.

• Multiple optimal control strategies are imperative for
curbing TB prevalence effectively.

These findings contribute to a deeper understanding of TB dy-
namics and provide valuable insights for the development of
targeted intervention strategies aimed at disease control and
management.
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