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1. Introduction

Let X be a nonempty set and s > 1 be a given real number. A
mapping d : X X X — R* is said to be a b-metric if for all
X,¥,z € X the following conditions are satisfied:

1. d(x,y) = 0if and only if x = y;
2. d(x,y) =d@, x);
3. d(x,z) < sld(x,y) + d(y,2)].

The pair (X, d) is called a b-metric space with constant s.
A strong b—metric is a semimetric space (X, d) if there exists
s > 1 for which d satisfies the following triangular inequality.

d(x,y) <d(x,2) + sd(z,y), foreach x,y,z € X. (1)
In 1922, a mathematician Banach [1] proved a very important
result regarding a contraction mapping, known as the Banach
contraction principle, which states that every self-mapping T
defined on a complete metric space (X, d) satisfying
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Vx,y e X,d(Tx,Ty) < Ad(x,y), where 1 € (0, 1)

has a unique fixed point and for every xp € X a sequence
{Txo0};7 ,converges to the fixed point. Subsequently, in 1962,
Edelstein [2] proved the following version of the Banach con-
traction principle. Let (X, d) be a compact metric space and let
T : X — X be a self-mapping. Assume that for all x,y € X with
X #Y,

dx,Tx) <d(x,y) = d(Tx,Ty) <d(x,y).

Then T has a unique fixed point in X. In 2012, Wardowski [3]
introduced a new type of contractions called F-contraction and
proved a new fixed point theorem concerning F-contractions.

Let (X, d) be a metric space. A mapping T : X — X is said to
be an F-contraction if there exists 7 > 0 such that

Vx,ye X,d(Tx,Ty) >0 = 7+ F(d(Tx,Ty)) < F(d(x,y)),
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where F : R* — R is a mapping satisfying the following con-
ditions:
F1 F is strictly increasing, i.e. for all x,y € R* such that
x <y, F(x) <FQ);
F2 For each sequence {«,}

(o)
n=1

of positive numbers, lim a,

n—oo

0 if and only if lim F(ay) = —oo;

n—oo

F3 There exists k € (0, 1) such that lirgﬂkF(a) =0.

We denote by £, the set of all functions satisfying the conditions
(F1) — (F3). Wardowski [3] then stated a modified version of
the Banach contraction principle as follows. Let (X,d) be a
complete metric space and let 7 : X — X be an F-contraction.
Then T has a unique fixed point x* € X and for every x € X
the sequence {T,lx};": | converges to x*. In 2014, Hossein, P. and
Poom, K. [15] defined the F-Suzuki contraction as follows and
gave another version of theorem. Let (X, d) be a metric space.
A mapping T : X — X is said to be an F-Suzuki-contraction if
there exists 7 > 0 such that for all x,y € X with Tx # Ty

d(x,Tx) <d(x,y) = 7+ F(d(Tx,Ty)) < F(d(x,y)),

where F : R — R is a mapping satisfying the following con-
ditions:
F1 F is strictly increasing, i.e. for all x,y € R* such that
x <y, F(x) <F(y);
F2 For each sequence {a,}

o0
n=1

of positive numbers, lim a,

n—oo

0 if and only if lim F(a,) = —oo;

F3 F is continuous on (0, 0o)

We denote by £, the set of all functions satisfying the conditions
(F1) - (F3).

Let T be a self-mapping of a complete metric space X into itself.
Suppose F € ¢ and there exists 7 > 0 such that

Vx,ye X,d(Tx,Ty) >0 = 7+ F(d(Tx,Ty)) < F(d(x,y)).

Then T has a unique fixed point x* € X and for every xop € X

the sequence {T,,xo},_, converges to x*.

Following this direction of research (see examples, [4, 5, 6, 7,
8,9, 10, 16, 17]), in this paper, fixed point results of Piri and
Kumam [11], Ahmad et al. [9], Suzuki [18] and Suzuki [19] are
extended by introducing common fixed point problem for mul-
tivalued generalized F-Suzuki-contraction mappings in strong
b-metric spaces.

Definition 1.1. (Hardy and Rogers [14])

(1) There exist non-negative constants a, satisfying Zfz 1 ai <
1 such that, for each x,y € X, d(f(x), f(y)) < a1d(x,y) +
ad(x, f(x)) + azd(y, f()) + asd(x, f()) + asd(y, f(x)).

(2) There exist monotonically decreasing functions a;(t) :
(0,00) — [0, 1) satisfying Z,-S:1 ai(t) < 1 such that, for
each x,y € X, x #y, d(f(x), f(y)) < ai1(d(x, )d(x, f(x))
+ax(d(x, Y)d(y, f() + az(d(x, y))d(x, f(¥)
+ag(d(x, y)d(y, f(x)) + as(d(x, y)d(x, y).

89
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(3) Foreach x,y € X, x £,
d(f(x), f(y)) < max{d(x,y),d(x, f(x)),
d(y, f),d(x, f(),d(y, f(x)}.

Lemma 1.1. [13] From definition 1.1, (1) = (2) = (3).
Denote by CB(X), the collection of all nonempty closed and

bounded subsets of X and let H be the Hausdorff metric with
respect to the metric d; that is,

H(A, B) = max{supd(a, B), supd(b, A)}
acA beB

for all A, B € CB(X), where d(a, B) = ibngd(a, b) is the distance
€

from the point a to the subset B.

2. Main Results

Definition 2.1. Let U be the family of all functions F : R* — R
such that:

(F1) F is strictly increasing, i.e. for all x,y € R* such that
x <y F(x) < F(y);

(F2) for each sequence {a,};. | of positive numbers, lima, =
0 if and only if lin;toF(an) = —oo; e

(F3) Fis continu()usnon (0, 00).

Definition 2.2. Let WY be the family of all functions s : [0, 00) —
[0, 00) such that  is continuous and y(t) = 0 iff t = 0.

Definition 2.3. Let (X,d) be a strong b—metric space. Map-
pings T,S : X — CB(X) are said to be multivalued generalized
F-Suzuki-Contraction on (X, d) if there exists F € U and y € ¥
such that, Yx,y € X, x £y,

1
—d(x, Tx) <d(x,y) and
1+s

d(y,Sy) <d(y,STx)
1+s

= Y(Ng(x,y)) + F(s*H(Tx,Sy)) < F(Ny(x,y)) in which

Ny(x,y) = ¢1(d(x, ))(A(x, y)) + $2(d(x, y))(d(y, ST x))

d@y,T d(x,S

R e
d(x,ST H(STx,S

N ¢4(d(x,y))(( (x x));s (STx y))

+ ¢s(d(x,y))(H(S Tx,Sy)+ HSTx, Tx))

+ ¢6(d(x, Y))H(S Tx,Sy) + d(T'x, x))

+ ¢7(d(x, Y)d(Tx, y)) +d(y,Sy)) (2)

for which ¢ : Rt — [0, 1), with 217:1 ¢i(d(x,y)) < 1, is mono-

tonically decreasing function.

Comsidering the definition STx := {Sy € CB(X) : Vy € Tx},

we have the following result.

Theorem 2.1. Let (X,d) be a complete strong b—metric space
and let T,S : X — CB(X) be multivalued generalized F-
Suzuki-Contraction mappings. Then T and S has a common
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fixed point x* € X and for every x € X the sequence {T"x};y and
{S"x};> converge to x*.

Proof Let xo = x € X. Let x,41 € Tx, and x,42 € SX,41 V0 €
N. If there exists n € N such that d(x,,, Tx,,) = d(xX,11, S Xp+1) =
0 then x,+; = x, = x becomes a fixed point of T and §, re-
spectively, therefore the proof is complete. Now, suppose that
d(x,, Tx,) > 0 and d(xy41,S Xp+1) > 0 Yn € N then the proof
will be divided in to two steps.

Step one. We show that {x,}°  is a Cauchy sequence.

n=1
Let
d(x,, Tx,) > 0and d(x,41,S x,41) > 0Vn € N. 3)
therefore, we have that
1
—d(x,, Tx,) < d(x,, Tx,) and
s+ 1
1
Tld(xn+lasxn+l) < d(xps1,S Xpe1) YR € N. @
K

By Definition 2.3, we get
F(H(TX,,, S-xn+1)) < F(Ngb(xm -xn+1)) - (//(Nq)(xns -xn+1))~
Since that

Naﬁ(xn’ xn+l)
= ¢1(d(-xm -xn+1))(d(-xn» Xn+1 )) + ¢2(d(-xn» Xn+1 ))(d(-xn+1 > xn+2))

d(Xp, X+ d(x,, Xp+
e e R Ly

+ ¢5 (d(xm Xn+l1 ))(d(anrZa Xn+l1 )) + ¢6(d(xna Xn+l1 ))(d(xm xn+1))
+ ¢7(d (X, Xps 1)) (X2, Xp41)
< ¢1(d(-xm xn+1))(d(-xn» Xn+1 )) + ¢2(d(-xn» Xn+1 ))(d(-xn+1 > xn+2))

+ ¢3(d(xn, xn+l)) (d(xm xn+1) +22d(xn+l 5 xn+2))

+ ¢4(d(xn, Xos1 )) (d(xn’ xn+1) +22d(xn+l 5 xn+2))

+ ¢s(d(Xn, X DN A (X425 Xn11)) + G6(d (X, Xnr1))A(Xn, Xn41))
+ ¢7 (d(xna Xn+1 ))(d(xn+2a xn+l)

< ¢1(d(xm -xn+1))(d(xm -xn+1)) + ¢2(d(xn, xn+1))(d(-xn+1 s xn+2))
S[d(xn’ xn+1) + d(anrl 5 xn+2)] )

2s

+ ¢4(d(Xmx"+l))(s[d(xnaxn+l) ;Lsd(xml,xmz)])

+ ¢s(d(xn, X DN A (X125 Xn41)) + P6(d (X, Xt 1)) (X5 Xi1))
+ ¢7(d(xn, Xns )N A(Xn42, Xns1)

< $1(d X, Xne )N (Xy Xp41)) + $2(d (X, X )N A(Xs 1, Xn42))
+ ¢3(d (X, X N(A(X, Xni1)) + D3(d (X, Xps 1)) A(Xpi2, Xpi1)
+ Pa(d(Xn, Xps1))(d(Xs Xn11)) + Pa(d(Xy X 1)) (Xn12, Xn1)
+ @5(d(xn, Xpe1))d(Xn42, Xns1)) + Go6(d(Xn, X1 (X, Xn41))
+ ¢7(d(xn, X DN A(Xp12, Xns1)

= [¢1(d(xns Xn41)) + $3(d(Xn, Xn41)) + Pa(d(Xn, Xp41))

+ ¢3(d(Xn, Xn+1)) (

90

90

+ @6 (d(xn, Xp+1))(d (X0, Xp11))
+ [2(d(xn, Xn41)) + G3(d (X, Xn41)) + Pa(d(Xs Xn41))
+ ¢5 (d(xm xn+l))(d(xn+2’ xn+1)) + ¢7 (d(xn’ xn+1))] (d(-xn+2a xn+1)
= ¢,(d(xn7 Xn+l1 ))(d(xn’ Xn+l1 )) + ¢" (d(xm Xn+1 ))(d(xn+2’ Xn+1 ))
)]
then by (5) and definition 2.3, we get

F(d(xn+1 > xn+2))

< F(¢,(d(xm x11+1))(d(xn» xn+l)) + ¢”(d(xn’ xn+l))(d(xn+27 xn+l)))
- ¢(¢,(d(-xm Xn+1 ))(d(xns Xn+1 )) + ¢N (d(xna xn+1))(d(-xn+2, -xn+1)))~

(6)
On contrary, if d(x,+1, Xp+2) > d(Xn, Xp11), then
@' (@, X)) (X X11))
+¢"(d (X, Xns DN A(Xns2, X01)) < d(Xs1, Xn42)
and therefore (6) becomes

F(d(xn+la xn+2)) < F(d(xn+l’ xn+2)) - w(d(xrwl’ -xn+2))'

But, from (3) and the fact that ¥(d(x,+1, X,2)) > O, this is a
contradiction. Thus, we conclude that

F(d(xn+l, xn+2)) < F(d(xn, xn+l)) - w(d(xn’ xn+1))

< F(d(xy, Xp+1))- @)
By (7) and Definition 2.1(F1), we have that
d(xn+1a xn+2) < d(xm xn+1) < d(xn—la xn) ¥n e N. (8)

Therefore {d(x,, x,+1)} is a nonnegative decreasing sequence of
real numbers. Thus there exists y > 0 such that lim d(x,,, x,+1) =
n—-oo

v. From (7) as n — oo, we have that

F(y) < F(y) = y(y).

This implies that ¢(y) = 0 and thus y = 0. Consequently we
arrive at

limd(x,, Tx,) =

n—oo

lim d(x, X,41) = 0. )
n—oo

Now, we claim that {x,}” , is a Cauchy sequence. On contrary,
we assume that there exists € > 0 and n, m € N such that, for all
n>nc.andn, <n<m,

d(x,, x,,) > € and d(x,_1, x,,) < €. (10)
It implies that
€ < d(xy, xpm) < d(xp, Xy—1) + SAd(Xp-1, Xm)
< d(x,, xX,_1) + se. (11)
By (11) and (9), we have that
€ < limsupd(x,, x,) < S€. (12)

n—oo
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By triangle inequality, we have that

€< d(-xn’ -xm) < d(xm -xm+1) + Sd(-xm+1, -xm)

< d(Xp, X)) + 28d(Xps1, X)) (13)
By (9),(10), (12) and (13), we have that
€ < limsupd(x,, Xpm41) < SE. (14)
Similarly, we have that
€ < d(xp, Xp) < d(Xn, Xn11) + SA(Xni1, Xim)
< 5d(Xn, i) + (57 + D (X, Xps1). (15)
By (9),(10), (12) and (15), we have that
€ < limsupd(x,, x,1+1) < Se€. (16)

n—oo

Observe that

d(xus Xm+1) < d(Xps Xn11) + 5 (X115 Xinr1)
< d(xm xn+1) + s[d(anrl, xm) + Sd(merly xm)]

< d(xn, xn+1) + s[d(xn’ xn+1) + Sd(xn, xm)

+ Sd(xm+l > xm)]~ (17)
By (17), we have that
€ < limsupd(Xys1, Xmi1) < S°€. (18)
S n—oo

By (9)and (10), we select ne > 0 € N such that

1
16 < e <d(x,,x,) ¥Yn > n(e)

1
d(xn, Tx)l) <
s+ 1 s+

1 1
T
© 7 ld(xn, Xn) < " 16<d(xn,xm)
VYn > n(e)

and

1 €
16 < = < d(Xpi1, Xms1) Y0 2 0
N

1
md(xnﬂ, Sxp1) < T

1
& ——d(Xy41, S Xpy1) < ——
s+ 1 (1, 5 x01) s+1€

< d(X,,+],Xm+1) VYn > ne
It follows that from Definition 2.3, we have, for every n > n,

F(H(-xn+lv xm+l)) < F(Nq}(xna xm)) - @b(Nq)(xm xm)) (19)

Since that

d(xnv xm) < N¢(X,,, -xm)
= ¢1(d (X, Xp)NA (X, X)) + G2 (d (X5 X)) (X125 X))

d(anrl 5 xm) + d(xm xm+l)
2s

(d(-xn+23 -xn) + d(-xn+2v xm+l))
2s

+ ¢5 (d(xn, xm))(d(xn+27 xm+]) + d(xn+2a Xnt1 ))

+ ¢'§ (d(xnv xm)) (

+ ¢4(d(xnv xm)) (

91

91

+ ¢6(d(xm xm))(d(anrZ’ xm+l) + d(xn, Xn+1 ))
+ ¢7(d(xm xm))(d(xm’ Xn+1 + d(xm’ Xm+1 )))
< ¢1 (d(-xnv xm))(d(xns -xm)) + ¢2(d(x,,, -xm))(d(-erZs x}Hl) + Sd(anrl ’ xm))

d(anrl’ xm) + d(xm xm+l)
2s

(d(erZ, -xn+l) + Sd(anrl’ xn) + d(xn+21 x)Hl)) + Sd(x)Hl 5 xm+1)))
2s

+ ¢s(d(xn, X)) d(Xp12, Xpr1) + A (Xns1, X)) + d(Xns2, Xns1))
+ ¢6(d(xna xm))(d(xn+2’ xn+1) + Sd(xn+l > xm+1) + d(x,,, Xn+1 ))
+ ¢7(d(xn7 xm))(d(xnu xn+1) + d(xma Xm+1 )))

+ ¢3 (d(-xns xm)) (

+ ¢4(d(xns xm)) (

(20)
By (12), (14), (16), (18) and (20), we have that

limsupd(x,, X)) < limsupNy(x,, Xm) < ¢1(€)(s€) + ¢2(6)(526)

2
+83(6)(€) + $4(EN( ) + 5(E)(5’€) + do()(sE) + da(E)(s©)
< max{se, s%€, €, %6, s°€, se}
= S3E

and therefore

€ < limsupNg(X,, Xp) < se. 21
Similarly
€ < liminfNy(x,, Xpm) < se. 22)

n—oo

By (19), (21) and (22), we have that

F(s%) = F(s“f) < F(s*limsupd(x,s1, Xns1)

n—oo

< F(limsupNg(Xn, X)) = Y(limsupNy(Xp, Xim))

< F(s’e) — y(e). (23)
By (23) and the fact that € > 0, this is a contradiction. Hence
{x,} is a Cauchy sequence in X. By completeness of (X, d),
{xn}72, and {x,41}. | converge to some point x* € X, that is,

limd(x,,x") = 0and limd(x,.1,x") = 0. 24)
There exists increasing sequences {rng}, {n + 1;} € N such that
Xy, € Tx" and x,41, € Sx* forall k € N. Since Tx" and S x* are
closed and

limd(x,,,x") =0 and

n—oo

limd(X,.1,,x%) =0,
n—oo

we get x* € Tx" and x* € Sx*.
Step two. We show that x* is a common fixed point of 7 and S.
It suffices to show that

1 1 .
_d(xn, Txn) < d(xnv X*) and _d(xn+l’an+l) < d(erla x¥)7
1+s 1+s

foreveryn e N, (25)
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implies
F(d(Tx*, ") < F(Ny(x*, Tx")) = y(Ny(x*, Tx"))
and
F(d(Sx*, %) < F(Ny(Sx*, x*)) — y(Ny(S X, x°)),

respectively.
On contrary, suppose there exists m € N such that

d(merl’ Sxm+l) = d(merl’ x*)~

(26)

1 .
——d (X, Txp) = d(x,, X7) O 1

1+s +s

By (26), we have that
(s + Dd(xp, x*) < d(xp, Tx) < d(xpy X°) + 5d(T X, X*)
or
(s+Dd(Xms1, X7) < d(Xms1, S Xmr1) < d(Xps1, X)+5d(S Xips1, X7,
and therefore

d(Xp, X*) < d(T Xy, X*) = d(Xpp41, X*) and

d(merla X*) < d(S Xm+15 X*) = d(xm+2’ X*)~ (27)

By (8), (26) and (27), this is a contradiction. Hence, (25) holds,
and therefore

F(d(xp41,x")) = F(H(T x,, S x%))

< F(Ng(Xp, X)) = (N (x, X7)), (28)
and
F(d(Xy12, %)) = F(H(S Xp41, TX"))
< F(Ng(Xps1, X)) = Y(Ng (X041, X)) (29)

Since that

d(x", Tx") < Ng(xy, x°)
= ¢1(d(xn, XA (X, X)) + P2 (d (X, X)) (X042, X7))
+ ¢3(d(x,, X)) (d(xn+1, x*)2+ cabi Sx*))
K
sty (S )
+ ¢s(d(xn, x))NA(S X*, Xp12) + d(Xy11, S X7))
+ ¢o(d (X, X)X, Xp11) + d(X12, TXY))
+ ¢7(d(-xn5 x*))(d(T-X*v X*) + d(x*9 -xn+1))
S max{(d(xn’ X*)’ d(-anrZ’ X*)9
d(x,41, X%) + d(x,, S x*)
2s ’

d(x,, S x*) + sd(S x*, x,42) + d(S X*, Xp12)

2s ’
d(S -x*7 xn+2) + d(xn+l ’ S-x*)9 d(xm xn+l) + d(-x11+29 T-X*)’

92
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d(Tx*,x*) + d(x*, x411)} (30)

and

d(x",Sx") < Ny(Xpe1,x7)
= $1(d(Xnr1, XA (K11, X)) + G2 (d(Xpa1, XX, Xp43))
d(Xps2, X°) + d(Xp11, X*))

2s

+ ba(dper x)) (d(xn+1, Sx )2+Sd(Sx s Xn43)

+ ¢5(d(Xp1, X)) A(Xn13, S X7) + d(Xn42, S X))

+ P (d(Xps1, XA (X1, Xpa2) + d( X33, S X7))

+ ¢7(d(xnr1, XS X*, X7) + d(X, Xn42))

< max{d(x,i1, X°), d(X", Xp13),

d(Xpi2, x°) + d(Xp41, X7)
2s

d(Xpi1, Xps2) + 5d(Xps2, S X*) + d(S X", Xp13)

2s
d(X,43, Sx*) + d(Xp42, Sx*), Ad(Xps1, Xn42) + d(Xp43, Sx*),
d(S X, x*) + d(x*, Xpi2)). 3D

+¢3(xn+1,x*))(

>

>

By (24) and (30), we have that
nlingoN(,,(x,,, X =d(Tx", x").
By (24) and (31), we have that
nlingoNd)(x,,H LX) =d(Sx", x").

By (28)and (29) and by the continuity of F and , we have that

F(d(x*,Tx")) < F(Ng(x", Tx")) — y(Ny(x*, Tx")),
and

F(d(x*,5x")) < F(Ng(x", S x™)) — y(Nyp(x*, S x7)).

Hence, since Tx* and S x* are closed then we have x* € Tx*
and x* € Sx*, that is, x* is a fixed point of 7" and S.

In Theorem 2.1, when 7' = § = U, then we have the following
result.

Corollary 2.1.1. Let (X, d) be a complete strong b—metric space
andlet U : X — CB(X) be a multivalued generalized F-Suzuki-
Contraction mapping. Then U has a fixed point x* € X and for

every x € X the sequence {U"x}” | converges to x*.

In Corollary 2.1.1, when U is a single-valued then we have an-
other new result as follows.

Corollary 2.1.2. Let (X, d) be a complete strong b—metric space
and let U : X — X be a single-valued generalized F-Suzuki-
Contraction mapping. Then U has a fixed point x* € X and for

every x € X the sequence {U"x}? | converges to x".

In Theorem 2.1, when T and S are two single-valued then the
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following result holds.

Corollary 2.1.3. Let (X, d) be a complete strong b—metric space
and let T,S : X — X be two single-valued generalized F-

Suzuki-Contraction mappings. Then T and S have a common

fixed point x* € X and for every x € X the sequence {T"x}," ,

and {S"x}; | converge to x".

In Theorem 2.1, when (X, d) is a complete b—metric space then
the following new result holds.

Corollary 2.1.4. Let (X, d) be a complete b—metric space and
let T,S : X — X be two single-valued generalized F-Suzuki-
Contraction mappings. Then T and S have a common fixed
point x* € X and for every x € X the sequence {T"x}" | and
{S$"x}? | converge to x*.

Incorollary 2.1.4, when T = § = U, then we have the following
result.

Corollary 2.1.5. Let (X,d) be a complete b—metric space and
let U : X — CB(X) be a multivalued generalized F-Suzuki-
Contraction mapping. Then U has a fixed point x* € X and for
every x € X the sequence {U"x}? | converges to x*.

Corollary 2.1.6. Let (X, d) be a complete strong b—metric space
and let U : X — CB(X) be a multivalued generalized F-
Suzuki-Contraction mapping such that there exists F € U and
eV, Vx,yeX x £y, Hld(x Ux) <d(x,y) = ¢y(N(x,y)) +
F(s*d(Ux, Uy)) < F(N(x,y)) in which

N(x,y) = max{d(x,y),d(y, sz)

(d(y, Ux)) +d(x,Uy) (d(x,Uy)) +d(U?x, Uy)
2s ’ 2s

d(U%x, Uy) + d(Uy, Ux),d(U*x, Uy) + d(Ux, x),

d(Ux,y)) + d(y, Uy)}.

(32

Then U has a fixed point x* € X and for every x € X the se-
quence {U"x}>? | converges to x".

Proof from Lemma 1.1, since (2) = (32) then by the corollary
2.1.1 the result follows immediately.

Corollary 2.1.7. Let (X, d) be a complete strong b—metric space
and let U : X — X be a single-valued generalized F-Suzuki-
Contraction mapping such that there exists F € U and y €
Y, Vx,y € X, x £ Y, 6Hd(x Ux) < d(x,y) = Y(N(x,y)) +
F(s*d(Ux, Uy)) < F(N(x,y)) in which

N(x,y) = max{d(x,y),d(y, sz),

d(@y,Ux)) +d(x,Uy) (d(x,Uy))+ d(U?x, Uy)
2s ’ 2s ’
d(U?x, Uy) + d(Uy, Ux),d(U*x, Uy) + d(Ux, x),

d(Ux,y)) +d(y, Uy)}.

(33)
Then U has a fixed point x* € X and for every x € X the se-
quence {U"x}? | converges to x*.

Proof from Lemma 1.1, since (2) = (33) then by the corollary
2.1.2 the result holds.
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Corollary 2.1.8. Let (X, d) be a complete strong b—metric space
and let T,S : X — X be two single-valued generalized F-
Suzuki-Contraction mappings such that there exists F € U and
yeV,Vx,yeX x+y, Hld(x Tx) < d(x,y) and Hld(y,Sx) <
dy,STx) = y(N(x,y))+F(s*H(Tx,Sy)) < F(N(x,Y)) in which

N(x,y) = max{d(x,y),d(y, S Tx),
d(y, Tx))+d(x,Sy) (d(x,Sy)+d(STx,Sy)
2s ’ 2s ’
dSTx,Sy)+d(Sy, Tx),d(STx,Sy) +d(Tx, x),d(Tx,y)) +d(y,Sy)}.
(34)

Then T and S have a common fixed point x* € X and for every
X € X the sequence {T"x},7 | and {S"x};? | converge to x".

Proof from Lemma 1.1, since (2) = (34) then by the corollary
2.1.4 the result holds.

Corollary 2.1.9. Let (X,d) be a complete b—metric space and
let U : X — CB(X) be a multivalued generalized F-Suzuki-
Contraction mapping such that there exists F € U and ¢ €
¥, Vx,y € X, x # 3 2£d(x,Ux) < d(x,y) = y(N(x,y)) +
F(s%d(Ux, Uy)) < F(N(x,y)) in which

N(x,y) = max{d(x,y), d(y, sz)
(d(y,Ux)) +d(x,Uy) (d(x,Uy)) +d(U?x, Uy)
2s ’ 2s
d(U?x, Uy) + d(Uy, Ux),d(U*x, Uy) + d(Ux, x),d(Ux, y)) + d(y, Uy)}.
(35)

Then U has a fixed point x* € X and for every x € X the se-
quence {U"x}? | converges to x".

Proof from Lemma 1.1, since (2) = (35) then by the corollary
2.1.5 the result holds.

3. Example

Let X = [0,1]. T, S : [0,1] — CB([0, 1]) be defined by Tx =
[0,5]and Sy = [0, %] such that STx = [0, %] for all x € [0, 1].
Let d be the usual metric on X. Taking F(f) = 1’—0 and let x < y,
then Vx,y € [0,1]d(x,y) > Oand d(y,STx) = [y—3| > [y—%| =
%y > 2. Now, for s = 1, we have that %d(x, Tx) =0 < d(x,y)
and %d(y, Sy) = % < d(y,S Tx). Without lose of generality, let
$1(d(x,y) = o(d(x,y) = $3(d(x,y) = L; and p(d(x,y)) =

ds(d(x,y)) = de(d(x,y)) = ¢7(d(x,y)) = #. Therefore, we
have that

F(H(Tx,Sy)) = In(H(Tx,Sy)) + HTx,Sy)

1y X
"10’5_2 10' ___Z

1
S10 ‘y_Z‘ x_i‘)
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= — | — |4 —

10 2 10 2
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4. Conclusion

Fixed point results of Piri and Kumam [11], Ahmad et al. [9],
Suzuki [18] and Suzuki [19] are extended by introducing com-
mon fixed point problem for multivalued generalized F-Suzuki-
contraction mappings in strong b-metric spaces. In specific,
Corollary 2.1.1 and corollary 2.1.2 generalize and extend the
work of Ahmad et al. [9] and Kumam and Hossein [5], respec-
tively.

Acknowledgments

I thank the referees for the positive enlightening comments and
suggestions, which have greatly helped me in making improve-

94

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

in complete metric spaces”, Fixed Point Theory Appl. 2012 (2012) 94.

J. Ahmad, A. Al-Rawashdeh & A. Azam, “New fixed point theorems for
generalized F-contractions in complete metric spaces, Fixed Point Theory
and Applications. 2015 (2015) 80. https://doi.org/10.1186/s13663-015-
0333-2

V. D. Nguyen & T. H. Vo, “A Fixed Point Theorem for Generalized F-
Contractions on Complete Metric Spaces”, Vietnam J. Math. 43 (2014)
743. https://doi.org/10.1007/s10013-015-0123-5

H. Piri & P. Kumam, “Some fixed point theorems concerning F-
contraction in complete metric spaces”, Fixed Point Theory Appl. 2014
(2014) 210. https://doi.org/10.1186/1687-1812-2014-210.

H. Piri & P. Kumam, “Fixed point theorems for generalized F-Suzuki-
contraction mappings in complete b-metric spaces”, Fixed Point Theory
and Applications 2016 (2016) 90. https://doi.org/10.1186/s13663-016-
0577-5.

B. E. Rhoades, “A comparison of various definition of contractive map-
pings”, Trans. Amer. Math. Soc. 226 (1977) 257.

G. E. Hardy & T. D. Rogers, “A generalization of a fixed point theorem
of Reich”, Canad. Math. Bull. 16 (1973) 201.

P. Hossein & P. Kumam, “Some fixed point theorems concerning F-
contraction in complete metric spaces”, Fixed point theory and applica-
tions 2014 (2014) 210. https://doi.org/10.1186/1687-1812-2014-210

T. Rasham, A. Shoaib, B. A. S. Alamri & M. Arshad, ‘“Mul-
tivalued Fixed Point Results for New Generalized F-Dominated
Contractive Mappings on Dislocated Metric Space with Applica-
tion”, Journal of Function Spaces Volume 2018 (2018) 4808764.
https://doi.org/10.1155/2018/4808764.

T. Rasham, A. Shoaib, N. Hussain, M. Arshad & S. U. Khan, “Common
fixed point results for new Ciric-type rational multivalued F-contraction
with an application”, J. Fixed Point Theory Appl. 2018 (2018) 20
https://doi.org/10.1007/s11784-018-0525-6.

T. Suzuki, “A generalized Banach contraction principle that characterizes
metric completeness”, Proceedings of the American Mathematical Soci-
ety 136 (2008) 1861.

T. Suzuki, “Discussion of several contractions by Jachymski’s ap-
proach”, Fixed point theory and applications 2016 (2016) O91.
https://doi.org/10.1186/s13663-016-0581-9



