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Abstract

This paper introduces an innovative method for numerically integrating fourth-order initial value problems by utilizing Chebyshev polynomials
as the fundamental basis function. The block integrator based on Chebyshev polynomial demonstrates significant improvements in accuracy and
stability, rendering it a valuable tool across various scientific and engineering fields. By leveraging the characteristics of Chebyshev polynomials,
this approach accurately estimates solutions for fourth-order differential equations without reducing it to a system of first order ordinary differential
equations while at the same time effectively managing error accumulation within a block integration framework and thereby enhancing its accuracy
over extended intervals. Through rigorous numerical experiments, the effectiveness and reliability of the new integrator are demonstrated and
compared with existing methods. The new method is consistent, zero stable and convergent. The method also shows an appreciable error constants.
The new method performed better in terms of accuracy than the existing methods in the literature in both linear and nonlinear problems.
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1. Introduction

This study focuses on addressing fourth-order initial value
problems (IVPs) represented by the equation:

y
′v = f (x, y, y′, y′′, y′′′), y(a) = α, y′(a) = β, y′′(a) = γ, y′′′ (a) = δ, (1)

where f is continuous within the interval [a, b] of integration.
Numerical methods play a pivotal role in efficiently and

accurately solving differential equations, essential in various

∗Corresponding author: Tel. No.: +234-803-213-8545.
Email address: michaelmaths865@gmail.com (O. M. Ogunlaran)

scientific and engineering applications. While numerous tech-
niques exist for first- and second-order IVPs, addressing higher-
order IVPs poses unique challenges due to the intricate nature
of the underlying equations. A common strategy involves trans-
forming a fourth-order problem into an equivalent system of
first-order initial value problems and then applying a suitable
numerical integration method.

However, notable authors such as Awoyemi [1], Familua
& Omole [2], Ogunlaran & Kehinde [3] and Lambert [4] have
pointed out the drawbacks associated with the reduction of or-
der approach, including increased function evaluations, cod-
ing complexity, and greater computational time and storage re-
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quirements. Recent interest focuses on innovative approaches
to overcome these challenges and develop more efficient numer-
ical integration methods for directly solving higher-order dif-
ferential equations. Block linear multistep methods (BLMMs)
have proven effective for solving IVPs associated with ordinary
differential equations, offering stability and computational ad-
vantages. Various polynomials have been employed by differ-
ent authors in BLMMs, such as Power series by Awoyemi [1],
Familua & Omole [2], Ramos et al. [5], Atabo & Adee [6]
and Modebei et al. [7], Taylor series by Adoghe & Omole [8],
Lucas Polynomials by Adeniran & Longe [9], Legendre Poly-
nomials by Nazreen & Zanariah [10], Chebyshev Polynomials
by Olabode & Momoh [11] and Alabi et al. [12] and Hermite
polynomials by Ogunlaran & Kehinde [3]. The effectiveness of
Chebyshev polynomials is widely recognized across scientific
and engineering fields, including weather forecasting, surface
and interface stress effects in thin films, solving integral equa-
tions and two-point boundary value problems, and so on, Khater
et al. [13].

This paper proposes a novel BLMM to efficiently tackling
general fourth-order IVPs by leveraging on orthogonal proper-
ties and exceptional approximation capabilities of Chebyshev
polynomials which is used as basis function.

2. Derivation of the Method

In this section, we consider the initial value problem of the
form (1) defined in a finite interval a ≤ x ≤ b and f is a contin-
uous differentiable function.
In order to derive a 4-step multistep method for the solution of
(1), we consider

y′v = f (x, y(x), y′(x), y′′(x), y′′′(x)), xn ≤ x ≤ xn+4,

y(xn) = α, y′(xn) = β, y′′(xn) = γ, y′′′(xn) = δ, (2)

and we desire to find the numerical estimation of the analytical
solution y(x) using an approximate solution of the form:

Y(x) =
8∑

r=0

arTr

( x − nh − 2h
2h

)
, (3)

where ar are coefficients to be determined and Tr(x) are the
rth degree Chebyshev polynomial functions of the first kind de-
fined in the interval [a, b] as:

Tr(x) = cos
[
r cos−1

(2x − (b + a)
b − a

)]
. (4)

Equation (4) satisfies the recurrence relation

Tr+1(x) = 2
(2x − (b + a)

b − a

)
Tr(x) − Tr−1(x), r ≥ 1; (5)

and with the starting values:

T0(x) = 1 and T1(x) =
2x − (b + a)

b − a
. (6)

There are nine equations in nine unknowns to be obtained from
(3) and satisfying the following:

8∑
r=0

arTr

( x − nh − 2h
2h

)
= yn+i, (7)

8∑
r=0

arT ′vr

( x − nh − 2h
2h

)
= fn+i. (8)

On collocating (8) at x = xn+i, i = 0(1)4 and interpolating (7)
at x = xn+i, i = 0(1)3 we obtain a system of nine equations
with nine unknowns which is solved and gives the values of the
undetermined coefficients ar(r = 0(1)8) as follows:

a0 =
4
35

h4 fn+2 −
1

2520
h4 fn +

67
2520

h4 fn+1+

67
2520

h4 fn+3 −
1

2520
h4 fn+4 + yn+1 − yn+2 + yn+3,

a1 = −
1

3789
h4 fn +

247
3780

h4 fn+1 +
79

360
h4 fn+2

+
187

3780
h4 fn+3 −

1
1512

h4 fn+4 + yn+1 − 2yn+2 +
5
3

yn+3 −
2
3

yn,

a2 = −
31

60480
h4 fn +

619
15120

h4 fn+1 +
341

2016
h4 fn+2

+
619

15120
h4 fn+3 −

31
60480

h4 fn+4 + yn+1 − 2yn+2 + yn+3,

a3 = yn+1 +
79

720
h4 fn+2 +

31
1080

h4 fn+1 − yn+2 +
31

1080
h4 fn+3−

1
4320

h4 fn −
1

4320
h4 fn+4 −

1
3

yn +
1
3

yn+3,

a4 =
1
20

h4 fn+2 +
1

60
h4 fn+1 +

1
60

h4 fn+3, (9)

a5 = −
1

120
h4 fn+1 +

1
120

h4 fn+3,

a6 =
2

945
h4 fn+1 −

23
5040

h4 fn+2 +
2

945
h4 fn+3 +

1
6048

h4 fn +
1

6048
h4 fn+4,

a7 = −
1

5040
h4 fn +

1
2520

h4 fn+1 −
1

2520
h4 fn+3 +

1
5040

h4 fn+4,

and,

a8 =
1

20160
h4 fn −

1
5040

h4 fn+1+

1
3360

h4 fn+2 −
1

5040
h4 fn+3 +

1
20160

h4 fn+4.

The ar(r = 0(1)8) in (9) are substituted into (3) and after some
algebraic manipulation yields:

Y(x) =
4∑

i=0

αi(x)yn+1 + h4
4∑

i=0

βi(x) fn+1. (10)

Evaluating the continuous scheme (10) at x = xn+4 leads to the
main method:
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yn+4 − 4yn+3 + 6yn+2 − 4yn+1 + yn =

h4

720

(
− fn + 124 fn+1 + 474 fn+2 + 124 fn+3 − fn+4

)
. (11)

First, second and third derivatives of the continuous scheme (8)
with respect to x yield the following:

Y ′(x) =
1

2h

4∑
i=0

α′i(x)yn+i + h4
4∑

i=0

β′i(x) fn+i, (12)

Y ′′(x) =
1

4h2

4∑
i=0

α′′i (x)yn+i + h4
4∑

i=0

β′′i (x) fn+i, (13)

and

Y ′′′(x) =
1

8h3

4∑
i=0

α′′′i (x)yn+i + h4
4∑

i=0

β′′′i (x) fn+i. (14)

Evaluating each of equations (12), (13), and (14) at x =
xn+i, (i = 0(1)4) respectively yield the following:

− 2yn+3 + 9yn+2 − 18yn+1 + 11yn + 6hy′n =

h4

10080

(
− 579 fn − 10860 fn+1 − 3762 fn+2 + 84 fn+3 − 3 fn+4

)
,

(15)

yn+3 − 6yn+2 + 3yn+1 + 2yn + 6hy′n+1 =

h4

10080

(
− 31 fn + 2908 fn+1 + 2382 fn+2 − 260 fn+3 + 41 fn+4

)
,

(16)

− 2yn+3 − 3yn+2 + 6yn+1 − yn + 6hy′n+2 =

h4

10080

(
55 fn − 1972 fn+1 − 3318 fn+2 + 236 fn+ − 41 fn+4

)
, (17)

− 11yn+3 + 18yn+2 − 9yn+1 + 2yn + 6hy′n+3 =

h4

10080

(
− 69 fn + 3732 fn+1 + 10890 fn+2 + 564 fn+3 + 3 fn+4

)
,

(18)

− 26yn+3 + 57yn+2 − 42yn+1 + 11yn + 6hy′n+4 =

h4

10080

(
−151 fn+19012 fn+1+76758 fn+2+29956 fn+3+425 fn+4

)
,

(19)

4yn+3 − 16yn+2 + 20yn+1 − 8yn + 4h2y′′n =

h4

15120

(
4463 fn + 42124 fn+1 + 7962 fn+2 + 241 fn+4

)
, (20)

− 4yn+2 + 8yn+1 − 4yn + 4h2y′′n+1 =

h4

15120

(
− 157 fn − 4748 fn+1 − 102 fn+2 − 44 fn+3 + 11 fn+4

)
,

(21)

− 4yn+3 + 8yn+2 − 4yn+1 + 4h2y′′n+2 =

h4

15120

(
11 fn − 212 fn+1 − 4638 fn+2 − 212 fn+3 + 11 fn+4

)
, (22)

− 8yn+3 + 20yn+2 − 16yn+1 + 4yn + 4h2y′′n+3 =

h4

15120

(
−73 fn+10372 fn+1+39714 fn+2+5668 fn+3−241 fn+4

)
,

(23)

− 12yn+3 + 32yn+2 − 28yn + 1 + 8yn + 4h2y′′n+4 =

h4

15120

(
−409 fn+21964 fn+1+87594 fn+2+62956 fn+3+4295 fn+4

)
,

(24)

− 8yn+3 + 24yn+2 − 24yn+1 + 8yn + 8h3y′′′n =

h4

20

(
− 53 fn − 184 f n + 1 + 10 fn+2 − 16 fn+3 + 3 fn+4

)
, (25)

− 8yn+3 + 24yn+2 − 24yn+1 + 8yn + 8h3y′′′n+1 =

h4

180

(
25 fn − 364 fn+1 − 438 fn+2 + 68 fn+3 − 11 fn+4

)
, (26)

− 8yn+3 + 24yn+2 − 24yn+1 + 8yn + 8h3y′′′n =

h4

180

(
− 13 fn + 328 f n + 1 + 474 fn+2 − 80 fn+3 + 11 fn+4

)
, (27)

− 8yn+3 + 24yn+2 − 24yn+1 + 8yn + 8h3y′′′n+3 =

h4

20

(
fn + 20 fn+1 + 154 fn+2 + 68 fn+3 − 3 fn+4

)
, (28)

− 8yn+3 + 24yn+2 − 24yn+1) + 8yn + 8h3y′′′n+4 =

h4

180

(
− 29 fn + 392 fn+1 + 858 fn+2 + 1904 fn+3 + 475 fn+4

)
.

(29)

Equations (11), (15)–(29) combined constitute our block
method.
To investigate the properties of the new method, the new block
method (11), (15)–(29) can be written in the form of matrix
difference equations:

AYm = BYm−1h4[C fn + DFm], (30)

where

3
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Ym =
(
yn+1, yn+2, yn+3, yn+4, hy′n+1, hy′n+2, hy′n+3, hy′n+4, h

2y′′n+1,

h2y′′n+2, h
2y′′n+3, h

2y′′n+4, h
3y′′′n+1, h

3y′′′n+2, h
3y′′′n+3, h

3y′′′n+4

)T
,

Ym−1 =
(
yn−3, yn−2, yn−1, yn, hy′n−3, hy′n−2, hy′n−1, hy′n,

h2y′′n−3, h
2y′′n−2, h

2y′′n−1, h
2y′′n , h

3y′′′n−3, h
3y′′′n−2, h

3y′′′n−1, h
3y′′′n

)T
,

Fm =
(

fn+1, fn+2, fn+3, fn+4

)T
,

A =



−4 6 −4 1 0 0 0 0 0 0 0 0 0 0 0 0
−18 9 −2 0 0 0 0 0 0 0 0 0 0 0 0 0

3 −6 1 0 6 0 0 0 0 0 0 0 0 0 0 0
6 −3 −2 0 0 6 0 0 0 0 0 0 0 0 0 0
−9 18 11 0 0 0 6 0 0 0 0 0 0 0 0 0
−42 57 −26 0 0 6 0 6 0 0 0 0 0 0 0 0
20 −16 4 0 0 0 0 0 0 0 0 0 0 0 0 0
8 4 0 0 0 0 0 0 4 0 0 0 0 0 0 0
−4 8 −4 0 0 0 0 0 0 4 0 0 0 0 0 0
−16 20 −8 0 0 0 0 0 0 0 4 0 0 0 0 0
−28 32 −12 0 0 0 0 0 0 0 0 4 0 0 0 0
−24 24 −8 0 0 0 0 0 0 0 0 0 0 0 0 0
−24 24 −8 0 0 0 0 0 0 0 0 0 8 0 0 0
−24 24 −8 0 0 0 0 0 0 0 0 0 0 8 0 0
−24 24 −8 0 0 0 0 0 0 0 0 0 0 0 8 0
−24 24 −8 0 0 0 0 0 0 0 0 0 0 0 0 8


and

B =



0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −6 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.

3. Analysis of the Method

Basic properties of the block method are considered and an-
alyzed to establish the efficiency and reliability of the method.
The following properties are analyzed: Order, error constant,
consistency, and zero stability. The convergence of the method
is guaranteed by its consistency and zero stability.

3.1. Order and Local Truncation Error
The local truncation error associated with the linear multi-

step method:
k∑

i=0

αiyn+i = h4
k∑

i=0

βi fn+i, (31)

is defined by the difference operator

L[y(x) : h] =
k∑

i=0

[αiy(xn + ih) − h4βi f (xn + ih)], (32)

where y(x) is an arbitrary function, continuously differentiable
on [a, b], Lambert [4] and Iserles [14]. Expanding (32) in Tay-
lor series about point x leads to the expression:

Figure 1. Region of absolute stability of the new block method

L[y(x) : h] = c0y(x) + c1hy′(x) + c2h2y′′(x)+

· · · + cphpy(p)(x) + · · · cp+4hp+4y(p+4)(x), (33)

where c0, c1, c2, · · · , cp, · · · , cp+3 are obtained as follows:

c0 =

k∑
i=0

αi, c1 =

k∑
i=1

iαi,

c2 =
1
2!

k∑
i=1

i2αi,

...

cq =
1
q!

[
k∑

i=1

iqαi − q(q − 1)(q − 2)
k∑

i=1

βiiq−3].

Therefore, method (31) is of order p if c0 = c1 = c2 = · · · =

cp = cp+1 = cp+2 = cp+3 = 0 and cp+4 , 0. The constant
cp+4 , 0 is called the error constant and cp+4 hp+4y(p+4)(x)
is the principal local truncation error at xn. Using the above
definition, the method (11), (15)–(29) is of order p = 5 and
error constant

c9 =
( 1
3024

,
559
8400

,
−11
5600

,
53

25200
,

−11
5600

,
−1
600
,

23
1512

,
−11

15120
,
−11

15120
,

11
15120

,

−23
1512

,
−883
7560

,
251
7560

,
−211
7560

,
251

7560
,
−883
7560

)T
.

The interval of absolute stability is (0, 51.4286) of the real line.

3.2. Consistency
According to Anake [15], given a continuous implicit 4 -

step method with first and second characteristics polynomials
defined as: ρ(r) =

∑k
j=0 α jr j, σ(r) =

∑k
j=0 β jr j,

then the block method is consistency if it satisfies the following
conditions:

4
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Table 1. Boundaries of Region of Absolute Stability of the New Block Method
θ 00 300 600 900 1200 1500 1800

x 0.0000 0.0752 1.2020 6.0504 18.4615 38.8354 51.4286
y(10−15) 0.0000 0.0903 -0.0798 0.0000 0.0000 0.9821 0.0000

(i) the order of the method is p ≥ 1.

(ii)
∑4

j=0 α j = 0.

(iii) ρ(1) = ρ′(1).

(iv) ρiv(1) = 4!σ(1).

For the main method (11), the first and second characteristic
polynomials are given as: ρ(r) = r4 − 4r3 + 6r2 − 4r + 1 and
σ(r) = 1

720 (−r4 + 124r3 + 474r2 + 124r − 1).
Clearly, the main method (11) satisfies the above four condi-
tions for consistency, therefore the new block method is consis-
tent.

3.3. Zero Stability
To analyze the method for zero stability, we normalize (30)

and obtain the normalized matrix difference equation:

A∗Ym = B∗Yn−1 + h4[C∗ fn + D∗Fm], (34)

Hence, the zero stability of the method is determined by the
expression:

ρ(r) = det(rA∗ − B∗) = 0 as h→ 0. (35)
Here;

A∗ =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



,

B∗ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.

Solving equation (35) for r leads to:
ρ(r) = r15(r − 1) = 0⇒ r = 0, 1. Therefore, the method is zero
stable.

3.4. Convergence
According to Dahlquist [16] and Butcher [17], the neces-

sary and sufficient conditions for a method to be convergent is
to be consistent and zero stable. Thus, the block method (11),
(15)–(29) is convergent since it is consistent and zero stable.

3.5. Region of Absolute Stability
By boundary locus method, the boundary of absolute stabil-

ity is given by

h(θ) =
ρ(eiθ)
σ(eiθ)

=

720(e4iθ − 4e3iθ + 6e2iθ − 4eiθ + 1)
(−e4iθ + 124e3iθ + 474e2iθ + 124eiθ − 1)

, (36)

where ρ(r) and σ(r) are respectively first and second char-
acteristics polynomials of the main method (11) respectively.
Therefore,

h(θ) =
720(cos 4θ − 4 cos 3θ + 6 cos 2θ − 4 cos θ + 1)

(− cos 4θ + 124 cos 3θ + 474 cos 2θ + 124 cos θ − 1)
+720i(sin 4θ − 4 sin 3θ + 6 sin 2θ − 4 sin θ)

+i(− sin 4θ + 124 sin 3θ + 474 sin 2θ + 124 sin θ)
.

Direct computation of h(θ) to 4 decimal places for 00 ≤ θ ≤
1800 with step length of 300 gives the following Table 2-5.

4. Numerical Examples

In order to determine the applicability, suitability and accu-
racy of the method developed in section 2, the following IVPs
of fourth order ordinary differential equations were considered:
Example 1 Solve the initial value problem:

y′v + x = 0; y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = 0.h = 0.1.

Analytical Solution is y(x) = x5

120 + x [18].
Example 2
Solve the nonlinear inhomogeneous initial value problem:

y′v = (y′)2 − yy′′′ − 4x2 + ex(1 − 4x + x2); 0 ≤ x ≤ 1,
y(0) = 1, y′(0) = 1, y′′(0) = 3, y′′′(0) = 1. h = 0.1.

Analytical Solution is y(x) = x2 + ex [3].
Example 3
Solve the initial value problem:

y′v − y = 0; y(0) = 1, y′(0) = 0, y′′(0) = −2, y′′′(0) = 0.h =
1

320

Analytical Solution is y(x) = −1
4 ex − 1

4 e−x + 3
2 cos x [18].

Example 4
5
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Table 2. Absolute Errors for Example 1 with h = 0.1
x Approximate

Solution
New Method Kayode et

al. [20]
Kuboye &
Omar [21]

Mohammed [22] Kuboye et
al. [18]

0.1 0.100000083 0.00 0.00 1.0E-12 7.00E-10 0.00
0.2 0.200002666 0.00 0.00 0.00 8.00E-10 0.00
0.3 0.300020250 0.00 0.00 0.00 3.00E-09 0.00
0.4 0.400085333 0.00 5.55E-17 0.00 5.10E-09 5.55E-17
0.5 0.500260417 0.00 1.11E-16 1.00E-12 7.80E-09 1.11E-16
0.6 0.600648000 2.00E-20 1.11E-16 2.75E-12 1.18E-08 1.11E-16
0.7 0.701400583 4.00E-20 2.22E-16 3.50E-12 1.24E-08 2.22E-16
0.8 0.802730667 7.00E-20 0.00 3.50E-12 1.41E-08 0.00
0.9 0.904920750 1.90E-19 1.11E-16 4.18E-12 1.88E-08 1.11E-16
1.0 1.008333333 2.10E-19 2.22E-16 4.76E-12 1.01E-08 2.22E-16

Table 3. Absolute Errors for Example 2 with h = 0.1
x Approximate

Solution
New Method Ogunlaran &

Kehinde [3]
Alechienu &
Oyewola [23]

Alechienu&Oyewola [23]
(Adam-Bashforth)

0.1 1.115170918 0.00 3.00E-09 0.00 0.00
0.2 1.261402758 0.00 6.00E-09 0.00 0.00
0.3 1.439858808 0.00 8.00E-09 0.00 0.00
0.4 1.651824698 0.00 1.10E -08 0.00 0.00
0.5 1.898721272 1.00E-09 2.10E-08 1.71E-05 2.53E-01
0.6 2.182118804 4.00E-09 3.30E-08 9.44E-05 7.19E-01
0.7 2.503752715 8.00E-09 4.40E-08 3.11E-04 1.44E-00
0.8 2.865540940 1.20E-08 5.70E-08 7.94E-04 2.33E-00
0.9 3.269603128 1.68E-08 1.12E-07 1.73E-03 3.41E-00
1.0 3.718281870 4.15E-08 1.82E-07 3.38E-03 4.72E-00

Table 4. Absolute Errors for Example 3 with h = 1
320

x Approximate
Solution

New Method Kuboye et
al. [18] EIFBM

Kuboye et
al. [18] EISBM

Alechienu & Oye-
wola [23]

0.003125 0.999990234 2.46E-28 2.22E-16 4.44E-16 4.44E-16
0.006250 0.999960937 3.80E-27 0.00 0.00 2.18E-14
0.009375 0.999912110 1.51E-26 2.22E-16 0.00 7.72E-13
0.012500 0.999843751 3.85E-26 4.44E-16 4.44E-16 7.67E-13
0.015625 0.999755862 7.75E-26 0.00 2.22E-16 2.37E-12
0.018750 0.999648443 1.41E-26 4.44E-16 2.22E-16 5.93E-12
0.021875 0.999521494 2.42E-26 2.22E-16 0.00 1.29E-11
0.025000 0.999375016 3.95E-26 2.22E-16 2.22E-16 2.52E-11
0.028125 0.999209010 6.08E-26 4.44E-16 4.44E-16 4.55E-11
0.031250 0.999023477 8.96E-26 0.00 2.22E-16 7.71E-11

Table 5. Absolute Error for Example 4 with h = 1
320

x Approximate
Solution

New Method Ukpeboret
al. [19]

Familua & Omole
[2] Method 1

Familua & Omole [2]
Method 2

0.003125 0.999999999 3.69E-27 1.90E-19 6.69E-13 5.69E-10
0.006250 0.999999999 5.70E-26 2.30E-19 1.46E-11 1.77E-10
0.009375 0.999999999 2.26E-25 8.60E-19 1.08E-10 5.91E-09
0.012500 0.999999997 5.77E-25 1.38E-18 1.08E-10 5.77E-09
0.015625 0.999999995 1.16E-24 3.53E-18 1.03E-09 1.10E-08
0.018750 0.999999990 2.11E-24 5.31E-18 2.22E-09 6.90E-08
0.021875 0.999999981 3.63E-24 8.88E-18 4.23E-09 4.64E-08
0.025000 0.999999967 5.92E-24 3.92E-17 7.36E-09 5.79E-07
0.028125 0.999999948 9.11E-24 5.85E-17 1.20E-08 2.25E-07
0.031250 0.999999921 1.34E-23 8.48E-17 1.85E-08 2.85E-07

Consider an application problem from ship dynamics below:

y′v + 3y′′ + y(2 + ϵ cos(Ωx)) = 0; x > 0

which is subjected to the following initial conditions

y(0) = 1, y′(0) = y′′(0) = y′′′(0) = 0, h =
1

320
,

where Ω = 0 for the theoretical solution y(x) = 2 cos x −
cos(x

√
2) [19].

Tables 2–5 show comparison of absolute errors in the numer-
ical solutions of Examples 1–4 for the new method and other
existing methods in the literature.

6
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Figure 2. Comparison of Exact and Approximate Solutions for Example 1

Figure 3. Comparison of Exact and Approximate Solutions for Example 2

Figure 4. Comparison of Exact and Approximate Solutions for Example 3

5. Discussion of Result

The new method is consistent, zero stable and convergent.
The method also shows an appreciable error constants. From
Table 1, the interval of absolute stability is given as (0, 51.4286)
while the region of absolute stability is presented in Figure 1.

The numerical results of the problems considered using
the new block method is compared with that of Kayode et al.
[20], Kuboye & Omar [21], Mohammed [22] and Kuboye et
al. [18] in Example 1; Ogunlaran & Kehinde [3], Alechienu

& Oyewola [23] and Alechienu & Oyewola [23] using Adams-
Bashforth method in Example 2 while Kuboye et al. [18] with
EIFBM, Kuboye et al. [18] with EISBM and Alechienu & Oye-
wola [23] in Example 3. The new block method is also applied
on an application problem from ship dynamics. The results ob-
tained is compared with those of Ukebor et al. [19], Familua &
Omole [2] (block method) and Familua & Omole [2] (Predictor
- Corrector method).

We considered step length h = 0.1 for Numerical Exam-
ples 1 and 2 while h = 1/320 was used for Numerical Exam-

7
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Figure 5. Comparison of Exact and Approximate Solutions for Example 4

ples 3 and 4. Maximum absolute error in Example 1 for the
new method as presented in Table 1 is 2.1E-19 while 2.22E-16,
4.76E-12, 1.88E-12, and 2.22E-16 are obtained for Kayode et
al. [20], Kuboye & Omar [21], Mohammed [22] and Kuboye
et al. [18] respectively. For Example 2, the maximum absolute
error of the new method as presented in Table 2 is 4.15E-08
while 1.82E-07, 3.38E-03 and 4.72E-00 are for Ogunlaran &
Kehinde [3], Alechienu & Oyewola [23] and Alechienu & Oye-
wola [23] using Adams-Bashforth method respectively. The
new block method shows a good performance over other meth-
ods in the literature for Example 3 as presented in Table 3. The
maximum absolute error of the new method is 8.96E-26 while
4.44E-16, 4.44E-16 and 7.71E-11 are for Kuboye et al. [18]
with EIFBM, Kuboye et al. [18] with EISBM and Alechienu
& Oyewola [23] respectively. The new block method also per-
forms well in application problem of ship dynamics with maxi-
mum absolute error 1.34E-23 which is significantly lower than
those of methods in the literature with maximum absolute er-
rors 8.48E-17, 1.85E-08 and 2.85E-07 for Ukpebor et al. [19],
Familua & Omole [2] (block method) and Familua & Omole [2]
(Predictor - Corrector method) respectively as presented in Ta-
ble 5.

Comparison of exact and approximate solutions for the Ex-
amples 1–4 are presented in Figures 2– 5 respectively. Fig-
ure 2– 5 show no visible difference in the exact and approxi-
mate solutions for the Problems considered. This shows that the
new method is applicable and preferable in solving all problems
considered. The new method performed better than the existing
methods considered in the literature in both linear and nonlinear
problems.

Validity of the results can be seen from the analysis of the
new block method presented in section 3 and graphical presen-
tation of exact and approximate solutions in section 4.

6. Conclusion

In this study, the Chebyshev-based block integrator is
specifically formulated for direct solution of fourth-order IVPs.
The method explores the unique properties of Chebyshev poly-
nomials and their efficient use within a block integration frame-
work. Through a series of numerical experiments and compar-

isons with existing methods, we have demonstrated the remark-
able accuracy and stability offered by this innovative technique
in solving fourth-order IVPs. The results of the numerical ex-
periments consistently showed that the Chebyshev-based block
integrator outperforms existing numerical integration methods.
Its ability to control error accumulation and maintain numerical
stability even in challenging scenarios is a substantial advance-
ment in the field of numerical analysis. This new method has
the potential to impact a wide array of applications across nu-
merous scientific and engineering domains. From the accurate
simulation of complex physical systems to the precise modeling
of intricate dynamic processes in biology, economics, and other
fields, the Chebyshev-based direct block integrator offers an in-
valuable tool for researchers and practitioners seeking reliable
numerical solutions to fourth-order IVPs.
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