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Abstract

In this research, we extended the Log-Logistic distribution by incorporating it into the Maxwell generalized class, resulting in the Maxwell-Log
Logistic (Max-LL ) distribution. The probability density function and cumulative distribution function of the proposed distribution have been
defined. The proposed distribution’s density shapes can be left or right-skewed and symmetric. The failure function of this distribution might
be increasing, decreasing, or inverted bathtub forms. We discussed some essential properties of the Max-LL distribution, including moments,
moment generating function, probability weighted moments, stress-strength, and order statistics. The efficiency of the model parameters has been
evaluated through a simulation study utilizing a quantile function. To assess the proposed distribution’s adaptability, we applied it to two lifetime
datasets: global COVID-19 mortality rates (for nations with more than 100,000 cases) and Canadian COVID-19 mortality rates. The Maxwell-Log
Logistic distribution outperformed other distributions on both datasets, as evidenced by several accuracy measures. This shows that the proposed
distribution is the best fit for COVID-19 mortality rate data in Canada and around the world.
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1. Introduction

Numerous statistical frameworks that provide accurate and
reliable forecasts of underlying processes are being developed
by researchers to address the increased complexity and diversity
of data sets [1]. In recent years, modeling lifetime distributions

∗Corresponding author Tel. No: +234-806-047-1748
Email address: binishaq05@gmail.com (Aliyu Ismail Ishaq)

has garnered significant interest, with its relevance expanding
due to the fundamental importance of accurately modeling phe-
nomena. Researchers in distribution theory often enhance the
flexibility of data modeling by introducing new parameters,
thereby making the distribution more adaptable across a wide
range of practical disciplines [2]. These fields include biology,
engineering, econometrics, survival analysis, finance, environ-
mental studies, medical research, survey sampling, and the bi-
ological sciences [3]. The flexibility of these models makes
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them valuable for accurately simulating and evaluating various
real-world phenomena, which in turn supports well-informed
decision-making in both academic and practical applications
[4].

The Log-Logistic (LL) distribution, which was originally
developed by Verhulst [5] to simulate population expansion has
gained popularity as the Fisk distribution because of its suitabil-
ity for use with income data, as reported by Fisk [6]. This distri-
bution was studied by Bennett [7] as the statistical distribution
suitable for modeling lifetime phenomena in survival analysis
as its failure rate described the non-monotonic function [8]. The
LL distribution can be used as a substitute for the Weibull dis-
tribution and has some similarities with log-normal and normal
distributions; however, it is more useful in application to reli-
ability, survival analysis, and life-testing experiments. When
dealing with censored observations, the LL distribution may be
preferred over log-normal and normal distributions. This distri-
bution is useful for modeling rainfall and stream flow in hydrol-
ogy and studying income and wealth data in economics, among
other scientific domains. Some properties of LL distribution
are explained in Refs. [9–13], and its parameters were deter-
mined by Refs. [14, 15], among others. The LL distribution’s
cumulative distribution function (cdf) is presented as:

W (x; c, d) = 1 −

 1

1 +
(

x
d

)c

 =
(

x
d

)c{
1 +

(
x
d

)c} , x > 0. (1)

The probability density function (pdf) that corresponds to equa-
tion (1) is

w (x; c, d) =
c
(

x
d

)c−1

d
{
1 +

(
x
d

)c}2 , (2)

where c > 0 and d > 0 are the parameters representing the
shape and scale, respectively.

Many researchers generalized LL distribution to increase
its flexibility. For instance, De Santana et al. [16] general-
ized LL distribution within the logit of the Kumaraswamy class
defined by Ref. [17] to study the Kumaraswamy-LL distribu-
tion. This model can have a bathtub, decreasing, upside-down
bathtub, or increasing failure rates. The pdf of the proposed
distribution was presented as a mixture of representations by
Ref. [18], where the moments, mean deviations, quantile func-
tion, Bonferroni, and Lorenz curves were discussed. The re-
gression model was introduced based on the Kumaraswamy-
LL distribution. Two data sets relating to acquired immunod-
eficiency syndrome (AIDS) and cancer were employed to as-
sess the flexibility of the suggested distribution against the ex-
isting ones. They found that the proposed Kumaraswamy-LL
distribution outperformed the comparative distributions. The
Marshall-Olkin LL distribution was studied by Ref. [19], and
its density as well as hazard shapes were provided. Some im-
portant properties, such as stochastic ordering and represen-
tations, moments, distribution of order statistics, and quantile
function were studied. Some of the features of the Marshall-
Olkin-LL distribution and its minification procedure were in-
troduced in Ref. [19]. Another study was conducted by Ref.

[20] to extend the LL model from the McDonald family to pro-
pose the McDonald-LL distribution. The Kumaraswamy-LL,
Dagum, Beta-LL, Singh-Maddala, LL, and standard LL distri-
butions were considered special cases of McDonald-LL distri-
bution. Some of its properties were discussed, including mo-
ments, mean residual, entropies, and quantile function. The
characterization of the M-LL distribution and the parameters
of its estimates were studied. The data set relating to breast
cancer was used, and it was discovered that the proposed distri-
bution could be chosen by having a smaller value of accuracy
measures. The LL distribution was generalized by Ref. [21] to
explore the exponentiated alpha-power log-logistic distribution,
some features, and parameter estimation of this distribution are
provided in Ref. [21]. An extension of LL distribution was
introduced in Ref. [22] by considering the quadratic transmuta-
tion technique as the class of distribution obtained by Ref. [23]
to study transmuted LL distribution. The model structural prop-
erties including moments, reliability analysis, quantile, random
number generation, and order statistics, were determined. The
simulation study, as well as the parameters of its estimates, were
established by utilizing the maximum likelihood (ML) method.
The adaptability of the suggested distribution was illustrated
using a real-world data set, and ultimately it was found that the
transmuted-LL distribution could be prepared efficiently.

This study, which builds on the work of several scholars, at-
tempts to make the LL distribution more versatile and robust,
allowing it to better simulate and capture complicated real-
world occurrences. Among them are the unit-LL distribution
by Ref. [24], the Odd-logistic generalized exponential distri-
bution by Ref. [25], the LL distribution’s survival analysis and
hazard using type I censored data by Ref. [26], the Bayesian
study of the unit LL distribution with non-informative priors by
Ref. [27], the odd LL generalized Lindley distribution by Ref.
[28], the Odd LL-Burr XII distribution by Ref. [29], the LL
distribution’s robust explicit estimation by Ref. [30], among
others.

Over the last few years, there has been an increasing focus
on extending conventional models to better represent real-world
phenomena by integrating a broader family of distributions.
Among others are the study and application of the exponenti-
ated Log-Logistic Weibull distribution to censored data by Fag-
bamigbe et al. [31], the Zero-truncated Poisson-power function
by Okorie et al. [32], A new extended gumbel by Fayomi et al.
[33], the new flexible exponentiated Weibull by Arif et al. [34],
the odd F-Weibull by Ishaq et al. [35], the generalized odd beta
prime by Suleiman et al. [36], the new extended Topp-Leone
exponential by Muhammad et al. [37], the exponentiated odd
Lomax exponential by Ref. [38], the odd beta prime-logistic
by Ref. [39], the generalized Odd Maxwell-Kumaraswamy by
Ref. [40], the Multivariate Birnbaum-Saunders by Ref. [41],
the modified Lomax model and its bivariate extension by Ref.
[42], the Marshall-Olkin extended Gumbel type-II by Ref. [43],
the inverse Weibull model to evaluate wind speed data by Ref.
[44], the McDonald generalized power Weibull by Ref. [45],
the odd beta prime-Burr X by Ref. [46], the new updated
Weibull by Ref. [47], the log-Topp-Leone by Ref. [48], and
many others.
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The Maxwell generalized (M-G) distribution class, de-
scribed by Ref. [49], evolved from the Maxwell-Boltzmann
model, initially utilized to elucidate data related to molecular
behavior in physics, chemistry, and biology, it was primarily
suited for right-skewed datasets. This family was developed by
applying the odd ratio approach developed by Ref. [50]. The
cdf and pdf for the M-G family are respectively provided as:

F (x; b,Φ) =
2
√
π
γ

3
2
,

1
2b2

(
W (x;Φ)

1 −W (x;Φ)

)2 ,
x ∈ ℜ; Φ ∈ ℜ, b > 0, (3)

and

f (x; b,Φ) =
2w (x;Φ)

b3
√

2π {1 −W (x;Φ)}2

(
W (x;Φ)

1 −W (x;Φ)

)2

exp

− 1
2b2

(
W (x;Φ)

1 −W (x;Φ)

)2
 ,

x ∈ ℜ; Φ ∈ ℜ, b > 0. (4)

A scaling parameter is denoted by b, w (x;Φ) and W (x;Φ) are
respectively the baseline cdf and pdf of the LL model with the
parameter Φ. Some baseline distributions have been extended
using the M-G family, developing novel compound distribu-
tions with various features and uses. Consider distributions
such as Maxwell-exponential [51], Maxwell-Mukherjee Islam
[52], Maxwell-Dagum [53], Maxwell-Burr X [54], and so on.

This study presents the Maxwell-LL distribution, an exten-
sion of the LL distribution. Notably, the LL distribution finds
relevance in conjunction with COVID-19 mortality rate data,
a contemporary and critical field of this study. The distribu-
tion’s adaptability is assessed through the analysis of two data
sets representing COVID-19 mortality rates in the global and
Canada. This research contributes to the ongoing efforts to
model and understand the patterns of COVID-19 impact using
statistical distributions with robust applications.

A new virus called COVID-19 has been connected to the
severe acute respiratory syndrome coronavirus, or SARS-CoV-
2, which has caused a worldwide outbreak. Various statistical
models have been put forth in research to comprehend and il-
lustrate the progression of this pandemic [55, 56], and several
authors who studied the SARS-CoV-2 pandemic can be found
in Refs. [57–59]. It is crucial to emphasize that the features of
pandemic data can vary, rendering the fitting of classical prob-
ability distributions challenging in certain instances [60]. Con-
sequently, We employed the Maxwell-Log Logistic distribution
to accurately simulate the mortality rate linked with this dis-
ease. The rationale and basis for introducing the Maxwell-LL
distribution are to:

1. enhance the overall efficacy of the traditional LL distri-
bution, which handles skewed, and symmetric data sets
more effectively than other competing models;

2. produce a distribution with various structural, including
symmetrical, right-, and left-skewed;

3. present a novel approach with many hazard functions
capable of capturing forms that are decreasing, upside-
down bathtub, and increasing; and

4. reliably provide a better fit when compared to existing
developed distributions for the identical traditional dis-
tribution.

This paper has been laid out as follows: The development of the
Maxwell-LL distribution is demonstrated in section 2. Section
3 delves into some of its statistical features. Section 4 describes
the methods used to estimate parameters. Section 5 introduces
a simulation study, while section 6 presents the newly devel-
oped model’s numerical applications. Finally, section 6 offers
concluding remarks.

2. Maxwell-Log logistic distribution

This section utilizes the M-G family proposed by Ref. [49]
to introduce the Maxwell-LL (Max-LL) distribution. Inserting
equation (1) into equation (3) provided the cdf of the Max-LL
distribution given as

F (x; b, c, d) =
2
√
π
γ

(
3
2
,

1
2b2

( x
d

)2c
)
, x > 0; b, c, d > 0.

(5)

The associated pdf is obtained by substituting equations (1) and
(2) into equation (4) to obtain:

f (x; b, c, d) =
2cx3c−1

b3d3c
√

2π
exp

(
−

1
2b2

( x
d

)2c
)
. (6)

In this case, d and b are the scale parameters and c is the shape
parameter. A random variable X with pdf in equation (6) is
denoted as X ∼ MaxLL (b, c, d). The parameters on the cdf
and pdf presented in equations (5) and (6) can be eliminated for
simplicity by writing F (x; b, c, d) = F (x) and f (x; b, c, d) =
f (x). Figure 1 depicts plots for the pdf of the suggested Max-
LL distribution with various parameter values. The observed
patterns include (a) left-skewed, (b) symmetrical, and (c) right-
skewed. In general, modeling lifetime phenomena like COVID-
19 data sets reaps the advantages of these attributes.

2.1. Mixture representations of the Max-LL distribution for the
cdf and pdf

According to Gradshteyn and Ryzhik [61], the series expan-
sion for incomplete gamma function is:

γ (a, y) =
∞∑
j=0

ya+ j (−1) j

(a + j) j!
, y > 0; a > 0. (7)

In this regard, a = 3
2 , and y = 1

2b2

(
x
d

)2c
. Employing equation

(7) into equation (5) gives:

F (x; b, c, d) =
4
√
π

∞∑
j=0

(−1) j
(

x
d

)c(3+2 j)

b3+2 j2
3+2 j

2 j! (3 + 2 j)

=

∞∑
j=0

φ jxc(3+2 j), (8)
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(a) (b)

(c)

Figure 1: The pdf plots showing different parameter values for the Max-LL distribution.

which is the linear representation for the cdf of Max-LL distri-
bution, where

φ j =

√
2 (−1) j

√
π2 j j! (3 + 2 j) b3+2 jdc(3+2 j)

.

For the expansion of pdf, let us consider the series expansion
for the exponential function as:

e−y =

∞∑
l=0

yl (−1)l

l!
. (9)

Applying equation (9) to equation (6), we have:

f (x; b, c, d) =
∞∑

l=0

Ωlx3c+2cl−1, (10)

which is the linear representation for the pdf of Max-LL distri-
bution, where

Ωl =
2c (−1)l

b3d3c
√

2πl!
(
2b2)l d2cl

.
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(a) (b)

(c)

Figure 2: Failure plots showing different parameter values for the Max-LL distribution.

2.2. Survival, Failure, and Quantile Functions for the
Maxwell-Log Logistic Distribution

This section presents the Max-LL distribution’s quantile,
failure, and survival functions.

2.2.1. Survival Function (SF)
Taking into account the CDF provided in equation (5), the

Max-LL distribution’s SF is obtained from equation (5) as:

S (x) = 1 −
2
√
π
γ

(
3
2
,

1
2b2

( x
d

)2c
)
, x ∈ [0,∞) ; b, c, d > 0.

(11)

2.2.2. Failure Function (FF)
The failure function (FF) of the Max-LL distribution can be

derived by considering equations (6) and (11) as:

h (x) =
2cx3c−1 exp

(
− 1

2b2

(
x
d

)2c
)

b3d3c
√

2π
{
1 − 2

√
π
γ
(

3
2 ,

1
2b2

(
x
d

)2c
)} . (12)

Figure 2 depicts plots of the Max-LL distribution’s FF. As
shown in Figure 2, the FF for the Max-LL distribution could
have (a) decreasing, (b) upside-down bathtub, or (c) increasing.

5



Ishaq et al. / J. Nig. Soc. Phys. Sci. 7 (2025) 1976 6

Figure 3: 3D plots of skewness and kurtosis for the Max-LL distribution across different combinations of b, c and d .

2.2.3. Quantile Function (QF)
Considering equation (5), the cdf is represented by:

F (x) =
γ (a, z)
Γ (a)

, (13)

where a = 3
2 and z = 1

2b2

(
x
d

)2c
. Inverting equation (13) yields

the QF of the Max-LL model as:( x
d

)2c
= 2b2γ−1

(
3
2
, uΓ

(
3
2

))
, (14)

which on simplification becomes:

x = d
{

2b2γ−1
(

3
2
, uΓ

(
3
2

))} 1
2c

, (15)

where u represents a uniform random variable with values rang-
ing from 0 to 1.

3. Properties of the Maxwell-Log logistic distribution

Moments, moment generating function, probability
weighted moments, stress-strength as well as order statistics
are among the Max-LL distribution properties explored.

3.1. Moments

The Max-LL distribution’s moments is examined as:

E (Xr) =
2c

b3d3c
√

2π

∞∫
0

xr+3c−1 exp
(
−

1
2b2

( x
d

)2c
)

dx. (16)

Let

A =
1

2b2

( x
d

)2c
, ⇒ x =

(
2b2d2cA

) 1
2c , dx =

b2d2c

cx2c−1 dA.

(17)
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Table 1: Simulation findings for the Maxwell-LL distribution when b = 1, c = 1 and d = 2.

n MLE MPS
Mean Bias MSE Mean Bias MSE

5 1.2733 0.2733 1.1167 0.9959 0.0041 0.1695
1.4159 0.4159 0.8121 0.9569 0.0431 0.2621
2.2928 0.2928 1.2156 2.1470 0.1470 0.0781

10 1.1392 0.1392 0.2432 0.9511 0.0489 0.0725
1.1551 0.1551 0.1396 0.9180 0.0820 0.0791
2.1105 0.1105 0.6089 2.1154 0.1154 0.0496

15 1.1163 0.1163 0.1394 0.9515 0.0485 0.0431
1.0980 0.0980 0.0673 0.9257 0.0743 0.0457
2.0401 0.0401 0.3909 2.0894 0.0894 0.0349

20 1.0913 0.0913 0.1020 0.9561 0.0439 0.0351
1.0793 0.0793 0.0467 0.9405 0.0595 0.0340
2.0396 0.0396 0.3033 2.0843 0.0843 0.0298

50 1.0471 0.0471 0.0514 0.9620 0.0380 0.0137
1.0281 0.0281 0.0144 0.9595 0.0405 0.0134
2.0161 0.0161 0.1517 2.0559 0.0559 0.0229

100 1.0281 0.0281 0.0297 0.9684 0.0316 0.0066
1.0155 0.0155 0.0063 0.9750 0.0250 0.0062
2.0115 0.0115 0.0891 2.0493 0.0493 0.0131

250 1.0174 0.0174 0.0184 0.9803 0.0197 0.0025
1.0057 0.0057 0.0026 0.9861 0.0139 0.0027
2.0045 0.0045 0.0564 2.0296 0.0296 0.0068

500 1.0111 0.0111 0.0119 0.9861 0.0139 0.0011
1.0030 0.0030 0.0012 0.9917 0.0083 0.0013
2.0040 0.0040 0.0373 2.0218 0.0218 0.0037

Substituting equation (17) into equation (16) we get:

E (Xr) =
21+ r

2c drb
r
c

√
π
Γ

(
r

2c
+

3
2

)
. (18)

Equation (18) yields the mean as well as the variance of the
Max-LL model by setting r = 1 and r = 2 so that:

Mean = E(X) =
21+ 1

2c db
1
c

√
π
Γ

(
1
2c
+

3
2

)
, (19)

and

Varianve = E(X2) − (E(X))2

=
21+ 1

c d2b
2
c

√
π
Γ

(
1
c
+

3
2

)
−

21+ 1
2c db

1
c

√
π
Γ

(
1
2c
+

3
2

)2

(20)

=
b

2
c d221+ 1

c

√
π

{
Γ

(
1
c
+

3
2

)
−

2
√
π
Γ2

(
1
2c
+

3
2

)}
. (21)

Figure 3 provides 3D plots for the skewness and kurtosis
across varying combinations of the parameters b, c and d. The
plots illustrate how these parameters influence the shape and
behavior of the Max-LL distribution.

3.2. Moment Generating Function (MGF)

For the random variable X, the MGF of the Max-LL distri-
bution is:

MX (t) =

∞∫
−∞

etx f (x)dx =
∞∑

r=0

(t)r

r!

∞∫
−∞

xr f (x)dx. (22)

The integral part of equation (22) has been defined in equation
(18). Therefore, the Max-LL distribution’s MGF is:

MX (t) =
∞∑

r=0

(t)r

r!

{
21+ r

2c drb
r
c

√
π
Γ

(
r

2c
+

3
2

)}
. (23)

3.3. Probability Weighted Moments (PWM)

According to Greenwood et al. [62], the PWM of the ran-
dom variable X for real numbers r, s and p = 0 is:

Pr,s,0 =

∞∫
−∞

xr f (x)F(x)sdx. (24)

Therefore, the term f (x)F(x)s in equation (24) is simplified as:

f (x)F(x)s = f (x)
[
1 − {1 − γ1 (a, z)}

]s , (25)
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Table 2: Simulation findings for the Maxwell-LL distribution when b = 1, c = 1 and d = 2.

n MLE MPS
Mean Bias MSE Mean Bias MSE

5 2.1997 0.6997 2.2529 1.4338 0.0662 0.4968
1.4160 0.4160 0.8123 0.9571 0.0429 0.2701
2.2472 0.2472 1.4810 2.1695 0.1695 0.2836

10 1.8558 0.3558 0.7353 1.3967 0.1033 0.1824
1.1551 0.1551 0.1396 0.9154 0.0846 0.0756
2.0740 0.0740 0.7209 2.0938 0.0938 0.1312

15 1.7686 0.2686 0.4224 1.4024 0.0976 0.1204
1.0980 0.0980 0.0673 0.9257 0.0743 0.0457
2.0155 0.0155 0.4402 2.0714 0.0714 0.1007

20 1.7210 0.2210 0.3307 1.4171 0.0829 0.1067
1.0793 0.0793 0.0467 0.9405 0.0597 0.0338
2.0175 0.0175 0.3511 2.0698 0.0698 0.0829

50 1.6129 0.1129 0.1433 1.4391 0.0609 0.0448
1.0280 0.0281 0.0144 0.9595 0.0404 0.0135
1.9906 0.0094 0.1550 2.0348 0.0348 0.0451

100 1.5699 0.0699 0.0783 1.4528 0.0472 0.0179
1.0154 0.0154 0.0063 0.9751 0.0249 0.0062
1.9897 0.0103 0.0880 2.0285 0.0285 0.0239

250 1.5438 0.0438 0.0454 1.4708 0.0292 0.0063
1.0057 0.0057 0.0026 0.9861 0.0139 0.0027
1.9855 0.0145 0.0533 2.0159 0.0159 0.0105

500 1.5256 0.0256 0.0293 1.4806 0.0194 0.0030
1.0029 0.0029 0.0012 0.9918 0.0082 0.0012
1.9949 0.0051 0.0364 2.0125 0.0125 0.0050

where a and z are as defined in equation (13), γ1 (a, z) is the
ratio of the incomplete gamma function. For p > 0 and |x| < 1,
the binomial expansion of this becomes:

(1 − x)p =

∞∑
i=0

(
p
i

)
(−1)ixi. (26)

Applying equation (26) to equation (25) gives:

f (x)F(x)s =

∞∑
i=0

(
s
i

)
(−1)i f (x) {1 − γ1 (a, z)}i

=

i∑
k=0

∞∑
i=0

(−1)k+i
(

s
i

) (
i
k

)
f (x)

i∑
k=0

γk
1 (a, z). (27)

Replace
∞∑

i=0

i∑
k=0

with
∞∑

k=0

∞∑
i=k

in equation (27), we get:

f (x)F(x)s = f (x)
∞∑

k=0

Λi (s) γk
1 (a, z), (28)

where Λi (s) =
∞∑

i=k
(−1)i+k

(
s
i

) (
i
k

)
. Take into consideration the

series expansion provided in [61] as:

γk
1 (a, z) =

zak

{Γ (a)}k

∞∑
m=0

Πk,mzm, (29)

where Πk,m = (me0)−1
m∑

p=1
(kp − m + p)epΠk,m−p with ep =

(−1)p /p! (a + p). Applying equation (29) into equation (28),
it becomes:

f (x)F(x)s =

∞∑
k,m=0

Vk,mx3c+c(2m+3k)−1 exp
(
−

1
2b2

( x
d

)2c
)
,(30)

where Vk,m =
cΛi(s)Πk,m

{Γ( 3
2 )}k2

2m+3k
2 b3+3k+2mdc(2m+3k)+3c

√
2
π

. Substituting

equation (30) into equation (24), we get:

Pr,s,0 =

∞∑
k,m=0

Vk,m

∞∫
0

x3c+c(2m+3k)+r−1 exp
(
−

1
2b2

( x
d

)2c
)

dx.(31)

Equation (17) can be applied to equation (31) to obtain:

Pr,s,0 =

∞∑
k,m=0

Vk,m
b2+2m+3k+1+ r

c d2c+c(2m+3k+1)+r2
2m+3k+1

2 + r
2c

c

×

∞∫
0

A
2m+3k+1

2 + r
2c e−AdA

=

∞∑
k,m=0

Ωk,mΓ

(
2m + 3k + 1

2
+

r
2c
+ 1

)
, (32)

which is the Max-LL distribution’s probability weighted mo-

ments, where Ωk,m =
21+ r

2c drb
r
c Λi(s)Πk,m

√
π{Γ( 3

2 )}k
.

8
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Table 3: Simulation findings for the Maxwell-LL distribution when b = 1, c = 2 and d = 2.

n MLE MPS
Mean Bias MSE Mean Bias MSE

5 1.2173 0.2173 1.0575 1.0929 0.0929 0.1628
2.8320 0.8320 3.2492 1.8824 0.1176 0.7499
2.2117 0.2117 0.4561 1.8969 0.1031 0.3079

10 1.1063 0.1063 0.2922 1.0882 0.0882 0.1112
2.3101 0.3103 0.5582 1.8313 0.1687 0.3007
2.1039 0.1039 0.2600 1.8917 0.1083 0.1736

15 1.0755 0.0755 0.1991 1.0738 0.0738 0.0709
2.1962 0.1963 0.2692 1.8509 0.1491 0.1817
2.0700 0.0700 0.1827 1.9017 0.0983 0.1051

20 1.0622 0.0622 0.1688 1.0512 0.0512 0.0512
2.1587 0.1587 0.1866 1.8803 0.1197 0.1337
2.0653 0.0653 0.1529 1.9305 0.0695 0.0701

50 1.0264 0.0264 0.0733 1.0139 1.0139 0.0149
2.0562 0.0562 0.0575 1.9189 0.0811 0.0536
2.0334 0.0334 0.0745 1.9699 0.0301 0.0197

100 1.0206 0.0206 0.0424 1.0160 0.0160 0.0062
2.0310 0.0310 0.0253 1.9502 0.0498 0.0248
2.0158 0.0158 0.0415 1.9736 0.0264 0.0071

250 1.0177 0.0177 0.0244 1.0142 0.0142 0.0031
2.0115 0.0115 0.0105 1.9723 0.0277 0.0108
2.0026 0.0026 0.0217 1.9796 0.0204 0.0035

500 1.0104 0.0104 0.0153 1.0136 0.0136 0.0022
2.0060 0.0060 0.0049 1.9835 0.0165 0.0050
2.0030 0.0029 0.0136 1.9834 0.0166 0.0022

3.4. Order statistics
Suppose that Xi, i = 1, . . . , n represents the random sam-

ple of size n from Max-LL distribution and let X(i) indicate the
sample’s order statistics. The pdf of the ith order statistics can
be defined as:

fi,n(x) =
n! f (x)F(x)i−1

(n − i)! (i − 1)!
[1 − F(x)]n−i

=
n! f (x)

(n − i)! (i − 1)!

∞∑
q=0

(
n−i

q

)
(−1)qF(x)i+q−1. (33)

Substituting equation (30) into equation (33) for s = i + q − 1
gives:

fi,n(x) =
n!

(n − i)! (i − 1)!

∞∑
q=0

(
n−i

q

)
(−1)q

∞∑
k,m=0

Vk,mx3c+c(2m+3k)−1

× exp
(
−

1
2b2

( x
d

)2c
)
, (34)

that is the proposed distribution’s order statistics. The Max-LL
distribution’s moments of the ith order statistics are obtained as:

E(Xr
i,n) =

∞∫
0

xr fi,n(x)dx

=

n!
∞∑

q=0

(
n−i

q

)
(−1)k

(i − 1)! (n − i)!

∞∑
k,m=0

Vk,m

∞∫
0

xr × x3c+c(2m+3k)−1

× exp
(
−

1
2b2

( x
d

)2c
)

dx

=

n!
∞∑

q=0

(
n−i

q

)
(−1)k

(i − 1)! (n − i)!

∞∑
k,m=0

Vk,m

∞∫
0

xr+3c+c(2m+3k)−1

× exp
(
−

1
2b2

( x
d

)2c
)

dx, (35)

where fi,n(x) is the pdf of the ith order statistics presented in
equation (34). Applying equation (17), equation (35) becomes:

E
(
Xr

i,n

)
=

21+ r
2c b

r
c drn!

(i − 1)! (n − i)!
√
π

∞∑
k,m,q=0

(−1)k
(

n−i

q

)
Λt (s)Πk,m{
Γ
(

3
2

)}k

×

∞∫
0

A
1+(2m+3k)

2 + r
2c e−AdA

=

∞∑
k,m=0

Ψk,mΓ

(
2m + 3k + 3

2
+

r
2c

)
, (36)

where Ψk,m =
∞∑

q=0

(−1)kn!21+ r
2c b

r
c drΛt(s)Πk,m

√
π{Γ( 3

2 )}k(i−1)!(n−i)!

(
n−i

q

)
.

3.5. Stress-strength model
Suppose X1 and X2 follows Max-LL model with probabil-

ity density functions f (x1) and f (x2). Then the stress-strength
9
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model denoted by is R

R =

∞∫
0

f (x1, b, c1, d)F (x1, b, c2, d) dx1. (37)

The cdf and pdf defined in equation (37) are provide in equa-
tions (5) and (6). Thus, subsituting equations (28) and (29) into
equation (37) gives:

R =

∞∫
0

f (x1, b, c1, d)
∞∑

k=0

Λi (s) γk
1 (a, z)dx1

=
c1
√

2
√
π

∞∑
k,m=0

Λi (s)Πk,m

2
2m+3k

2 b3+2m+3kd3c1+c2(2m+3k)
{
Γ
(

3
2

)}k

×

∞∫
0

x3c1+c2(2m+3k)−1
1 exp

(
−

1
2b2

( x1

d

)2c1
)

dx1. (38)

Using equation (17), equation (38) becomes:

R =
∞∑

k,m=0

Λi (s)Πk,m21+ c2(2m+3k)
2c1 {b}

c2(2m+3k)
c1

√
π2

2m+3k
2 b2m+3k

{
Γ
(

3
2

)}k

∞∫
0

A
c2(2m+3k)

2c1
+ 1

2 e−AdA

=

∞∑
k,m=0

Ψk,mΓ

(
c2 (2m + 3k)

2c1
+

3
2

)
, (39)

where Ψk,m =
2Λi(s)Πk,m{2b2}

c2(2m+3k)
2c1

√
π{Γ( 3

2 )}k{2b2}
2m+3k

2
.

4. Parameter estimation

The literature describes a variety of approaches for estimat-
ing distribution parameters, with the maximum likelihood ap-
proach being one of the most popular. The following is a review
of recent literature on several estimating methods, Refs. [63–
67]. This section presents the maximum likelihood approach
for estimating the parameters of the Max-LL distribution.

Suppose Xi for i = 1, . . . , n indicates the random sample of
size n with observed values xi from the Max-LL Model. Let
Θ = (b, c, d)T be the p × 1 parameter vector. The likelihood
function of the parameter Θ is derived from equation (6) as:

ℓ (xi/Θ) =
(

2c

b3d3c
√

2π

)n n∏
i=1

x3c−1
i exp

(
−

1
2b2

( xi

d

)2c
)
.(40)

The log-likelihood function of equation (40) is:

ℓ = n log (2) + n log (c) − 3n log (b) − 3nc log (d) −
n
2

log (2π)

+ (3c − 1)
n∑

i=1

log (xi) −
1

2b2

n∑
i=1

( xi

d

)2c
. (41)

As a result, the estimates of the Max-LL distribution parameters
are determined by partially differentiating equation (41) about
parameters b, c and d, and then setting the results to zero.

∂ℓ

∂b
=
−3n

b
+

1
b3

n∑
i=1

( xi

d

)2c
= 0, (42)

∂ℓ

∂c
=

n
c
− 3nlog (d) + 3

n∑
i=1

(log (xi)) −
1
b2

n∑
i=1

( xi

d

)2c
log

( xi

d

)
= 0, (43)

and

∂ℓ

∂d
=
−3nc

d
+

c
db2

n∑
i=1

( xi

d

)2c
= 0. (44)

Using equation (42), the estimate of the parameter b is:

b̂ =

√√
1

3n

n∑
i=1

( xi

d

)2c
. (45)

As a result, the parameter estimations c and d are obtained from
equations (43) and (44) by substituting equation (45). More-
over, the second derivatives of equations (42), (43) and (44) are
given as:

∂2ℓ

∂b2 =
3n
b2 −

3
b4

n∑
i=1

( xi

d

)2c
, (46)

∂2ℓ

∂c2 =
−n
c2 −

2
b2

n∑
i=1

( xi

d

)2c {
log

( xi

d

)}2
, (47)

∂2ℓ

∂d2 =
3nc
d2 −

2 (1 + 2c)
b2d2

n∑
i=1

( xi

d

)2c
, (48)

∂2ℓ

∂b∂c
=

2
b3

n∑
i=1

( xi

d

)2c
log

( xi

d

)
, (49)

∂2ℓ

∂b∂d
=
−2c
b3d

n∑
i=1

( xi

d

)2c
, (50)

and

∂2ℓ

∂c∂d
=
−3n

d
+

1
b2d

n∑
i=1

( xi

d

)2c {
1 + 2c log

( xi

d

)}
. (51)

In this case, the second derivatives of the parameters of the
Max-LL distribution might be used to obtain the inferences
about the proposed distribution.

5. Simulation study

A simulation analysis was performed to investigate the ac-
curacy of the Max-LL distribution, employing the quantile
function defined in equation (15) for a variety of sample sizes
(n) of 5, 10, 15, 20, 50, 100, 250, and 500, as well as parame-
ter values b, c and d. The simulation study employed the MLE
and Maximum Product of Spacing (MPS) methodologies. The
mean of the estimations (mean), absolute bias (bias), and mean
square error (MSE) were determined by conducting the simu-
lation 1000 times. Tables 1, 2, and 3 provide the simulation
results, accordingly.

As seen in Table 1, when the sample size increases, the
mean of each parameter using MLE decreases and approaches

10
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Figure 4: Histogram, box, violin, and line plots of the first data set.

Figure 5: Histogram, box, violin, and line plots of the second data set.

the true parameter values of b = 1, c = 1 and d = 2 . The mean
and MSE of each estimate are decreases and approaching zero.

In terms of MPS, the means approach true parameters, whereas
the bias and MSE both drop and approach zero.

11
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Figure 6: Density plots utilizing first data, showing the Max-LL
distribution as well as various competing distributions.

Figure 7: Density plots utilizing second data, showing the Max-
LL distribution as well as various competing distributions.

The mean of parameters b, c and d using MLE decreased
and approached the true parameter values of b = 1.5, c = 1 and
d = 2, as shown in Table 2. Additionally, as the sample size
increases, the mean and MSE of each estimate decrease and ap-
proach zero. When employing the MPS strategy, the means of
each estimate approach’s real parameter values, bias, and MSE
all dropped as sample size increased.

The mean of parameters b, c and d using MLE decreases
and approaches the true parameter values of b = 1, c = 2 and
d = 2 , as shown in Table 3. Furthermore, as sample sizes in-
crease, the mean square error of each estimate approaches zero.
Using the MPS, the means of each estimate approach their true
parameter values, but bias and MSE decrease as sample size in-
creases. In conclusion, Tables 1-3 show that the MSEs of the
estimates decrease as the sample sizes increase, and both MPSs
and MLEs work consistently. Finally, we observed that the
MPS is more suitable for small sample sizes (n ≤ 20), whereas
the MLE is more suitable for large sample sizes (n ≥ 100). This
observation is supported by the results presented in Tables 1-3,
which suggest that the MPS performs better for smaller sample
sizes, while the MLE performs better for larger sample sizes.

6. Application to data sets

We offer two COVID-19 datasets to evaluate the Max-LL
distribution’s performance. The first dataset comprises the
COVID-19 mortality rate for 36 days pertaining to Canada from
April 10, 2020 to May 15, 2020, as provided in Ref. [68]. The
data set is provided as follows:

3.1091, 3.3825, 3.1444, 3.2135, 2.4946, 3.5146, 4.9274,
3.3769, 6.8686, 3.0914, 4.9378, 3.1091, 3.2823, 3.8594,
4.0480, 4.1685, 3.6426, 3.2110, 2.8636, 3.2218, 2.9078,
3.6346, 2.7957, 4.2781, 4.2202, 1.5157, 2.6029, 3.3592,
2.8349, 3.1348, 2.5261, 1.5806, 2.7704, 2.1901, 2.4141,
1.9048.

The second data set covers the COVID-19 mortality rate for
95 countries with at least 100,000 confirmed COVID-19 cases
as of May 17, 2021. See the website [https://covid19.who.int/]
for further information. The data set is provided as follows:

175.12, 19.59, 203.53, 164.17, 52.81, 79.4, 188.07, 208.01,
167.5, 103.52, 154.56, 157.72, 188.8, 91.24, 170.75, 109.93,
198.98, 17.54, 279.61, 93.04, 100.16, 65.89, 145.08, 17.39,
39.6, 152.54, 138.22, 214.24, 8.81, 165.17, 73.72, 298.63, 7.36,
90.59, 96.21, 9.06, 116.95, 114.67, 16.47, 111.13, 24.65, 5.77,
16.67, 20.53, 248.15, 25.35, 111.61, 223.97, 106.03, 28.48,
145.82, 189.94, 72.35, 111.35, 115.23, 47.03, 99.66, 104.9,
39.5, 69.63, 32.9, 3.46, 42.97, 146.85, 99.53, 149.13, 221.53,
13.94, 43.79, 96.99, 59.94, 145 89, 8.32, 18.26, 42.06, 273.74,
43.31, 44.9, 1 5.58, 249.45, 5.9, 4.39, 84.97, 84.4, 3.71, 118.31,
91.95, 7.68, 7.03, 14.42, 123.24, 0.33, 0.84.

Figures 4 and 5 display the histogram with kernel density,
box, violin, and line plots for the first and second datasets, re-
spectively. The histogram plots affirm the right-tailed nature of
the data, with the presence of extreme values evident in the box
plot. These support the pdf’s shape presented in Figure 1 for
the proposed distribution and are well-suited for modeling both
the first and second datasets.

12
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Furthermore, we will use the two data sets to compare the
performance of the Max-LL distribution to existing models to
gain insight into its adaptability. The present research looked
at three competing models: the LL distribution by Ref. [5], the
Marshall-Olkin-LL (MO-LL) distribution by Ref. [19], and the
Exponentiated-LL (E-LL) distribution by Ref. [69].

Figures 6 and 7 show density plots of the first and second
data sets, respectively, for the Max-LL and competing distribu-
tions. The figures show that the Max-LL distribution appears
to be appropriate for modeling the first and second datasets, re-
spectively.

Some of the information criteria considered in this study is
the Akaike Information Criterion (AIC). Other criteria include
the Hannan Quinn Information Criterion (HQIC), Bayesian In-
formation Criterion (BIC), and Corrected Akaike Information
Criterion (CAIC). The model that best fits these types of data
sets should be labeled as having the lowest value for these cri-
teria.

Table 4 displays the estimated parameters (with standard
errors) and log-likelihood values for the Max-LL and compet-
ing models using the first data. Table 5 displays the AIC, BIC,
HQIC, and CAIC for both the proposed and competing mod-
els. Table 5 shows that the Max-LL distribution provided the
lowest values for the AIC, BIC, HQIC, and CAIC compared to
other competing models, followed by the E-LL, MO-LL, and
LL models.

Table 4: The estimates, standard errors, and ℓ for the first data
set

Models Estimates Std Errors ℓ

Max-LL b = 14.4951 8.0626 -528.6200
c = 0.3939 0.0330
d = 0.0242 0.0386

E-LL h = 0.2852 0.0297 -537.6770
c = 2.4246 0.0740

d = 109.7914 0.0250
MO-LL a = 16.4969 3.2419 -539.9730

c = 1.3071 0.1315
d = 7.3389 2.6793

LL c = 1.3070 0.1119 -539.9730
d = 62.6640 2.9679

Table 5: The information criteria values for the first data set.

Models AIC CAIC BIC HQIC
Max-LL 1063.2400 1063.5040 1070.9020 1066.3360

E-LL 1081.3540 1081.6180 1089.0160 1084.4500
MO-LL 1085.9460 1086.2100 1093.6080 1089.0420

LL 1083.9460 1084.0760 1089.0540 1086.0100

Table 6 compares the estimates (with the standard errors)
and log-likelihood values for the proposed distribution to com-
peting ones using the second dataset. Table 7 shows the infor-
mation criteria findings for the Max-LL and other competing
distributions using the second data set. The proposed distribu-

tion offered the lowest values for those criteria, followed by the
E-LL, MO-LL, and LL distributions.

Table 6: The estimates, standard errors, and ℓ for the second
data set

Models Estimates Std Errors ℓ

Max-LL b = 3.9139 11.3225 -45.3062
c = 1.3662 0.1571
d = 0.8722 1.8517

E-LL h = 0.7489 0.3599 -46.9145
c = 7.2007 1.7980
d = 3.3671 0.3528

MO-LL a = 9.1709 8.0635 -47.0914
c = 6.4111 0.9175
d = 2.2410 0.3466

LL c = 6.4111 0.9181 -47.0914
d = 3.1664 0.1401

Table 7: The information criteria values for the second data set.

Models AIC CAIC BIC HQIC
Max-LL 96.6124 97.3624 101.3630 98.2705

E-LL 99.8289 100.5789 104.5795 101.4870
MO-LL 100.1829 100.9329 104.9334 101.8409

LL 98.1829 98.5465 101.3499 99.2882

7. Conclusion

The present study introduced the Max-LL distribution,
which is based on the Maxwell generalized distributions. The
Maxwell-Logistic distribution’s density forms might be left,
right, or symmetric. The failure function of the Max-LL dis-
tribution can be increasing, decreasing, or upside-down bathtub
forms. The parameters for the proposed distribution were de-
termined using the maximum likelihood technique. The quan-
tile function was used in the simulation study, and the findings
revealed that as sample size increased, the means approached
true parameter values while the variance and mean squared er-
rors of each estimate decreased. The Max-LL distribution fitted
both data sets because it produced higher log-likelihood values
(as seen in Tables 4 and 6) and lower information criteria val-
ues than competing distributions. This demonstrated that the
Max-LL distribution is best suitable for modeling the COVID-
19 mortality data utilized in this study.

Data Availability

The link to the dataset used in this study is provided below:
https://covid19.who.int/.
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