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Abstract

The World Health Organization has disclosed that the hybrid-immune and immunodeficient individuals are two distinct classes of individuals
susceptible to the COVID-19 virus. To model this unique characteristics of two distinct categories of susceptible individuals and the dynamics
of the three phases of a vaccination program implemented by the World Health Organization in Malaysia, which have not been accounted for
in previous studies, a twelve compartmental SSVEIHQR-D epidemiological model was developed. This model aimed to accurately capture the
spread of the COVID-19 virus by fitting real-life data to the model and obtaining updated estimates of the reproduction number. The study also
focused on assessing current control measures and exploring strategies to eradicate the virus and mitigate future outbreaks. Mathematical analyses
of the model included investigations into stability, equilibrium points, the basic reproduction number R0, optimal control strategies, and sensitivity
analyses. Estimation and fitting of the model parameters were conducted using daily situation reports from the Ministry of Health of Malaysia. The
obtained value of the basic reproduction number, based on fitted parameter values, indicated stability and reflected the current pandemic situation
more realistically. Additionally, the herd immunity threshold was calculated and interpreted in the context of the study findings. Finally, practical
insights and recommendations derived from the model’s results were provided to inform government agencies, public health organizations, and
intervention bodies, aimed at controlling the spread of the COVID-19 virus.
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1. Introduction

The novel coronavirus (COVID-19) which was first con-
firmed in Malaysia on the 25th of January, 2020 [1] emerged

∗Corresponding author Tel. No.: +234-811-027-5353; +60 1125640583.

Email address: emmanmath@gmail.com (E. A. Nwaibeh )

from the city of Wuhan, China, in December, 2019 [2, 3].
The COVID-19 virus is said to belong to a family of coron-
aviruses that causes illness such as common cold and severe
acute respiratory syndrome (SARS). The World Health Or-
ganization (WHO) on the 30th of January 2020 declared the
spread of the virus a public health emergency of international
concern (PHEIC), and called of the PHEIC declaration on 5th

1

https://orcid.org/0009-0002-5894-4680
https://orcid.org/0000-0002-9130-6739
https://nsps.org.ng
https://creativecommons.org/licenses/by/4.0
https://orcid.org/0009-0002-5894-4680


Nwaibeh et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 2001 2

May 2023. As of September 4, 2023 the COVID-19 Pandemic
records show that 770,084,949 confirmed cases, and 6,956,160
confirmed death cases [4]; while the situation data reports from
the Ministry of Health of Malaysia (MOH) as of October 16
2023 showed a total 5,128,668 confirmed cases and 37,179
deaths. These figures according to Wikipedia contributors [4]
and Joshua[5] makes the COVID-19 pandemic the fifth deadli-
est epidemic and pandemic in history.

The COVID-19 pandemic has caused a lot mayhem in al-
most all spheres of life. It brought about social and economic
setback, disruption of livelihood, such as travel restrictions,
mandatory wearing of masks, observation of social distancing,
and unprecedented deaths of loved ones. The WHO has made
it known that the transmission of the COVID-19 virus occurs
through either direct contact with infected persons/objects or
through inhalation from the air. This transmission processes is
supported by a number of research studies which includes but
not limited to the works of Anand and Mayya [6], Anfinrud et
al. [7], Jayaweera et al. [8], Kwon et al. [9] and Lai et al. [10].
These transmissions occur when a COVID-19 symptomatic pa-
tient coughs or sneezes at a close range to susceptible person, or
when a susceptible individual uses or make a contact with items
contaminated with droplets (from cough or sneezing) of symp-
tomatic person. WHO has stated that prevention from inhaling
droplets in the air could be achieved through the frequent wear-
ing of face-masks, while prevention from direct contact with
contaminated objects could be achieved through the frequent
washing of hands and the use of hand sanitizers.

The need to capture in a model the dynamics of the spread
of COVID-19 virus in order to appropriately predict and curb
its future anticipated variants (a variant is where the virus con-
tains at least one new change to the original virus and some-
times variants of the virus may develop [11]) or second waves
has led to the proposal of variety of models, both new and mod-
ification of existing ones. Ibidoja and Fowobaje [12] extracted
COVID-19 data from the Nigerian Center for Disease and Con-
trol (NCDC) repository to forecast and fit the trend of the virus.
When it comes to modeling the spread of infectious diseases,
the compartmental models are the general modeling techniques
adopted by researchers [13]. The compartmental model ap-
proach originated from the 20th century works of Ross [14],
Ross and Hudson [15], Kermack and McKendrick[16], Kendall
[17]. This modeling approach has been applied to other mali-
cious objects such as computer worm and virus [18], scam ru-
mor [13], and many other diseases such as Ebola [19], malaria
[20] and many more.

A number of works have been done in modelling the dy-
namics of the spread of COVID-19 which are purely based
on deterministic approach. Among such works are the works
of Ngonghala et al. [21], Adewole et al. [22], Omede et al.
[23]; and a some modifications/improvements have been made
to capture the dynamics of the spread of COVID-19. For exam-
ple, in order to improve the accuracy for prediction of COVID-
19 spread, Zhu et al. [24] proposed a deterministic model by in-
troducing the re-infection rate and social distancing factor into
the traditional SEIRD to account for the effects of re-infection
and social distancing on COVID-19 spread. The determin-

istic SEIRD(R)D-SD model was further transformed into the
stochastic form to account for fluctuations due environmental
distortions. Danane et al. [25] in their work investigated the
dynamics of a COVID-19 stochastic model with isolation strat-
egy. Adewole et al. [22] and Ahmed et al. [26] divided the
infected compartment into two groups: the symptomatic and
asymptomatic infected persons. In July, 2023, Manaqib et al.
[27] developed an SVEIHQR model for the spread of COVID-
19 where the vaccination group is divided into three: the first
dose, the second dose and the booster dose.

But the WHO has hinted that there are two distinct classes
of persons susceptible to the COVID-19 virus, whose sus-
ceptibility differs from each other: the strong immune (hy-
brid immune) individuals and the weak immune (immunode-
ficient/immunocompromised) individuals. Over the past few
years, series of studies have shown that some people have a
powerful immune response against the COVID-19 [11]. Ac-
cording to Dr. Paul Brieniasz, ”One could reasonably pre-
dict that these people will be quite well protected against most
and perhaps all of the SARV-COV-2 variants that we are likely
to see in the foreseeable future” [28]. While people with
weak/immunocompromised system are group of persons with
low/weak immunity against the COVID-19 virus due to some
reasons such as medical conditions like, acute treatment for
solid tumor, hematologic malignancies, advanced or untreated
HIV, severe combined immunodeficiency (SCID), flu infection,
diabetes, liver or kidney disease. Immune system can also be
weakened/compromised through smoking, alcohol, and poor
nutrition [11]. This significant gap has not been taken into con-
sideration in any model.

Having distinct classes of susceptible persons is believed
to have played a significant role in the dynamics of the spread
of COVID-19 by varying the infection force of the spread of
COVID-19 in the population, but scholars have not taken that
into consideration. In order to take into consideration this
significant gap, following the step of Manaqib et al. [27],
we developed a new SSVEIHQR-D model for the spread of
COVID-19, where the susceptible compartment is divided into
two groups: the strong/hybrid immune individuals and the
weak/compromised immune individuals. Three stages of vac-
cination are incorporated into the model,which resulted in hav-
ing three classes/groups of vaccinated individuals: those who
have received the first dose, those who have received the sec-
ond dose, and those who have received the booster dose. In this
model, two classes of infected/infectious persons are consid-
ered: the symptomatic and the asymptomatic individuals. Fur-
thermore, the model captured the hospitalized and dead patients
in order to account for treatment and deaths record as a result
of the COVID-19 virus.

The objectives of this research are: to assess the dynam-
ics of heterogeneous susceptibility, since it is medical fact that
we have varying levels of susceptibility to the COVID-19 virus;
to assess possible means of tracking vulnerable population that
are at higher risk of being infected with COVID-19 due to
weaker immune system; to highlight the need for booster shot
vaccination in population with weaker immune system; to sup-
port the findings of other researchers and highlight the impor-
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tance of vaccination, control strategies, preventive measures,
and risk awareness for individuals with weaker immune sys-
tem; finally, to explore the long-term dynamics of COVID-19
in Malaysia, considering the impact of vaccination campaigns,
natural immunity, and potential future variants. In order to
achieve these objectives, we conduct a theoretical analysis of
the SSVEIHQR-D model to understand its mathematical prop-
erties, stability, and equilibrium points; fitting of daily data as
reported by the National Center for Disease and Control in or-
der to estimate a more accurate and updated basic reproduction
number and other parameters using current data; to perform a
sensitivity analysis in order to identify the key parameters that
significantly influence the basic reproduction number (R0) of
the model, which is crucial for assessing the disease’s poten-
tial for spreading; to estimate the threshold head immunity and
assess control strategies for more effective interventions in op-
timal setting.

2. Model formulation

In order to describe the dynamics of COVID-19 that is pe-
culiar to the Malaysia populace, we modified the work of Man-
aqib et al. [27] by dividing the susceptible population into two
subgroups: the weak and strong immune, since it is a proven
medical fact that some people have strong immune systems that
provide better protection, while others have weaker immune
systems and are more vulnerable to COVID-19 virus [29–32].
To have a more realistic model it becomes necessary to subdi-
vide the susceptible class into these subgroups to account for
the differences in susceptibility. Thus, a deterministic epidemic
SSVEIHQR-D model is proposed, where the population is di-
vided into twelve compartments, the susceptible group of peo-
ple with high/strong immune system (S h), the susceptible group
of people with low/weak immune system (S w), the group of
persons who have received the first dose of vaccination (V1),
the group of persons who have received the second dose of
vaccination (V2), the group of persons who have received the
booster dose of vaccination (Vb), the group exposed/latent indi-
viduals (E), the group of symptomatic infected persons (Is), the
of asymptomatic infected persons (Ia) the group of hospitalized
persons (H), the quarantined group/class (Q), the group of per-
sons that have recovered or have gained immunity to COVID-
19 (R), and total deaths as a result of COVID-19 (D) (but here,
the death compartment is an artificial or ”auxiliary” compart-
ment which is introduced to account for deaths as a result of
COVID-19 disease, so it it not part of the sum of N; where N
is the sum of the population at a given time t, so D is not part
of it. So death would not be part of the analysis, but shall be
use for simulation purpose in order to obtain a more accurate
result. The overview of the description of the SSVEIHQR-D
model state variable is presented in Table 1. The total popula-
tion at a given time t denoted by N(t) is equal to the sum of the
compartments with the exception of D (see reason above), that
is,

N = S h + S w + V1 + V2 + Vb + E + Is + Ia + H + Q + R

Figure 1: Epidemiological interaction dynamics of the COVID-19
SSVEIHQR model.

Table 1: Description of the State Variables of the Model.

Variables Description
S h Susceptible group of people with high/

strong immune system at a given time (t)
S w Susceptible group of people with low/

weak immune system at a given time (t)
V1 Group of persons who have received

the first dose of COVID-19 vaccination
V2 Group of persons who have received

the second dose of COVID-19 vaccination
Vb Group of persons who have received

the booster dose of COVID-19 vaccine
E Group of exposed/latent individuals

at a given time (t)
Is Group of COVID-19 symptomatic

infected persons at a given time (t)
Ia Group of COVID-19 asymptomatic

infected persons at a given time (t)
H Group of persons hospitalized

as a result of COVID-19 infection at time (t)
Q The set of COVID-19 quarantined

individuals at a given time (t)
R Recovered group of person (or those

who have gained immunity over COVID-19)

2.1. Assumptions of the Model

Following the tips of the spread of COVID-19 outlined by
the WHO, and the peculiarities of the spread of COVID-19
virus in the Malaysian populace, the following assumptions are
made for the model:

• The population is assumed to be homogeneous, where
each individual has equal chance of being contaminated
with the virus.

• In order to have a constant population, we assume equal
natural birth rate and death rate (µ).

• Individuals with strong immune system could enter the
group of persons with weak immune system at a rate (u).

3



Nwaibeh et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 2001 4

Table 2: Parameter Description.

Parameter Parameter Description values Reference
µ Natural birth rate and death rate 1

73×365 [27]
θ Natural birth rate and death rate ratio 0.7 Assumed
u The rate at which strong immune becomes weak immune 0.01 Assumed
β1 Rate of infection among strong immune group 0.73138 Data fitting
β2 Rate of infection among weak immune group 0.25688 Data fitting
β3 Rate of infection among those who have taken first dose 0.99657 Data fitting
β4 Rate of infection among those who have taken second dose 0.42067 Data fitting
β5 Rate of infection among those who have taken the booster dose 0.84937 Data fitting
τ1 Rate at which strong immune receives first dose 0.3910 × 10−7 Data fitting
τ2 Rate at which weak immune receives first dose 0.0001 × 10−7 Data fitting
τ3 Rate at which individuals receives second dose 0.99657 Data fitting
τ4 Rate at which individuals receives booster dose 0.58838 Data fitting
α The incubation period 1/8 [27]
k The proportion of symptomatic individuals
σs The rate at which the symptomatic are quarantined 0.25675 Data fitting
σa The rate at which the asymptomatic are quarantined 0.67314 Data fitting
ρ The rate at which the symptomatic are hospitalized 0.12590 [27]
ϕa The rate at which the asymptomatic recover from the infection 0.03671 Data fitting
ϕh The rate at which the hospitalized recover from COVID-19 0.995192 Data fitting
ϕb The rate at which those who have taken booster dose recover 0.14286 [27]
ϕq The rate at which the quarantined recover from COVID-19 0.027115 Data fitting
δs Symptomatic individuals death rate due to COVID-19. 1.64 × 10−5 [22]
δh Hospitalized individuals death rate due to COVID-19. 1.64 × 10−3 [22]
δq Quarantined individuals death rate due to COVID-19. 1.64 × 10−6 [22]

Table 3: Summary of Parameter and Sensitivity indices.

Parameter Sensitivity indices Parameter Sensitivity indices
µ 0.0184 α −0.0142
θ −0.0003 k 0.2236
u −0.2521 σs 0.9215
β1 0.0269 σa 0.8398
β2 0.9620 ρ 0.8245
β3 0.0053 ϕa −0.0061
β4 0.0165 ϕh −0.0163
β5 0.0016 ϕb 0.0022
τ1 −0.0197 ϕq 0.9220
τ2 −0.0089 δs 0.0178
τ3 0.0258 δh 0.0023
τ4 0.0110 δq 0.0085

• We assume that new births are either individuals with
strong immune system or weak immune system.

• All compartments/classes have a natural death rate of (µ).

• The model assumes three groups of vaccinated persons:
those who have taken the first dose (i.e. partially vacci-
nated), those who have taken the second dose (complete
dose), and those who have takes the booster dose.

• A fraction of those who have taken the booster dose are
assumed to have obtained immunity from the COVID-19
virus.

• An exposed/latent individuals cannot spread/infect an-
other person

• All vaccinated persons are likely to be exposed with the
COVID-19 virus (according to WHO [11]).

• After a given period of time (incubation period), exposed
individuals could either become symptomatic or asymp-
tomatic patients of the disease.

• Symptomatic individuals are either quarantined, hospi-
talized or they die as a result of the virus.

• Symptomatic, hospitalized and quarantined group of in-
dividuals do not have equal death rate as a result of the
virus.

• Asymptomatic infected individuals are either quarantined
or they recovered from the infection.

• The quarantined either recover or die as result of the in-
fection.

• Recovered persons are assumed to obtain temporal im-
munity from the virus.

• Death rate as a result of the disease are not equal for all
compartments.
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Figure 2: Data fitting simulation graph of COVID-19 data with the SSVEIHQR-D model from February 2023 to September 2023.
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Figure 3: The PRCC of the influence of each parameter on the basic
reproduction number (R0).

Based on our assumptions and the flow of transmission of
COVID-19 within groups of people as depicted in Figure 1, we

have the following system of differential equations:
dS h

dt
= µθN − uS h −

β1(Is + Ia)S h

N
− τ1S h − µS h

dS w

dt
= µ(1 − θ)N + uS h −

β2(Is + Ia)S w

N
− τ2S w − µS w

dV1

dt
= τ1S h + τ2S w −

β3(Is + Ia)V1

N
− τ3V1 − µV1

dV2

dt
= τ3V1 −

β4(Is + Ia)V2

N
− τ4V2 − µV2

dVb

dt
= τ4V2 −

β5(Is + Ia)Vb

N
− ϕbVb − µVb

dE
dt
=
β1(Is + Ia)S h

N
+
β2(Is + Ia)S w

N
+
β3(Is + Ia)V1

N

+
β4(Is + Ia)V2

N
+
β5(Is + Ia)Vb

N
− αE − µE

dIs

dt
= αkE − σsIs − ρIs − δsIs − µIs

dIa

dt
= α(1 − k)E − σaIa − ϕaIa − µIa

dH
dt
= ρIs − ϕhH − δhH − µH

dQ
dt
= σsIs + σaIa − ϕqQ − δqQ − µQ

dR
dt
= ϕbVb + ϕaIa + ϕqQ + ϕhH − µR

dD
dt
= δsIs + δhH + δqQ.

(1)
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With N = S h+S w+V1+V2+Vb+E+Is+Ia+H+Q+R. Observe
that dN

dt = −(δsIs + δhH + δqQ) ≤ 0 =⇒ N(t) ≤ c, where c is
a positive constant (of integration) integer; showing that N(t) is
bounded at all time t. Now, since N(t) is a constant at any given
time t, we can transform the system of equation (Equation (1))
into a non-dimensional system. Following the step of Manaqib
et al. [27] let the proportion of individuals in each compartment
at a given time be expressed as in Equation (2)

S h =
1
N

S h, S w =
1
N

S w, V1 =
1
N

V1, V2 =
1
N

V2,

Vb =
1
N

Vb, E =
1
N

E, Is =
1
N

Is, Ia =
1
N

Ia,

H =
1
N

H, Q =
1
N

Q, R =
1
N

R.

(2)

Therefore, from Equation (1) and (2) we now form the dimen-
sionless equations as given in Equation (3).

dS h

dt
= µθ − β1(Is + Ia)S h − ξ1S h

dS w

dt
= µ(1 − θ) + uS h − β2(Is + Ia)S w − ξ2S w

dV1

dt
= τ1S h + τ2S w − β3(Is + Ia)V1 − ξ3V1

dV2

dt
= τ3V1 − β4(Is + Ia)V2 − ξ4V2

dVb

dt
= τ4V2 − β5(Is + Ia)Vb − ξ5Vb

dE
dt
= β1(Is + Ia)S h + β2(Is + Ia)S w + β3(Is + Ia)V1

+ β4(Is + Ia)V2 + β5(Is + Ia)Vb − ξ6E
dIs

dt
= αkE − ξ7Is

dIa

dt
= α(1 − k)E − ξ8Ia

dH
dt
= ρIs − ξ9H

dQ
dt
= σsIs + σaIa − ξ10Q

dR
dt
= ϕbVb + ϕaIa + ϕqQ + ϕhH − µR

dD
dt
= δsIs + δhH + δqQ,

(3)

where ξ1 = u+τ1+µ, ξ2 = u+τ2+µ, ξ3 = τ3+µ, ξ4 =
τ4+µ, ξ5 = ϕb+µ, ξ6 = α+µ, ξ7 = σs+ρ+δs+µ, ξ8 =
σa + ϕa + µ, ξ9 = ϕh + δh + µ, ξ10 = ϕq + δq + µ.

3. Model analysis

3.1. The invariant region

Since the model is that of human interaction, we can assume
that all initial conditions are non-negative and it suffices to show
that the solutions of the system are non-negative and bounded
(recall as stated earlier, death compartment shall not be part of
the analysis). The following theorem ensures that:

Theorem 3.1. Equation (3) have non-negative solutions and is
bounded, i.e S h(0) = S h0 ≥ 0, S w(0) = S w0 ≥ 0, V1(0) =
V10 ≥ 0, V2(0) = V20 ≥ 0, Vb(0) = Vb0 ≥ 0, E(0) = E0 ≥
0, Is(0) = Is0 ≥ 0, Ia(0) = Ia0 ≥ 0, H(0) = H0 ≥ 0, Q(0) =
Q0 ≥ 0, R(0) = R0 ≥ 0, D(0) = D0 ≥ 0.

Proof. From the system (Equation (3), we have dS h
dt =

µk − β1(Is + Ia)S h − ξ1S h =⇒
dS h
dt ≥ −β1(Is + Ia)S h − ξ1S h, =⇒∫

dS h
S h
≥ −

∫
[β1(Is+ Ia)+ξ1]dt =⇒ S h ≥ Ae−(ξ1)t−β1

∫
(Is+Ia)dt ≥ 0,

where A = eC; C is the constant o f integration. Showing that
S h(t) ≥ 0 ∀t ≥ 0. Following the same steps we can show that
S w(t),V1(t),V2(t),Vb(t), E(t), Is(t), Ia(t),H(t),Q(t),R(t),D(t)
are non-negative. Next, we show that the system (Equation (3))
is bounded. Observe that by summing up the system (Equation
(3)) (with the exception of D(t)) we have dN

dt ≤ 0 =⇒ N(t) ≤ c,
where c is a positive constant. Thus, S w(t) + S w(t) + V1(t) +
V2(t) + Vb(t) + E(t) + Is(t) + Ia(t) + H(t) + Q(t) + R(t) ≤ 1,
but since we can’t have say a half human, it is okay to assume
the constant to be 1, this imply that we can define a positive
invariant set of the system (Equation (3)) as given in Equation
(4)

Ω = {(S h, S w,V1,V2,Vb, E, Is, Ia,H,Q,R) ∈ R11
+ |S h + S w

+ S w + V1 + V2 + Vb + E + Is + Ia + H + Q + R = 1}.
(4)

3.2. Equilibrium points

The equilibrium points are obtained by setting all the com-
partments in the system (Equation (3)) to zero [33], i.e

dS h

dt
=

dS w

dt
=

dV1

dt
=

dV2

dt
=

dVb

dt
=

dE
dt
=

dIs

dt

=
dIa

dt
=

dH
dt
=

dQ
dt
=

dR
dt
= 0.

(5)

Now, there are two forms of equilibrium points: the COVID-19-
free equilibrium point/ Disease-free equilibrium point (DFE)
and the endemic equilibrium point (EEP).

3.2.1. The Disease-free equilibrium point (DFE) of the system
The COVID-19-free equilibrium point (DFE) of the (Equa-

tion (3)) is:

ε0 = (S 0
h, S

0
w,V

0
1 ,V

0
2 ,V

0
b , E

0, I0
s , I

0
a ,H

0,Q0,R0) =(
µθ

ξ1
,
µ (θu − θξ1 + ξ1)

ξ1ξ2
,
µ (θuτ2 + θτ1ξ2 − θτ2ξ1 + τ2ξ1)

ξ1ξ2ξ3
,

τ3µ (θuτ2 + θτ1ξ2 − θτ2ξ1 + τ2ξ1)
ξ1ξ2ξ3ξ4

,

τ4τ3µ (θuτ2 + θτ1ξ2 − θτ2ξ1 + τ2ξ1)
ξ1ξ2ξ3ξ4ξ5

,

0, 0, 0, 0, 0,
τ4τ3 (θuτ2 + θτ1ξ2 − θτ2ξ1 + τ2ξ1) ϕb

ξ1ξ2ξ3ξ4ξ5

)
. (6)
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3.2.2. The Endemic Equilibrium Point (EED) of the system
The endemic equilibrium point (EED) of the system (Equa-

tion (3)) is:

ε∗ = (S ∗h, S
∗
w,V

∗
1 ,V

∗
2 ,V

∗
b , E

∗, I∗s , I
∗
a ,H

∗,Q∗,R∗), (7)

where
S ∗h =

µθξ7ξ8
β1(αkξ8 + α(1 − k)ξ7)E∗ + ξ1ξ7ξ8

,

S ∗w =
µ(1 − θ)ξ7ξ8

β2(αkξ8 + α(1 − k)ξ7)E∗ + ξ2ξ7ξ8
+

uξ7ξ8
β2(αkξ8 + α(1 − k)ξ7)E∗ + ξ2ξ7ξ8(

µθξ7ξ8
β1(αkξ8 + α(1 − k)ξ7)E∗ + ξ1ξ7ξ8

)
,

V∗1 =
τ1ξ7ξ8

β3(αkξ8 + α(1 − k)ξ7)E∗ + ξ3ξ7ξ8(
µθξ7ξ8

β1(αkξ8 + α(1 − k)ξ7)E∗ + ξ1ξ7ξ8

)
+

τ2ξ7ξ8
β3(αkξ8 + α(1 − k)ξ7)E∗ + ξ3ξ7ξ8(

µ(1 − θ)ξ7ξ8
β2(αkξ8 + α(1 − k)ξ7)E∗ + ξ2ξ7ξ8

+
uξ7ξ8

β2(αkξ8 + α(1 − k)ξ7)E∗ + ξ2ξ7ξ8(
µθξ7ξ8

β1(αkξ8 + α(1 − k)ξ7)E∗ + ξ1ξ7ξ8

))
,

V∗2 =
τ3ξ7ξ8

β4(αkξ8 + α(1 − k)ξ7)E∗ + ξ4ξ7ξ8(
τ1ξ7ξ8

β3(αkξ8 + α(1 − k)ξ7)E∗ + ξ3ξ7ξ8(
µθξ7ξ8

β1(αkξ8 + α(1 − k)ξ7)E∗ + ξ1ξ7ξ8

)
+

τ2ξ7ξ8
β3(αkξ8 + α(1 − k)ξ7)E∗ + ξ3ξ7ξ8(

µ(1 − θ)ξ7ξ8
β2(αkξ8 + α(1 − k)ξ7)E∗ + ξ2ξ7ξ8

+
uξ7ξ8

β2(αkξ8 + α(1 − k)ξ7)E∗ + ξ2ξ7ξ8(
µθξ7ξ8

β1(αkξ8 + α(1 − k)ξ7)E∗ + ξ1ξ7ξ8

)))
,

V∗b =
τ4ξ7ξ8

β5(αkξ8 + α(1 − k)ξ7)E∗ + ξ5ξ7ξ8(
τ3ξ7ξ8

β4(αkξ8 + α(1 − k)ξ7)E∗ + ξ4ξ7ξ8(
τ1ξ7ξ8

β3(αkξ8 + α(1 − k)ξ7)E∗ + ξ3ξ7ξ8

(
µθξ7ξ8

β1(αkξ8 + α(1 − k)ξ7)E∗ + ξ1ξ7ξ8

)
+

τ2ξ7ξ8
β3(αkξ8 + α(1 − k)ξ7)E∗ + ξ3ξ7ξ8(

µ(1 − θ)ξ7ξ8
β2(αkξ8 + α(1 − k)ξ7)E∗ + ξ2ξ7ξ8

+
uξ7ξ8

β2(αkξ8 + α(1 − k)ξ7)E∗ + ξ2ξ7ξ8(
µθξ7ξ8

β1(αkξ8 + α(1 − k)ξ7)E∗ + ξ1ξ7ξ8

))))
,

Is =
αk
ξ7

E∗,

Ia =
α(1 − k)
ξ8

E∗,

H =
αρk
ξ7ξ9

E∗,

Q =
α(σskξ8 + σa(1 − k)ξ7)ρk

ξ7ξ8ξ9
E∗,

R =
ϕbV∗b + ϕaI∗a + ϕhH∗ + ϕqQ∗

µ
E∗.

E∗ is the solution of a third degree polynomial a0z3 +a1z2 +

a2z1 + a3, see Appendix A for the expression of a0, a1, a2 and
a3.

Observe from Table 2, that all denominators are well de-
fined since they’re all positive parameters.

3.2.3. The basic reproduction number
The basic reproduction number R0 of the proposed

S S VEIHQR − D COVID-19 model is given by:

R0 =
Aα (kξ8 + ξ7 − kξ7)

ξ6ξ7ξ8
, (8)

where A = β1S 0
h + β2S 0

w + β3V0
1 + β4V0

2 + β5V0
b ; S 0

h =
µθ
ξ1

; S 0
w =

µ(θu−θξ1+ξ1)
ξ1ξ2

; V0
1 =

µ(θuτ2+θτ1ξ2−θτ2ξ1+τ2ξ1)
ξ1ξ2ξ3

; V0
2 =

τ3µ(θuτ2+θτ1ξ2−θτ2ξ1+τ2ξ1)
ξ1ξ2ξ3ξ4

; V0
b =

τ4τ3µ(θuτ2+θτ1ξ2−θτ2ξ1+τ2ξ1)
ξ1ξ2ξ3ξ4ξ5

We use the Next Generation Matrix as seen in Van den
Driessche and Watmough [34] to obtain our reproduction num-
ber using the system of equations (Equation (3)) which com-
prise of two parts: F and V−1, where, we define the matrix F
as the new infections, while the component of matrix V are
transfers of infections from one compartment to another. ε0 is
the COVID-19-free equilibrium state. R0 is the dominant eigen-
value of the matrix G = FV−1.

7
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Now,

F =


(Is + Ia)(β1S w + β2S h + β3V1 + β4V2 + β5Vb)

0
0
0
0

 , (9)

V =


ξ6E

−α1kE + ξ7Is

−α(1 − k)E + ξ8Ia

−ρIs + ξ9H
−σsIs − σaIa + ξ10Q

 . (10)

We now obtain the F and V by computing the Jacobian F and
V . Thus,

F =


0 A A 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (11)

where S 0
h, S

0
w,V

0
1 ,V

0
2 ,V

0
b ,

V =


ξ6 0 0 0 0
−αk ξ7 0 0 0

−α(1 − k) 0 ξ8 0 0
0 −ρ 0 ξ9 0
0 −σs −σa 0 ξ10

 , (12)

V−1 =



1
ξ6

0 0 0 0
αk
ξ6ξ7

1
ξ7

0 0 0
−
α(−1+k)
ξ6ξ8

0 1
ξ8

0 0
ραk
ξ7ξ6ξ9

ρ
ξ7ξ9

0 1
ξ9

0
−
α(σaξ7k−σskξ8−σaξ7)

ξ7ξ6ξ8ξ10

σs
ξ7ξ10

σa
ξ8ξ10

0 1
ξ10


. (13)

Now,

FV−1 =


Aαk
ξ6ξ7
−

Aα(−1+k)
ξ6ξ8

A
ξ7

A
ξ8

0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 . (14)

Hence, the basic reproduction number R0 which is the spectra
radius of FV−1 is

R0 = ρ(FV−1) =
αA (kξ8 + ξ7 − kξ7)

ξ7ξ6ξ8
.

4. Stability analysis of the DFE and EEP

4.1. Local stability of the COVID-19-Free equilibrium

Theorem 4.1. The COVID-19-free equilibrium point of model
(Equation (3)) is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1.

proof. We begin by linearizing the system of differential equa-
tions (Equation (3)) by computing it Jacobian matrix, J(ξ) at the
COVID-19-free equilibrium point.

J(DFE) =



−ξ1 0 0 0 0 0 −b1 −b1 0 0 0
u −ξ2 0 0 0 0 −b2 −b2 0 0 0
τ1 τ2 −ξ3 0 0 0 −b3 −b3 0 0 0
0 0 τ3 −ξ4 0 0 −b4 −b4 0 0 0
0 0 0 τ4 −ξ5 0 −b5 −b5 0 0 0
0 0 0 0 0 −ξ6 A A 0 0 0
0 0 0 0 0 αk −ξ7 0 0 0 0
0 0 0 0 0 −α (k − 1) 0 −ξ8 0 0 0
0 0 0 0 0 0 ρ 0 −ξ9 0 0
0 0 0 0 0 0 σs σa 0 −ξ10 0
0 0 0 0 ϕb 0 0 ϕa ϕh ϕq −µ



(15)

Using the relation |J(ξ0)−λI|= 0, where I is an identity ma-
trix; b1 = β1S 0

h, b2 = β2S 0
w, b3 = β3V0

1 , b4 = β4V0
2 , b5 =

β5V0
b , and A = β1S 0

h + β2S 0
w + β3V0

1 + β4V0
2 + β5V0

b the charac-
teristic polynomial of the matrix (Equation (13)) is

|J(ξ0) − λI| = (λ3 − (−ξ8 − ξ6 − ξ7)λ2 − (αA − ξ6ξ7
− ξ8ξ6 − ξ8ξ7)λ + Aαkξ7 − Aαkξ8 − Aαξ7
+ ξ6ξ7ξ8)(λ + ξ1)(λ + ξ2)(λ + ξ3)(λ + ξ4)
(λ + ξ5)(λ + ξ9)(λ + ξ10)(λ + µ) = 0.

(16)

Showing that eight of the roots are less that zero. To show

that the system is stable, it suffices to show that the remain-
ing roots are less than zero. Now, let f (λ) = λ3 − (−ξ8 −
ξ6 − ξ7)λ2 − (αA − ξ6ξ7 − ξ8ξ6 − ξ8ξ7)λ + Aαkξ7 − Aαkξ8 −
Aαξ7 + ξ6ξ7ξ8 = λ3 + (ξ8 + ξ6 + ξ7)λ2 + (ξ6ξ7 + ξ8ξ6 + ξ8ξ7 −
αA)(R0 − 1). By the Routh-Hurwitz criteria on local stability
[35], the COVID-19-free equilibrium is locally asyptotically
stable if (ξ6ξ7 + ξ8ξ6 + ξ8ξ7 − αA) > 0 and R0 < 1. This com-
pletes the proof.

8
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4.1.1. Local stability of the Endemic Equilibrium Point (EEP)
Theorem 4.2. The COVID-19 endemic equilibrium ε∗ =
(S ∗h, S

∗
w,V

∗
1 ,V

∗
2 ,V

∗
b , E

∗, I∗s , I
∗
a ,H

∗,Q∗,R∗) (Equation (7)) is lo-
cally asymptotically stable if R0 > 1.

Proof. The COVID-19 endemic point
ε∗ the Jacobian matrix is given as

J(EEP) =



−l1 0 0 0 0 0 −β1S h −β1S h 0 0 0
u −l2 0 0 0 0 −β2S w −β2S w 0 0 0
τ1 τ2 −l3 0 0 0 −β3V1 −β3V1 0 0 0
0 0 τ3 −l4 0 0 −β4V2 −β4V2 0 0 0
0 0 0 τ4 −l5 0 −β5Vb −β5Vb 0 0 0
−Iβ1 −Iβ2 −Iβ3 −Iβ4 −Iβ5 −l6 A A 0 0 0

0 0 0 0 0 d1 −l7 0 0 0 0
0 0 0 0 0 d2 0 −l8 0 0 0
0 0 0 0 0 0 ρ 0 −l9 0 0
0 0 0 0 0 0 σ1 σ2 0 −l10 0
0 0 0 0 ϕb 0 0 ϕa ϕh ϕq −µ



(17)

where l1 = β1(Is + Ia) + ξ1; l2 = β1(Is + Ia) + ξ2; l3 = β1(Is +

Ia)+ ξ3; l4 = β1(Is+ Ia)+ ξ4; l5 = β1(Is+ Ia)+ ξ5; l6 = ξ6; l7 =
ξ7; l8 = ξ8; l9 = ξ9; l10 = ξ10; I = Is + Ia. Now, using the
relation Det(J(EEP) − λI) = 0, where I is an identity matrix, we
obtain the characteristic polynomial: Det(J(EEP) − λI)( f (λ)(λ+
µ)(λ+ l10)(λ+ l9)) = 0; f (λ) = b0λ

8+b1λ
7+b2λ

6+b3λ
5+b4λ

b+

b5λ
3 + b6λ

2 + b7λ
1 + b8, see Appendix B for the expression of

bi for i = 1, 2, · · · 8.
The Lienard-Chipart (LC) criteria [36] for a system having

a characteristic polynomial of degree n = 8 to be locally asymp-
totically stable are: the coefficient a1, a3, a5, a7 and a8 must be
positive, and the Hurwitz determinant |H3|, |H5|, |H7|, must be
positive. After using an algebraic package to obtain the char-
acteristic polynomial, we were able to obtain the expression of
the coefficients. We can observe from the coefficients obtained
that only a1 is positive, while the rest are not. We therefore con-
clude that the endemic point of the system is not locally stable
since all parameters are positive.

4.2. Global stability analysis of DFE and EEP
4.2.1. Global stability of the DFE

We shall show the condition for the global stability of the
system when there are no COVID-19 infectious persons in the
population.

Theorem 4.3. The COVID-19 free equilibrium point of model
(Equation (1)) is globally asymptotically stable for R0 <

min
(
ξ6ξ7
ξ8
, ξ6ξ8
ξ7

)
Proof. Consider the following Lyapunov function

U(S h, S w,V1,V2,Vb, E, Is, Ia,H,Q,R) = w1E+w2Is+w3Ia.(18)

Defined in Ω = {(S h, S w,V1,V2,Vb, E, Is, Ia,H,Q,R) ∈

R11
+ )|S 0

h > 0, S 0
w > 0,V0

1 > 0,V0
2 > 0,V0

b > 0, E0 >
0, I0

s > 0, I0
a > 0,H0 > 0,Q0 > 0,R0 > 0}, such that

R0 < min
(
ξ6ξ7
ξ8
, ξ6ξ8
ξ7

)
, where w1,w2 and w3 are positive constants

to be determined. Then differentiating

U(S h, S w,V1,V2,Vb, E, Is, Ia,H,Q,R) along the trajectory of
the solution of the model Equation (3) yields

U′ = w1(β1(Is + Ia)S h + β2(Is + Ia)S w + β3(Is + Ia)V1

+ β4(Is + Ia)V2 + β5(Is + Ia)Vb − ξ6E) + w2(αkE − ξ7Is)
+ w3(α(1 − k)E − ξ8Ia)
= w1(Is + Ia)(β1S h + β2S w + β3V1 + β4V2 + β5Vb)
+ (w3α − w1ξ6 + w2αk − w3αk)E − w2ξ7Is − w3ξ8Ia. (19)

Now, taking w1 =
α(kξ8+(1−k)ξ7)
ξ6ξ7ξ8

, w2 =
ξ6
ξ8

and w3 =
ξ6
ξ7

implies

U′ =
α(kξ8 + (1 − k)ξ7)(β1S h + β2S w + β3V1 + β4V2 + β5Vb)

ξ6ξ7ξ8
Is

−
ξ6ξ7
ξ8

Is

+
α(kξ8 + (1 − k)ξ7)(β1S h + β2S w + β3V1 + β4V2 + β5Vb)

ξ6ξ7ξ8
Ia

−
ξ6ξ8
ξ7

Ia =

(
R0 −

ξ6ξ7
ξ8

)
Is +

(
R0 −

ξ6ξ8
ξ7

)
Ia ≤ 0

f or R0 < min
(
ξ6ξ7
ξ8
,
ξ6ξ8
ξ7

)
. (20)

Showing that this is Lyapunov function for R0 <

min
(
ξ6ξ7
ξ8
, ξ6ξ8
ξ7

)
. Also, U′ = 0 if only Is = Ia = 0. Im-

plying that the trajectory of the solution for which U′ =
0 is the point ε0. Thus, the largest compact invariant set
{(S h, S w,V1,V2,Vb, E, Is, Ia,H,Q,R) ∈ Ω : U′ = 0} is the sin-
gleton set {ε0}. Hence, by the (cite Lassle) invariant principle,
the COVID-19 free equilibrium point (DFE) is globally asymp-
totically stable in Ω if R0 < min

(
ξ6ξ7
ξ8
, ξ6ξ8
ξ7

)
. This completes the

proof.

4.2.2. Global stability of the EEP
Theorem 4.4. The COVID-19 endemic point given by ε∗ =
(S ∗h, S

∗
w,V

∗
1 ,V

∗
2 ,V

∗
b , E

∗, I∗s , I
∗
a ,H

∗,Q∗,R∗) is asymptotically sta-
ble in Ω if R0 < 0.

9
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Figure 4: Scatter plots showing the relationship of the model
parameters on the basic reproduction number R0

Proof. Consider a Lyapunov function whose domain Ω, define
by:

V(S h, S w,V1,V2,Vb, E, Is, Ia,H,Q,R)

=

(
S h − S ∗h − S ∗hlog

S h

S ∗h

)
+

(
S w − S ∗w − S ∗wlog

S w

S ∗w

)
+

(
V1 − V∗1 − V∗1 log

V1

V∗1

)
+

(
V2 − V∗2 − V∗2 log

V2

V∗2

)
+

(
Vb − V∗b − V∗b log

Vb

V∗b

)
+

(
E − E∗ − E∗log

E
E∗

)
+

(
Is − I∗s − I∗s log

Is

I∗s

)
+

(
Ia − I∗a − I∗alog

Ia

I∗a

)
+

(
H − H∗ − H∗log

H
H∗

)
+

(
Q − Q∗ − Q∗log

Q
Q∗

)
+

(
R − R∗ − R∗log

R
R∗

)
. (21)

Differentiating V(S h, S w,V1,V2,Vb, E, Is, Ia,H,Q,R) along
the trajectory of the solution of the model (Equation (3)), we
obtain:

dV
dt
=

(
S h − S ∗h

S h

)
dS h

dt
+

(
S w − S ∗w

S w

)
dS w

dt
+

(
V1 − V∗1

V1

)
dV1

dt

+

(
V2 − V∗2

V2

)
dV2

dt
+

(
Vb − V∗b

Vb

)
dVb

dt

+

(
E − E∗

E

)
dE
dt
+

(
Is − I∗s

Is

)
dIs

dt

+

(
Ia − I∗a

Ia

)
dIa

dt
+

(
H − H∗

H

)
dH
dt

+

(
Q − Q∗

Q

)
dQ
dt
+

(
R − R∗

R

)
dR
dt

=

(
S h − S ∗h

S h

)
(µθ − β1(Is + Ia)S h − ξ1S h)

+

(
S w − S ∗w

S w

)
(µ(1 − θ) + uS h − β2(Is + Ia)S w − ξ2S w)

+

(
V1 − V∗1

V1

)
(τ1S h + τ2S w − β3(Is + Ia)V1 − ξ3V1)

+

(
V2 − V∗2

V2

)
(τ3V1 − β4(Is + Ia)V2 − ξ4V2)

+

(
Vb − V∗b

Vb

)
(τ4V2 − β5(Is + Ia)Vb − ξ5Vb)

+

(
E − E∗

E

)
(β1(Is + Ia)S h + β2(Is + Ia)S w

+β3(Is + Ia)V1 + β4(Is + Ia)V2 + β5(Is + Ia)Vb − ξ6E)

+

(
Is − I∗s

Is

)
(αkE − ξ7Is)

+

(
Ia − I∗a

Ia

)
(α(1 − k)E − ξ8Ia)

+

(
H − H∗

H

)
(ρIs − ξ9H)

10
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+

(
Q − Q∗

Q

)
(σsIs + σaIa − ξ10Q)

+

(
R − R∗

R

) (
ϕbVb + ϕaIa + ϕhH + ϕqQ − µR

)
.

(22)

dV
dt
=

(
S h − S ∗h

S h

) (
µθ − β1(Is + Ia)(S h − S ∗h) − (S h − S ∗h)ξ1

−(β1(Is + Ia)S ∗h + ξ1S ∗h)
)
+

(
S w − S ∗w

S w

)
(µ(1 − θ) + uS h

−β2(Is + Ia)(S w − S ∗w) − (S w − S ∗w)ξ2

−(β2(Is + Ia)S ∗w + ξ2S ∗w)
)
+

(
V1 − V∗1

V1

)
(
τ1S h + τ2S w − β3(Is + Ia)(V1 − V∗1 ) − (V1 − V∗1 )ξ3

−(β3(Is + Ia)V∗1 + ξ3V∗1 )
)
+

(
V2 − V∗2

V2

)
(
τ3V1 − β4(Is + Ia)(V2 − V∗2 ) − (V2 − V∗2 )ξ4

−(β4(Is + Ia)V∗2 + ξ4V∗2 )
)
+

(
Vb − V∗b

Vb

)
(
τ4V2 − β5(Is + Ia)(Vb − V∗b ) − (Vb − V∗b )ξ5

−(β5(Is + Ia)V∗b + ξ5V∗b )
)
+

(
E − E∗

E

)
(β1(Is + Ia)S h + β2(Is + Ia)S w + β3(Is + Ia)V1 + β4(Is + Ia)V2

+β5(Is + Ia)Vb − (E − E∗)ξ6 − ξ6E) +
(

Is − I∗s
Is

)
(
αkE − (Is − I∗s )ξ7 − ξ7I∗s

)
+

(
Ia − I∗a

Ia

)
(
α(1 − k)E − (Ia − I∗a)ξ8 − ξ8I∗a

)
+

(
H − H∗

H

)
(ρIs − (H − H∗)ξ9 − ξ9H∗) +

(
Q − Q∗

Q

)
(σsIs + σaIa − (Q − Q∗)ξ10 − ξ10Q∗)

+

(
R − R∗

R

) (
ϕbVb + ϕaIa + ϕhH + ϕqQ(R − R∗) − µR∗

)
. (23)

Observe that we can write dV
dt as ℓ1 − ℓ2, where

ℓ1 = µθ + β1(Is + Ia)
S ∗2h

S h
+ ξ1

S ∗2h

S h
µ(1 − θ)

+ uS h + β2(Is + Ia)
S ∗2w

S w
+ ξ2

S ∗2h

S h
τ1S h + τ2S w + β3(Is + Ia)

V∗21

V1

+ ξ3
V∗21

V1
τ3V1 + β4(Is + Ia)

V∗22

V2
+ ξ4

V∗22

V2
τ4V2

+ β5(Is + Ia)
V∗2b

Vv
+ ξ5

V∗2b

Vb
β1(Is + Ia)S h + β2(Is + Ia)S w

+ β3(Is + Ia)V1 + β4(Is + Ia)V2 + β5(Is + Ia)Vb + ξ6E∗

+ αkE + ξ7
I∗2s

Is
α(1 − k)E + ξ8

I∗2a

Ia
ρIs + ξ9

H∗2

H
σsIs

+ σaIa + ξ10
Q∗2

Q
ϕbVb + ϕaIa + ϕqQ + ϕhH + µ

R∗2

R
, (24)

ℓ2 =
(S h − S ∗h)2

S h
(β1(Is + Ia) + ξ1) +

(
S ∗h
S h
µθ + β1(Is + Ia)S ∗h + ξ1S ∗h

)
+

(S w − S ∗w)2

S w
(β2(Is + Ia) + ξ2)

+

(
S ∗w
S w

(µ(1 − θ) + µS h) + β2(Is + Ia)S ∗w + ξ2S ∗w

)
+

(V1 − V∗1 )2

V1
(β3(Is + Ia) + ξ3)

+

(
V∗1
V1
µ(τ1S h + τ2S w) + β3(Is + Ia)V∗1 + ξ3V∗1

)
+

(V2 − V∗2 )2

V2
(β4(Is + Ia) + ξ4)

+

(
V∗2
V2
τ3V1 + β4(Is + Ia)V∗2 + ξ4V∗2

)
+

(Vb − V∗b )2

Vb
(β5(Is + Ia) + ξ5)

+

(
V∗b
Vb
τ4V2 + β5(Is + Ia)V∗b + ξ5V∗b

)
+

(E − E∗)2

E
ξ6 + (β1(Is + Ia)S h + β2(Is + Ia)S w + β3(Is + Ia)V1

+ β4(Is + Ia)V2 + β5(Is + Ia)Vb)
E∗

E
+ ξ6

E∗2

E

+
(Is − Is)2

Is
ξ7 + αkE

I∗s
Is
+ ξ7I∗s

(Ia − Ia)2

Ia
ξ8 + α(1 − k)E

I∗a
Ia
+ ξ8I∗a

+
(H − H)2

H
ξ9 + ρIs

H∗

H
+ ξ9H∗

+
(Q − Q)2

Q
ξ10 + (σsIs + σaIa)

Q∗

Q
+ ξ10Q∗

+
(R − R)2

R
µ + (ϕbVb + ϕaIa + ϕqQ + ϕhH)

R∗

R
+ µR∗. (25)

Showing that dV
dt ≤ 0 for ℓ1 ≤ ℓ2 and dV

dt = 0 if and only if
ℓ1 = ℓ2 (this is true since all parameters in the model are non-
negative). Observe immediately that dV

dt = 0 if and only if S h =

S ∗h, S w = S ∗w, V1 = V∗1 , V2 = V∗2 , Vb = V∗b , E = E∗, Is = I∗s ,
Ia = I∗a , H = H∗, Q = Q∗, R = R∗. Hence, by the LaSalle’s
invariant principle the result follows.

5. Parameter estimation

Parameter estimation is one of the objectives of this re-
search. Parameter estimation is the process of computing or
determination of the best values of a model’s parameter using
sample data through numerical simulations. From the onset of
the COVID-19 outbreak till date efforts have been made by var-
ious researchers to estimate the value of parameters that influ-
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Figure 5: Scatter plots showing the relationship of the model
parameters on the basic reproduction number R0

ence the spread of the virus over time, and the basic reproduc-
tion number. The estimation of such parameters are very im-
portant because they give information on the dynamics of the
spread of the disease. At the early stage of COVID-19 outbreak,
in February 2020, when there was nothing like COVID vaccine,
using the daily reported cases of COVID-19 in Malaysia, Gill
et al. [37] estimated the basic reproduction to be R0 = 1.68.
In 2021, Abidemi et al. [38] by using the daily reported cases
of COVID-19 in Malaysia and applying the least square curve
fitting techniques estimated the basic reproduction number to
be R0 = 2.287 and contact rate to be 2.6576 × 10−5. The
work further shows that head immunity with respect to the ba-
sic reproduction number is p̂ = 1 − 1

R0
= 0.56, while in 2021,

Ganasegeran et al. [39] estimated a time-dependent reproduc-
tion number (Tt) at three different intervention periods after the
Movement Control Order: fourteen days prior to MCO the R0
was 3.91 (2.69, 5.35), at the first phase of the MCO the value
decreased to 2.52 (2.34, 2.70), subsquently it decreased to 1.12
(1.07, 1.17) and then to 0.97. Based on the fact that parameters
are not constant at all time, Ganasegeran et al. [39] estimated
the value of R0 at five different intervention stages in Malaysia.
In Nigeria, Ibrahim and Oladipo[40], Okuonghae and Omame
[41] and Adewole et al. [22] estimated the R0 using the National
Center for Disease Control and Prevention (NCDC) weekly sit-
uation data report to be around 2.2, 2.10 and 0.6 at three dif-
ferent periods. Negi et al. [42] studied the pandemic dynamics
of four different countries: Brazil, India, Italy and USA, and
obtained the estimates of their reproduction number to 1.4607,
0.7507, 3.5301, and 1.34268 respectively.

Among the importance of parameter estimation are future
predictions of new cases of the disease under study and the pro-
vision of insight towards understanding the impacts of various
employed preventive mechanisms. But estimated parameters
within the same period of time and future predictions did not
correspond to real life outcomes, as shown in Ganasegeran et
al. [39] and Negi et al. [42]. The resulting discrepancies of
estimated parameters for predictions of new cases with the real
life out come over time could be the result of using only one
compartment [40, 41] or two compartments [22] for estimation
and data fitting. The exemption of other compartments could
be the source of errors in the estimated values. Furthermore,
factors such as incorporation of preventive mechanisms and the
introduction of vaccination programmes have contributed in re-
ducing the basic reproduction number. Hence, the need for a
more accurate estimation of parameters which would capture
current realities. For this reason, we use five - first dose vacci-
nated, second dose vaccinated, booster dose vaccinated, active
cases, and recovered case compartments to determine/estimate
parameter for the S S VEIHQR − D model.

This research uses the COVID-19 data provided by Min-
istry of Health [43] from 14 February 2023 to 23rd September
2023 for data fitting and parameters estimations. The sim-
ulation was carried out using the ”lsqcurvefit” package on
MATLAB. The estimated parameters are give in Table 2 while
Figure 2 shows the simulation graph of the data fitting of the
S S VEIHQR−D model. The estimated values for the infection
force parameters with respect to the highly immune, weak

12
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immune, first dose vaccinated, second dose vaccinated, and
booster dose vaccinated are β1 = 0.731379771325, β2 =

0.256876730917, β3 = 0.996573290939, β4 =

0.420669910335, β5 = 0.849366396106 respectively,
while the basic reproduction number with respect to these
estimated parameters is R0 = 0.038295930703259.

The Herd Immunity Threshold (HIT)

Having estimated the Basic reproduction number of the
SSVEIHQR-D model, we can now estimate the threshold of
herd immunity for the population. According to the WHO
”Herd immunity, also known as population immunity, is the in-
direct protection from an infectious disease that happens when
a population is immune either through vaccination or immunity
developed through previous infection” [11].

6. Uncertainty and sensitivity analysis

Uncertainty analysis (UA) is the process of determining and
quantifying possible errors that could be associated with an es-
timated parameter. It aims at quantifying the outcome of a pa-
rameter based on the variability of the input. While sensitivity
analysis (SA) is the process of determining how a given pa-
rameter influences/affects a dependent variable with respect to
a given set of assumptions. SA enables researchers to deter-
mine how much a parameter influence a dependent variable in
a model. Both UA and SA are necessary in determining the
behaviour of a model. In order to capture the uncertainty of es-
timated parameters confidence interval for each parameter was
estimated which is then used to determine the confidence inter-
val for the basic reproduction number, and the sampling-based
method of sensitivity analysis which is known as Latin Hyper-
cube Sampling with partial rank correlation coefficient index
(LHS-PRCC) was adopted, since the aim is to determine the
influence of each parameter on the basic reproduction number.
Refer to Marino et al. [44] for more details on this method.

The sensitivity indices of the basic reproduction number
of the SSVEIHQR-D model was derived by the LHS-PRCC
method using a uniform distribution of 5000 samples of each
parameter as inputs. Figure (3) is a pictorial representation of
the PRCC. The bars indicate the magnitude of the influence of
the parameters in the dynamics of the disease. Thus a slight
change in a parameter with higher magnitude could likely result
to a significant change in the dynamics of the disease. Indices
with positive signs indicate direct relationship with the repro-
duction number i.e an increase on such parameters will result
to an increase in the value of the reproduction number. In the
same way, those with negative signs indicate an inverse rela-
tionship with the reproduction number, i.e increase on the value
of such parameters will result in decrease in the value of the re-
production number. The list of the sensitivity indices is given in
Table 3. Figure (4 and 5) show the relationship of each param-
eter with the basic reproduction number R0 by using a uniform
distribution of 5000 samples as input.

7. Optimal control

This section analyses the outcome of control mechanisms
incorporated for the prevention of the viral spread of the
COVID-19. Optimal control strategy has proven to be effective
in minimizing the spread of malicious objects. Thus, the need
to find a means of reducing the number of infectious persons
as well as the cost of appropriating such mechanisms becomes
expedient. Following the preventing measures and guidelines
given by the World Health Organization (WHO) and the Cen-
ter for Disease Control (CDC): such as the use of face mask,
frequent washing of hands and use of hand sanitizers; observa-
tion of social distancing, etc. This research work assumes that
a fraction (φ) of the population abide by the WHO preventive
measures with p(t) as the successful level of compliance and
v(t) as the successfully completed vaccination. Thus, two con-
trol parameter which are classified into four are incorporated
into the model: ph(t) and pw(t) are the fraction that met the
successful level of preventive measures compliance at a time
(t) among high and weak immune persons respectively, while
vh(t) and vh(t) are the successfully vaccinated persons among
the high and weak immune persons at a time t respectively.
Now, removing the vaccine compartments (since we have as-
signed control parameters to them) from Equation (3) and in-
corporating the control parameters we have

dS h

dt
= µθ − (1 − φh ph(t))β1(Is + Ia)S h − (vh(t) + ξ1)S h

dS w

dt
= µ(1 − θ) + uS h − (1 − φw pw(t))β2(Is + Ia)S w

− (vw(t) + ξ2)S w

dE
dt
= (1 − φh ph(t))β1(Is + Ia)S h + (1 − φw pw(t))β2(Is + Ia)S w

− ξ6E
dIs

dt
= αkE − ξ7Is

dIa

dt
= α(1 − k)E − ξ8Ia

dH
dt
= ρIs − ξ9H

dQ
dt
= σsIs + σaIa − ξ10Q

dR
dt
= vh(t)S h + vw(t)S w + ϕaIa + ϕqQ + ϕhH − µR

dD
dt
= δsIs + δhH + δqQ.

(26)

The goal now is to examine analytically the given control prob-
lem with the aim of minimizing the objective functional.

To optimize the control variables ph(t), pw(t), vh(t), and
vw(t) which is assumed to be Lebesque measurable on [0, t f ]
(t f being the stopping time), the control set is define as:

Ω = {(ph(t), pw(t), vh(t), vw(t)) ∈ L1(0, t f ) × L1(0, t f ) : 0 ≤ ph(t)
≤ pmax

h , 0 ≤ pw(t) ≤ pmax
w , 0 ≤ vh(t) ≤ vmax

h , 0 ≤ vw(t)
≤ vmax

w },

(27)
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where pmax
h , vmax

w , vmax
h and vmax

w denote the upper bound for
successful compliance to COVID-19 preventive measure and
successfully completed dosage of the COVID-19 vaccination.

Following the steps of Adewole et al. [22] and Marsden et
al. [45] the following functional is formulated:

J(ph, ph, vh, vw) = min
ph,ph,vh,vh

∫ t f

0

[
η1E(t) + η2Is(t) + η3Ia(t)

+
1
2

(
η4 p2

h(t) + η5 p2
w(t) + η6v2

h(t) + η7v2
w(t)

)]
dt.

(28)

The aim is to minimize the total number of infectious persons
while keeping the cost associated with the control mechanism
minimum. In other words, the target is to find an optimal con-
trol (p∗h(t), p∗w(t), v∗h(t), (v∗w(t)) such that

J(p∗h(t), p∗w(t), v∗h(t), (v∗w(t)) = min
p∗h,p

∗
w,v∗h,v

∗
w∈Ω

J(ph, pw, vh, vw). (29)

Quadratic terms are incorporated (Equation (28)) to show
nonlinear costs arising due to high intervention cases [45, 46].
The terms given in the integrand in Equation (28) are explained
below:

• The term η1E(t) + η2Is(t) + η3Ia(t) represent the cost de-
ploying and maintaining mechanism for monitoring in-
fected persons at all stage

• The term η4 p2
h(t) and η5 p2

h(t) represent the cost of ob-
serving the WHO’s preventing guidelines by the strong
immune and weak immune respectively.

• The term η6v2
h(t) and η7v2

h(t) represent the cost of the vac-
cination for the strong and weak immune respectively at
time t

7.1. Theoretical analysis of the optimal control
Based on the standard optimal control theorem in [47], the

following theorem establish the existence of an optimal control
for the proposed COVID-19 model.

theorem 7.1. There exist ph(t), pw(t), vh(t) and vw(t) ∈ Ω such
that the given objective functional Equation (28) is minimized.

proof. Observe that the control set as define in Equation (27)
is closed since it contains all of its limit points, as a result it is
bounded; the set is also convex. The right hand side of the set
of equations in Equation (26) and the integrand of the objec-
tive functional in Equation (27) are continuously differentiable.
Hence, these satisfied the conditions for the existence of global
optimal control theorem based on theorem [47].

To determine the necessary conditions for the optimal con-
trol for the spread of the disease in Malaysia, the Pontryagin’s
Minimum Principle (PMP) [48] is applied. Applying this prin-
ciple the system of equations (Equation (26)) and Equation (28)
changes from a problem of minimizing the objective functional
(Equation (28)) subject to the state variable equation (Equation
(26)), into a problem of minimizing a point-wise Hamiltonian
(L) with respect to the control ph(t), pw(t), vh(t) and vw(t). The
Hamiltonian (L) is given by:

L = η1E(t) + η2Is(t) + η3Ia(t) +
1
2

(
η4 p2

h(t) + η5 p2
w(t)

+ η6v2
h(t) + η7v2

w(t)
)

+ λ1
[
µθ − (1 − φh ph(t))β1(Is + Ia)S h − (vh(t)

+ξ1)S h
]

+ λ2
[
µ(1 − θ) + uS h − (1 − φw pw(t))β2(Is + Ia)S w

−(vw(t) + ξ2)S w
]

+ λ3
[
(1 − φh ph(t))β1(Is + Ia)S h + (1 − φw pw(t))

·β2(Is + Ia)S w − ξ6E
]

+ λ4
[
αkE − ξ7Is

]
+ λ5[α(1 − k)E − ξ8Ia]

+ λ6[ρIs − ξ9H]
+ λ7

[
σsIs + σaIa − ξ10Q

]
+ λ8[vh(t)S h + vw(t)S w

+ ϕaIa + ϕqQ + ϕhH − µR]
λ9[δsIs + δhH + δqQ],

(30)

where λ1, λ2, · · · , λ9 are the adjoint functions associated with
the variable of the equations (Equation (26)). By applying the
PMP the following theorem is obtained:

Theorem 7.2. Given an optimal control points ph(t),
pw(t), vh(t) and vw(t) and a corresponding solution
(S ∗h, S

∗
w, E

∗, I∗s , I
∗
a ,H

∗,Q∗,R∗) of Equation (26) that mini-
mize J(ph(t)pw(t), vh(t), vw(t)) over the set Ω, then there exist
adjoint functions such that:

−
dλ1

dt
=
∂L

∂S h
= (λ3 − λ1)(1 − φh ph(t))β1(Is + Ia)

+ (λ8 − λ1)vh(t) + λ1ξ1 + λ2u

−
dλ2

dt
=
∂L

∂S w
= (λ3 − λ2)(1 − φw pw(t))β1(Is + Ia)

+ (λ8 − λ2)vw(t) + λ2ξ2

−
dλ3

dt
=
∂L

∂E
= η2 + λ3ξ6 + λ4αk + λ5α(1 − k)

−
dλ4

dt
=
∂L

∂Is
= η2 + (λ3 − λ1)(1 − φh ph(t))β1S h

+ (λ3 − λ2)(1 − φw pw(t))β2S w

− λ4ξ7 + λ6ρ + λ7δs + λ9δs

−
dλ5

dt
=
∂L

∂Ia
= η3 + (λ3 − λ1)(1 − φh ph(t))β1S h

+ (λ3 − λ2)(1 − φw pw(t))β2S w

− λ5ξ8 + λ7σa + λ8ϕa

−
dλ6

dt
=
∂L

∂H
= −λ6ξ9 + λ8ϕh + λ9δh

−
dλ7

dt
=
∂L

∂Q
= −λ7ξ9 + λ8ϕq + λ9δ0

−
dλ8

dt
=
∂L

∂R
= −λ8µ

−
dλ9

dt
=
∂L

∂D
) = 0.

(31)

With transversality conditions λ1(t f ) = λ2(t f ) = λ3(t f ) =
λ4(t f ) = λ5(t f ) = λ6(t f ) = λ7(t f ) = λ8(t f ) = λ9(t f ) = 0 and
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Figure 6: The S S EEIHQR − D model with two control p(t) and v(t): preventive guidelines and vaccination. a Strong immune susceptible (S h),
b weaker immune susceptible (S w), c Exposed (E), d Symptomatic (Is), e Asymptomatic (Ia), f Hospitalized (H), g Quarantined (Q), h Recovered
(R), and i Deaths (D).

N∗ = S ∗h + S ∗w + E∗ + I∗h + I∗a + H∗ + Q∗ + R∗; satisfying the
following optimality condition:

p∗h(t) = min
(
max

(
0,

(λ3 − λ1)φhβ1(Is + Ia)S ∗h
η4

)
, pmax

h

)
p∗w(t) = min

(
max

(
0,

(λ3 − λ1)φwβ2(Is + Ia)S ∗w
η5

)
, pmax

w

)
v∗h(t) = min

(
max

(
0,

(λ1 − λ8)S ∗h
η6

)
, vmax

h

)
v∗w(t) = min

(
max

(
0,

(λ2 − λ8)S ∗w
η7

)
, vmax

w

)
.

(32)

Proof. By applying the Pontryagin’s Minimum Principle, the
system of adjoint functions Equation (31) is obtained from the
Hamiltonian function Equation (30), subject to the transversal-
ity condition λ1(t f ) = λ2(t f ) = λ3(t f ) = λ4(t f ) = λ5(t f ) =

λ6(t f ) = λ7(t f ) = λ8(t f ) = λ9(t f ) = 0. Now, evaluating at the
control pair (ph(t), (pw(t), (vh(t), vw(t)) subject to the state vari-
ables, and taking into consideration the optimality condition:
∂L
∂ph
= 0, ∂L

∂pw
= 0, ∂L

∂vh
= 0, and ∂L

∂vw
= 0, on the set {t : 0 <

ph(t) < pmax
h }, {t : 0 < pw(t) < pmax

w }, {t : 0 < vh(t) < vmax
h } and

{t : 0 < vw(t) < vmax
w }, we obtain:

∂L

∂ph
= η4 ph(t) + λ1φhβ1(Is + Ia)S h − λ3φhβ1(Is + Ia)S h

= 0

⇒ ph(t) =
(λ3 − λ1)φhβ1(Is + Ia)S h

η4
,

∂L

∂pw
= η5 pw(t) + λ2φwβ2(Is + Ia)S w − λ3φwβ2(Is + Ia)S w

= 0

⇒ pw(t) =
(λ3 − λ2)φwβ2(Is + Ia)S w

η5
,
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∂L

∂vh
= η6vh(t) − λ1S h + λ8S h = 0

⇒ vh(t) =
(λ1 − λ8)S h

η6
,

and

∂L

∂vw
= η7vw(t) − λ2S w + λ8S w = 0

⇒ vw(t) =
(λ2 − λ8)S w

η7
.

Showing that the optimality condition only holds in the interior
of the control set.

8. Results and discussion

The result from the model analysis for the proposed
S S VEIHQR − D show that the system for the model have
a non-negative solution and the COVID-19-free equilibrium
point was obtained. The Next Generation Matrix as seen in
[34] was used to obtain the reproduction number R0. The
model analysis also show that the COVID-19-free equilibrium
point of model is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1. To illustrate the main result of the proposed
model and the combined impact of the spreading of COVID-19
in Malaysia, we carried out some numerical simulations, by
collecting the daily COVID-19 data published by Ministry of
Health [43] and some parameters from available corresponding
literature. Recent data were collected for 220 days for fittings
and parameters estimations. Among the parameters that were
estimated are the infection force parameters with respect
to the highly immune, weak immune, first dose vaccinated,
second dose vaccinated, and booster dose vaccinated, which
are β1 = 0.731379771325, β2 = 0.256876730917, β3 =

0.996573290939, β4 = 0.420669910335, β5 =

0.849366396106 respectively, and the basic reproduc-
tion number with respect to these estimated parameters is
R0 = 0.038295930703259. This value is significantly different
from previously estimated/assumed values for R0. The substan-
tial decrease in the value of R0 is expected due to the preventive
mechanism and vaccination programs introduced against the
spread of the virus. The decline in the value of R0 shows the
validity of the S S VEIHQR − D model as it corresponds to
real life situation outcome for the COVID-19 pandemic at the
moment.

Also, we calculated the herd immunity threshold which nor-
mally takes value from 0% to 100%, but ours was far less than
the range, because the basic reproduction number is much less
than 1 (i.e. stability), which means that, on average, each in-
fected individual is infecting less than one other person, this
indicates that the COVID-19 new cases will naturally decline
and the virus will eventually die out of the population. Thus,
parameters estimated from the fittings could be used for further
analysis. Next is the simulations of the uncertainty and sensitiv-
ity analysis of the basic reproduction number. We carried out
a global sensitivity analysis using 5000 uniformly distributed
samples of each parameter of the S S VEIHQR−D model within

a 99% interval of confidence for each parameter as obtained
from the fittings and other literature in order to capture uncer-
tainty associated with estimations.

These samples were obtained through sampling based
method known as the Latin Hypercube Sampling with par-
tial rank correlation coefficientnindex (LHS-PRCC). A bar chat
representing the magnitude/influence of each parameter against
the basic reproduction number R0 is given in Figure 3. The
bars on the positive axis implies positive influence on the R0
while the bars on the negative axis represent negative influence.
The length of each bar denote the magnitude of the influnce
of the parameter. It can be observed from the PRCC chat that
the parameter with the highest influence on R0 is the infectious
force of the weak immune susceptible individuals. The graphi-
cal/pictorial representation of the 5000 samples of each param-
eters against the R0 is given in Figure 4-5. Finally is the simula-
tion of the optimal control analysis. The essence of the optimal
control analysis is to get a picture of the dynamics of the im-
pact of incorporated control mechanism for curbing the spread
of COVID-19 and to juxtapose the outcome of the impact with
the model.

In reality, control strategies adopted toward minimizing
the spread of the virus can be classified into two: preventive
guidelines as stipulated by the WHO such as wearing of face
mask,frequent use of hand sanitizer and washing of hands, ob-
servation of social distancing; and the introduction of vaccina-
tion programme; as a result two control parameters were incor-
porated into the model. For easy apprehension, the simulation
for each compartment was plotted on a different plane with the
scenarios when there is control and when there is no control.
These simulations are given in Figure ??. There are two main
compartment of interest here: the susceptible compartment and
the recovered compartment, these are the main classes of target.
It can be observed immediately from the simulations given in
Figure ?? the impact of the control parameters on the suscepti-
ble class and the recovered class, the rate of becoming suscepti-
ble reduced so much, while the rate of recovery increased very
significantly. This is as a result of the fact that the fraction of
persons who did not become exposed and those who have com-
pleted the vaccination are moved into the recovered class. A
juxtaposition between the recovered class in the data fittings in
?? and the recovered class obtained from the simulation control
in Figure ?? gives a similar line graph. This reveals the im-
pact of incorporating control mechanism in tracking and reduc-
ing the viral spread of the COVID-19 virus in the the Malaysia
population.

9. Summary and conclusion

In order to capture in a model the peculiarity of having two
distinct susceptible classes and its dynamics along the three
stages of the vaccination programs introduced by the WHO,
which have not been taken into consideration by other re-
searchers; and to obtain the best fit values of parameters that
propagates the virus by fitting real life situation data to a model
and give a comprehensive interpretation to the discrepancies be-
tween the results of a proposed model and real life outcomes,
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taking Malaysia as a case study, a new twelve compartmental
SSVEIHQR-D epidemiological model was developed.

From the theoretical analysis of the proposed SSVEIHQR-D
model, we were able to obtain the characteristics of the thresh-
old parameter R0 with the help of the Next Generation Matrix
as given in [34], and established that if R0 < 1 the system is
locally asymptotically stable and unstable if otherwise. The
”lsqcurvefit” package in MATLAB was used for the estima-
tion of parameters and data fittings, and the basic reproduc-
tion number obtained with respect to the estimated parameters
is R0 = 0.038295930703259. This value of R0 corresponds to
the current state (stability) of the pandemic, it also reveal the
impact of control mechanisms ( the value could be said to be
more realistic when compared with previous R0 estimated by
other researchers). Using the estimated R0 we calculated the
herd immunity threshold which shows that the COVID-19 new
cases will naturally decline and the virus will eventually die
out of the population. We carried out uncertain and sensitiv-
ity analysis from which we discovered that one parameter u -
the rate of strong immune becoming weak out of 24 parame-
ters highly influences the R0 negatively, while five parameters,
namely: infection force for the weak immune β2, quarantined
rate for symptomatic σs, quarantined rate for asymptomatic σs,
hospitalized rate for the symptomatic ρ, recovery rate for the
quarantined ϕq highly influence the R0 positively.

For the optimal control strategy for tracking and reducing
the viral spread of the COVID-19 virus in Malaysia four con-
trol parameters were introduced: ph(t), pw(t), vh(t), and vw(t)
into the model which represent the fraction of strong immune
that met the successful level of preventive measures, the frac-
tion of weak immune that met the successful level of preventive
measures, the strong immune that have successfully completed
vaccination dose and the weak immune that have successfully
completed vaccination dose rate respectively. The simulation
result shows the impact of the control mechanisms over the pe-
riod, and juxtaposing of the result with the data fittings simu-
lation shows significant similarity, this shows that optimal con-
trol analysis is an effective way of minimizing the spread of
COVID-19 in the population.

Since having a basic reproduction R0 that is less than 1
implies the virus will naturally die out of the population over
time, it becomes necessary to ensure that this value remains
less than 1. To ensure this, we recommend that the govern-
ment should not relent encouraging the populace to continue
observing the preventive guidelines as stipulated by the WHO
and MOH; and to also acknowledge the effort of the populace
so far for their patience and sacrifices in fighting against the
virus. Also, we recommend that researchers should be encour-
aged to estimating the value of the R0 and other parameters
time to time, to monitor its value in order that immediate ac-
tion be taken whenever it becomes grater than 1. The result
from he sensitivity analysis show that the rate of moving from
the strong immune group to weaker immune negatively influ-
ence the basic reproduction number, so there is need to make
the value lesser, to achieve government and health organization
should encourage sensitization program about building a strong
immune system against COVID-19; and allocation strategies

should be devised for priotizing the vaccination of individuals
with weaker immune. To prepare against potential effect of new
variants of the virus, government, business and medical organi-
zation should encourage research on the efficiency of existing
vaccines against future potential variants.

Finally, one major limitation or weakness of this research
work which could affect the accuracy of the fittings and esti-
mated parameter is the accuracy of available data. For instance,
it is possible that there are unreported cases of infection that the
Ministry of Health (MOH) is unaware of. Therefore, we hold
the view that the data related to these new cases may lack the
necessary accuracy for the purposes of model fittings and esti-
mation. Instead we used the vaccination data since people have
to visit a medical center for vaccination, which we consider to
be a more reliable and accurate dataset. Hence, when using
the recovered data for simulating the fittings and estimations,
we made some adjustments to our assumptions, retaining only
those related to recovery from the hospitalized and quarantined,
while discarding others.
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APPENDIX A.

E∗ is the solution of a third degree polynomial a0z3 +a1z2 +

a2z1 + a3, where,

a0 = ξ7ξ8(−β2β3β5ξ1ξ4ξ6I − β2β4β5ξ1ξ3ξ6I − β3β4β5ξ1ξ2ξ6I

− β1β2β3ξ4ξ5ξ6I − β1β2β4ξ3ξ5ξ6I − β1β2β5ξ3ξ4ξ6I

− β1β3β4ξ2ξ5ξ6I − β2β3β4ξ1ξ5ξ6I − αµβ1β3β4ξ5ξ7I

− αµβ1β3β5ξ4ξ7I − αµβ1β4β5τ2ξ7I − αµβ1β4β5ξ3ξ7I

− αµβ3β4β5ξ1ξ7I + αµθβ3β4β5ξ1ξ7I − αµθuβ3β4β5ξ7I

− αµθβ2β3β4ξ5ξ7I − αµθβ2β3β5ξ4ξ7I − αµθβ2β4β5τ1ξ7I

− αµθβ2β4β5ξ3ξ7I − αµθβ3β4β5ξ2ξ7I + αkµβ1β3β4ξ5ξ7I

+ αkµβ1β3β4ξ5ξ8I + αkµβ1β3β5ξ4ξ7I + αkµβ1β3β5ξ4ξ8I

+ αkµβ1β4β5τ2ξ7I + αkµβ1β4β5τ2ξ8I + αkµβ1β4β5ξ3ξ7I

+ αkµβ1β4β5ξ3ξ8I + αkµβ3β4β5ξ1ξ7I + αkµβ3β4β5ξ1ξ8I

+ αµθβ1β3β4ξ5ξ7I + αµθβ1β3β5ξ4ξ7I + αµθβ1β4β5τ2ξ7I

+ αµθβ1β4β5ξ3ξ7I − αkµθβ1β4β5τ2ξ7I − αkµθβ1β4β5τ2ξ8I

− αkµθβ1β4β5ξ3ξ7I − αkµθβ1β4β5ξ3ξ8I − αkµθβ3β4β5ξ1ξ7I

− αkµθβ3β4β5ξ1ξ8I + αkµθβ2β3β4ξ5ξ7I + αkµθβ2β3β4ξ5ξ8I

+ αkµθβ2β3β5ξ4ξ7I + αkµθβ2β3β5ξ4ξ8I + αkµθβ2β4β5τ1ξ7I

+ αkµθβ2β4β5τ1ξ8I + αkµθβ2β4β5ξ3ξ7I + αkµθβ2β4β5ξ3ξ8I

+ αkµθβ3β4β5ξ2ξ7I + αkµθβ3β4β5ξ2ξ8I − αkµθβ1β3β4ξ5ξ7I

− αkµθβ1β3β4ξ5ξ8I − αkµθβ1β3β5ξ4ξ7I − αkµθβ1β3β5ξ4ξ8I

+ αkµθuβ3β4β5ξ7I + αkµθuβ3β4β5ξ8I))

a1 = ξ7ξ8(αkµθuβ3β4ξ5ξ7 + αkµθuβ3β4ξ5ξ8 + αkµθuβ3β5ξ4ξ7

+ αkµθuβ3β5ξ4ξ8 + αkµθuβ4β5τ2ξ7 + αkµθuβ4β5τ2ξ8

+ αkµθuβ4β5ξ3ξ7 + αkµθuβ4β5ξ3ξ8 − αkµθβ1β3ξ4ξ5ξ7

− αkµθβ1β3ξ4ξ5ξ8 − αkµθβ1β4τ2ξ5ξ7 − αkµθβ1β4τ2ξ5ξ8

− αkµθβ1β4ξ3ξ5ξ7 − αkµθβ1β4ξ3ξ5ξ8 − αkµθβ1β5τ2τ3ξ7

+ αkµθβ2β3ξ4ξ5ξ8 + αkµθβ2β4τ1ξ5ξ7 + αkµθβ2β4τ1ξ5ξ8

+ αkµθβ2β4ξ3ξ5ξ7 + αkµθβ2β4ξ3ξ5ξ8 + αkµθβ2β5τ1τ3ξ7

+ αkµθβ2β5τ1τ3ξ8 + αkµθβ2β5τ1ξ4ξ7 + αkµθβ2β5τ1ξ4ξ8

+ αkµθβ2β5ξ3ξ4ξ7 + αkµθβ2β5ξ3ξ4ξ8 − αkµθβ3β4ξ1ξ5ξ7

− αkµθβ3β4ξ1ξ5ξ8 + αkµθβ3β4ξ2ξ5ξ7 + αkµθβ3β4ξ2ξ5ξ8

− αkµθβ3β5ξ1ξ4ξ7 − αkµθβ3β5ξ1ξ4ξ8 + αkµθβ3β5ξ2ξ4ξ7

+ αkµθβ3β5ξ2ξ4ξ8 + αkµθβ4β5τ1ξ2ξ7 + αkµθβ4β5τ1ξ2ξ8

− αkµθβ4β5τ2ξ1ξ7 − αkµθβ4β5τ2ξ1ξ8 − αkµθβ4β5ξ1ξ3ξ7

− αkµθβ4β5ξ1ξ3ξ8 + αkµθβ4β5ξ2ξ3ξ7 + αkµθβ4β5ξ2ξ3ξ8

+ αkµβ1β3ξ4ξ5ξ7 + αkµβ1β3ξ4ξ5ξ8 + αkµβ1β4τ2ξ5ξ7

+ αkµβ1β4τ2ξ5ξ8 + αkµβ1β4ξ3ξ5ξ7 + αkµβ1β4ξ3ξ5ξ8

+ αkµβ1β5τ2τ3ξ7 + αkµβ1β5τ2τ3ξ8 + αkµβ1β5τ2ξ4ξ7

+ αkµβ1β5τ2ξ4ξ8 + αkµβ1β5ξ3ξ4ξ7 + αkµβ1β5ξ3ξ4ξ8

+ αkµβ3β4ξ1ξ5ξ7 + αkµβ3β4ξ1ξ5ξ8 + αkµβ3β5ξ1ξ4ξ7

+ αkµβ3β5ξ1ξ4ξ8 + αkµβ4β5τ2ξ1ξ7 + αkµβ4β5τ2ξ1ξ8

+ αkµβ4β5ξ1ξ3ξ7 + αkµβ4β5ξ1ξ3ξ8 − αµθuβ3β4ξ5ξ7

− αµθuβ3β5ξ4ξ7 − αµθuβ4β5τ2ξ7 − αµθuβ4β5ξ3ξ7

+ αµθβ1β3ξ4ξ5ξ7 + αµθβ1β4τ2ξ5ξ7 + αµθβ1β4ξ3ξ5ξ7

+ αµθβ1β5τ2τ3ξ7 + αµθβ1β5τ2ξ4ξ7 + αµθβ1β5ξ3ξ4ξ7

− αµθβ2β3ξ4ξ5ξ7 − αµθβ2β4τ1ξ5ξ7 − αµθβ2β4ξ3ξ5ξ7

− αµθβ2β5τ1τ3ξ7 − αµθβ2β5τ1ξ4ξ7 − αµθβ2β5ξ3ξ4ξ7

+ αµθβ3β4ξ1ξ5ξ7 − αµθβ3β4ξ2ξ5ξ7 + αµθβ3β5ξ1ξ4ξ7

− αµθβ3β5ξ2ξ4ξ7 − αµθβ4β5τ1ξ2ξ7 + αµθβ4β5τ2ξ1ξ7

+ αµθβ4β5ξ1ξ3ξ7 − αµθβ4β5ξ2ξ3ξ7 − αµβ1β3ξ4ξ5ξ7

− αµβ1β4τ2ξ5ξ7 − αµβ1β4ξ3ξ5ξ7 − αµβ1β5τ2τ3ξ7

− αµβ1β5τ2ξ4ξ7 − αµβ1β5ξ3ξ4ξ7 − αµβ3β5ξ1ξ4ξ7

− αµβ4β5τ2ξ1ξ7 − αµβ4β5ξ1ξ3ξ7 − β1β2ξ3ξ4ξ5ξ6

− β1β3ξ2ξ4ξ5ξ6 − β1β4ξ2ξ3ξ5ξ6 − β1β5ξ2ξ3ξ4ξ6

− β2β3ξ1ξ4ξ5ξ6 − β2β4ξ1ξ3ξ5ξ6 − β2β5ξ1ξ3ξ4ξ6 − β3β4ξ1ξ2ξ5ξ6

− β3β5ξ1ξ2ξ4ξ6 − β4β5ξ1ξ2ξ3ξ6)

a2 = ξ7ξ8(Iβ1ξ2ξ3ξ4ξ5ξ6 + Iβ2ξ1ξ3ξ4ξ5ξ6 + Iβ3ξ1ξ2ξ4ξ5ξ6

+ Iβ4ξ1ξ2ξ3ξ5ξ6 + Iβ5ξ1ξ2ξ3ξ4ξ6 − Iξ7αµkβ4ξ1ξ3ξ5

− Iαkµβ4ξ1ξ3ξ5ξ8 − Iξ7αµkβ5τ2τ3ξ1 − Iαkµβ5τ2τ3ξ1ξ8

− Iξ7αµkβ5τ2ξ1ξ4 − Iαkµβ5τ2ξ1ξ4ξ8 − Iξ7αµkβ5ξ1ξ3ξ4

− Iαkµβ5ξ1ξ3ξ4ξ8 − Iξ7αµθβ1τ2τ3τ4 − Iξ7αµθβ1τ2τ3ξ5

− Iξ7αµθβ1τ2ξ4ξ5 − Iξ7αµθβ1ξ3ξ4ξ5 − Iξ7αµθβ3ξ1ξ4ξ5

− Iξ7αµθβ4τ2ξ1ξ5 − Iξ7αµθβ4ξ1ξ3ξ5 − Iξ7αµθβ5τ2τ3ξ1

− Iξ7αµθβ5τ2ξ1ξ4 − Iξ7αµθβ5ξ1ξ3ξ4 + Iξ7αµθβ2τ1ξ4ξ5

+ Iξ7αµθβ2ξ3ξ4ξ5 + Iξ7αµθβ3ξ2ξ4ξ5 + Iξ7αµθβ4τ1ξ2ξ5

+ Iξ7αµθβ4ξ2ξ3ξ5 + Iξ7αµθβ5τ1τ3ξ2 + Iξ7αµθβ5τ1ξ2ξ4

+ Iξ7αµθβ5ξ2ξ3ξ4 − Iξ7αµkβ1τ2τ3τ4 − Iαkµβ1τ2τ3τ4ξ8

− Iξ7αµkβ1τ2τ3ξ5 − Iαkµβ1τ2τ3ξ5ξ8 − Iξ7αµkβ1τ2ξ4ξ5

− Iαkµβ1τ2ξ4ξ5ξ8 − Iξ7αµkβ1ξ3ξ4ξ5 − Iαkµβ1ξ3ξ4ξ5ξ8

− Iξ7αµkβ3ξ1ξ4ξ5 − Iαkµβ3ξ1ξ4ξ5ξ8 − Iξ7αµkβ4τ2ξ1ξ5

− Iαkµβ4τ2ξ1ξ5ξ8 + Iξ7αµθuβ3ξ4ξ5 + Iξ7αµθuβ4τ2ξ5

+ Iξ7αµθuβ4ξ3ξ5 + Iξ7αµθuβ5τ2τ3 + Iξ7αµθuβ5τ2ξ4

+ Iξ7αµθuβ5ξ3ξ4 + Iξ7αµθβ2τ1τ3τ4 + Iξ7αµθβ2τ1τ3ξ5

− Iαkµθβ5τ1ξ2ξ4ξ8 − Iξ7αµkθβ5ξ2ξ3ξ4 − Iαkµθβ5ξ2ξ3ξ4ξ8

− Iαkµθuβ4ξ3ξ5ξ8 − Iξ7αµkθuβ5τ2τ3 − Iαkµθuβ5τ2τ3ξ8

− Iξ7αµkθuβ5τ2ξ4 − Iαkµθuβ5τ2ξ4ξ8 − Iξ7αµkθuβ5ξ3ξ4

− Iαkµθuβ5ξ3ξ4ξ8 − Iξ7αµkθβ2τ1τ3τ4 − Iαkµθβ2τ1τ3τ4ξ8

− Iξ7αµkθβ2τ1τ3ξ5 − Iαkµθβ2τ1τ3ξ5ξ8 − Iξ7αµkθβ2τ1ξ4ξ5
19
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− Iαkµθβ2τ1ξ4ξ5ξ8 − Iξ7αµkθβ2ξ3ξ4ξ5 − Iαkµθβ2ξ3ξ4ξ5ξ8

− Iξ7αµkθβ3ξ2ξ4ξ5 − Iαkµθβ3ξ2ξ4ξ5ξ8 − Iξ7αµkθβ4τ1ξ2ξ5

− Iαkµθβ4τ1ξ2ξ5ξ8 − Iξ7αµkθβ4ξ2ξ3ξ5 − Iαkµθβ4ξ2ξ3ξ5ξ8

− Iξ7αµkθβ5τ1τ3ξ2 − Iαkµθβ5τ1τ3ξ2ξ8 − Iξ7αµkθβ5τ1ξ2ξ4

+ Iξ7αµkθβ4τ2ξ1ξ5 + Iαkµθβ4τ2ξ1ξ5ξ8 + Iξ7αµkθβ4ξ1ξ3ξ5

+ Iαkµθβ4ξ1ξ3ξ5ξ8 + Iξ7αµkθβ5τ2τ3ξ1 + Iαkµθβ5τ2τ3ξ1ξ8

+ Iξ7αµkθβ5τ2ξ1ξ4 + Iαkµθβ5τ2ξ1ξ4ξ8 + Iξ7αµkθβ5ξ1ξ3ξ4

+ Iαkµθβ5ξ1ξ3ξ4ξ8 − Iξ7αµkθuβ3ξ4ξ5 − Iαkµθuβ3ξ4ξ5ξ8

− Iξ7αµkθuβ4τ2ξ5 − Iαkµθuβ4τ2ξ5ξ8 − Iξ7αµkθuβ4ξ3ξ5

+ Iξ7αµβ1τ2τ3τ4 + Iξ7αµβ1τ2τ3ξ5 + Iξ7αµβ1τ2ξ4ξ5

+ Iξ7αµβ1ξ3ξ4ξ5 + Iξ7αµβ3ξ1ξ4ξ5 + Iξ7αµβ4τ2ξ1ξ5

+ Iξ7αµβ4ξ1ξ3ξ5 + Iξ7αµβ5τ2τ3ξ1 + Iξ7αµβ5τ2ξ1ξ4

+ Iξ7αµβ5ξ1ξ3ξ4 + Iξ7αµkθβ1τ2τ3τ4 + Iαkµθβ1τ2τ3τ4ξ8

+ Iξ7αµkθβ1τ2τ3ξ5 + Iαkµθβ1τ2τ3ξ5ξ8 + Iξ7αµkθβ1τ2ξ4ξ5

+ Iαkµθβ1τ2ξ4ξ5ξ8 + Iξ7αµkθβ1ξ3ξ4ξ5 + Iαkµθβ1ξ3ξ4ξ5ξ8

+ Iξ7αµkθβ3ξ1ξ4ξ5 + Iαkµθβ3ξ1ξ4ξ5ξ8)

a3 = ξ7ξ8(αkµθβ1β3β4β5ξ7 + αkµθβ1β3β4β5ξ8 − αkµθβ2β3β4β5ξ7

− αkµθβ2β3β4β5ξ8 − αkµβ1β3β4β5ξ7 − αkµβ1β3β4β5ξ8

− αµθβ1β3β4β5ξ7 + αµθβ2β3β4β5ξ7 + αµβ1β3β4β5ξ7

+ β1β2β3β4ξ5ξ6 + β1β2β3β5ξ4ξ6 + β1β2β4β5ξ3ξ6

+ β1β3β4β5ξ2ξ6 + β2β3β4β5ξ1ξ6)

APPENDIX B.

From equation 17: Det(J(EEP) −λI)( f (λ)(λ+µ)(λ+ l10)(λ+
l9)) = 0; f (λ) = b0λ

8+b1λ
7+b2λ

6+b3λ
5+b4λ

b+b5λ
3+b6λ

2+

b7λ
1 + b8, where bi for i = 1, 2, · · · 8 are:

b1 = l5 + l4 + l3 + l8 + l2 + l6 + l7 + l1

b2 = −Ad1 − Ad2 + l1l2 + l1l3 + l1l4 + l1l5 + l1l6 + l1l7 + l1l8 + l2l3
+ l2l4 + l2l5 + l2l6 + l2l7 + l2l8 + l3l4 + l3l5 + l3l6 + l3l7
+ l3l8 + l4l5 + l4l6 + l4l7 + l4l8 + l5l6 + l5l7 + l5l8 + l6l7 + l6l8 + l7l8

b3 = l6l7l1 − Ad1l1 − Ad1l2 + l1l2l6 + l1l2l7
+ l2l6l7 − Iβ2

2S wd1 − Ad1l5 − Ad2l5 − Ad1l4 − Ad2l4
+ l1l2l4 + l1l3l4 + l1l4l6 + l1l4l7 + l1l4l8
+ l2l3l4 + l2l4l6 + l2l4l7 + l2l4l8 + l3l4l6 + l3l4l7
+ l3l4l8 + l4l6l7 + l4l6l8 + l4l7l8 + l1l2l5 + l1l3l5
+ l1l4l5 + l1l5l6 + l1l5l7 + l1l5l8
+ l2l3l5 + l2l4l5 + l2l5l6 + l2l5l7 + l2l5l8
+ l3l4l5 + l3l5l6 + l3l5l7 + l3l5l8 + l4l5l6 + l4l5l7
+ l4l5l8 + l5l6l7 + l5l6l8 + l5l7l8 + l1l3l6
+ l1l3l7 + l1l3l8 + l2l3l6 + l2l3l7 + l2l3l8 + l3l6l7 + l3l6l8
+ l3l7l8 − Ad1l3 − Ad2l3 + l1l2l3 − Iβ2

1S hd1

+ l2l7l8 + l6l7l8 − d2Al2 − d2Al7 − d2Al1 − Ad1l8 + l1l2l8

+ l1l6l8 + l1l7l8 + l2l6l8 − Iβ2
3V1d1

− Iβ2
3V1d2 − IS wβ

2
2d2 − IS hβ

2
1d2 − Iβ2

5Vbd1

− Iβ2
5Vbd2 − Iβ2

4V2d1 − Iβ2
4V2d2

b4 = −IV2β4β5d1τ4 − IV2β4β5d2τ4 − IV1β3β4d1τ3

− IV1β3β4d2τ3 − IS hβ
2
1d1l2 − Iβ2

2S wd1l1 − IV1β
2
3d2l5

− IV2β
2
4d1l5 − IV2β

2
4d2l5 − IVbβ

2
5d1l1 − IVbβ

2
5d1l2

− IVbβ
2
5d1l3 − IVbβ

2
5d1l4 − IVbβ

2
5d1l8 − IVbβ

2
5d2l1

− IVbβ
2
5d2l2 − IVbβ

2
5d2l3 − IVbβ

2
5d2l4 − IVbβ

2
5d2l7

− IS hβ
2
1d1l4 − IS hβ

2
1d2l4 − IS wβ

2
2d1l4 − IS wβ

2
2d2l4

− IV1β
2
3d1l4 − IV1β

2
3d2l4 − IV2β

2
4d1l1 − IV2β

2
4d1l2

− IV2β
2
4d1l3 − IV2β

2
4d1l8 − IV2β

2
4d2l1 − IV2β

2
4d2l2

− IV2β
2
4d2l3 − IV2β

2
4d2l7 − IS hβ

2
1d2l7 − IS hβ

2
1d2l2

− IS hβ
2
1d1l8 − IS wβ

2
2d2l1 − IS wβ

2
2d1l8 − IS wβ

2
2d2l7

− IS hβ
2
1d1l3 − IS hβ

2
1d2l3 − IS wβ

2
2d1l3 − IS wβ

2
2d2l3

− IV1β
2
3d1l1 − IV1β

2
3d1l2 − IV1β

2
3d1l8 − IV1β

2
3d2l1

− IV1β
2
3d2l2 − IV1β

2
3d2l7 − Ad1l1l5 − Ad1l2l5

− Ad1l3l5 − Ad1l4l5 − Ad1l5l8 − Ad2l1l5 − Ad2l2l5
− Ad2l3l5 − Ad2l4l5 − Ad2l5l7 + l1l2l3l5 + l1l2l4l5
+ l1l2l5l6 + l1l2l5l7 + l1l2l5l8 + l1l3l4l5 + l1l3l5l6
+ l1l3l5l7 + l1l3l5l8 + l1l4l5l6 + l1l4l5l7 + l1l4l5l8
+ l1l5l6l7 + l1l5l6l8 + l1l5l7l8 + l2l3l4l5 + l2l3l5l6
+ l2l3l5l7 + l2l3l5l8 + l2l4l5l6 + l2l4l5l7 + l2l4l5l8
+ l2l5l6l7 + l2l5l6l8 + l2l5l7l8 + l3l4l5l6 + l3l4l5l7
+ l3l4l5l8 + l3l5l6l7 + l3l5l6l8 + l3l5l7l8 + l4l5l6l7
+ l4l5l6l8 + l4l5l7l8 + l5l6l7l8 − Iuβ1S hd1β2

− IS hβ
2
1d1l5 − IS hβ

2
1d2l5 − IS wβ

2
2d1l5 − IS wβ

2
2d2l5

− IV1β
2
3d1l5 − Ad1l1l2 + l1l2l6l7 + l1l2l6l8 + l1l2l7l8

+ l1l6l7l8 + l2l6l7l8 − Ad1l1l8 − Ad1l2l8 − Ad2l1l2
− Ad2l1l7 − Ad2l2l7 − Ad1l1l3 − Ad1l2l3
− Ad1l3l8 − Ad2l1l3 − Ad2l2l3 − Ad2l3l7 + l1l2l3l6
+ l1l2l3l7 + l1l2l3l8 + l1l3l6l7 + l1l3l6l8 + l1l3l7l8 + l2l3l6l7
+ l2l3l6l8 + l2l3l7l8 + l3l6l7l8 − IS hβ1β3d1τ1

− IS hβ1β3d2τ1 − IS wβ2β3d1τ2 − IS wβ2β3d2τ2

− IS huβ1β2d2 − Ad1l1l4 − Ad1l2l4 − Ad1l3l4
− Ad1l4l8 − Ad2l1l4 − Ad2l2l4 − Ad2l3l4
− Ad2l4l7 + l1l2l3l4 + l1l2l4l6 + l1l2l4l7 + l1l2l4l8
+ l1l3l4l6 + l1l3l4l7 + l1l3l4l8 + l1l4l6l7 + l1l4l6l8
+ l1l4l7l8 + l2l3l4l6 + l2l3l4l7 + l2l3l4l8 + l2l4l6l7
+ l2l4l6l8 + l2l4l7l8 + l3l4l6l7 + l3l4l6l8 + l3l4l7l8 + l4l6l7l8

b5 = −IV1β
2
3d1l1l4 − IV1β

2
3d1l2l4 − IV1β

2
3d1l4l8

− IV1β
2
3d2l1l4 − IV1β

2
3d2l2l4 − IV1β

2
3d2l4l7 − IV2β

2
4d1l1l2

− IV2β
2
4d1l1l3 − IV2β

2
4d1l1l8 − IV2β

2
4d1l2l3 − IV2β

2
4d1l2l8

20
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− IV2β
2
4d1l3l8 − IV2β

2
4d2l1l2 − IV2β

2
4d2l1l3 − IV2β

2
4d2l1l7

− IV2β
2
4d2l2l3 − IV2β

2
4d2l2l7 − IV2β

2
4d2l3l7 − IS hβ

2
1d1l2l4

− IS hβ
2
1d1l3l4 − IS hβ

2
1d1l4l8 − IS hβ

2
1d2l2l4 − IS hβ

2
1d2l3l4

− IS hβ
2
1d2l4l7 − IS wβ

2
2d1l1l4 − IS wβ

2
2d1l3l4 − IS wβ

2
2d1l4l8

− IS wβ
2
2d2l1l4 − IS wβ

2
2d2l3l4 − IS wβ

2
2d2l4l7 − Ad1l1l2l3

− Ad1l1l3l8 − Ad1l2l3l8 − Ad2l1l2l3 − Ad2l1l3l7 − Ad2l2l3l7
+ l1l2l3l6l7 + l1l2l3l6l8 + l1l2l3l7l8 + l1l3l6l7l8 + l2l3l6l7l8
− Ad1l1l2l4 − Ad1l1l3l4 − Ad1l1l4l8 − Ad1l2l3l4 − Ad1l2l4l8
− Ad1l3l4l8 − Ad2l1l2l4 − Ad2l1l3l4 − Ad2l1l4l7 − Ad2l2l3l4
− Ad2l2l4l7 − Ad2l3l4l7 + l1l2l3l4l6 + l1l2l3l4l7 + l1l2l3l4l8
+ l1l2l4l6l7 + l1l2l4l6l8 + l1l2l4l7l8 + l1l3l4l6l7 + l1l3l4l6l8
+ l1l3l4l7l8 + l1l4l6l7l8 + l2l3l4l6l7 + l2l3l4l6l8 + l2l3l4l7l8
+ l2l4l6l7l8 + l3l4l6l7l8 + l1l2l6l7l8 − Ad1l1l2l8 − Ad2l1l2l7
− IS hβ

2
1d1l2l8 − IS hβ

2
1d2l2l7 − IS wβ

2
2d1l1l8 − IS wβ

2
2d2l1l7

− IV1β3β5d2τ3τ4 − IV1β3β5d1τ3τ4 − IS hβ1β4d1τ1τ3

− IS hβ1β4d2τ1τ3 − IS wβ2β4d1τ2τ3 − IS wβ2β4d2τ2τ3

− IS huβ1β2d1l4 − IS huβ1β2d2l4 − IS hβ1β3d1l4τ1

− IS hβ1β3d2l4τ1 − IS wβ2β3d1l4τ2 − IS wβ2β3d2l4τ2

− IV1β3β4d1l1τ3 − IV1β3β4d1l2τ3 − IV1β3β4d1l8τ3

− IV1β3β4d2l1τ3 − IV1β3β4d2l2τ3 − IV1β3β4d2l7τ3

− IS huβ1β2d1l5 − IS huβ1β2d2l5 − IS hβ1β3d1l5τ1

− IS hβ1β3d2l5τ1 − IS wβ2β3d1l5τ2 − IS wβ2β3d2l5τ2

− IV1β3β4d1l5τ3 − IS hβ
2
1d1l2l3 − IS hβ

2
1d1l3l8

− IS hβ
2
1d2l2l3 − IS hβ

2
1d2l3l7 − IS wβ

2
2d1l1l3

− IS wβ
2
2d1l3l8 − IS wβ

2
2d2l1l3 − IS wβ

2
2d2l3l7

− IV1β
2
3d1l1l2 − IV1β

2
3d1l1l8 − IV1β

2
3d1l2l8

− IV1β
2
3d2l1l2 − IV1β

2
3d2l1l7 − IV1β

2
3d2l2l7

− Ad1l1l2l5 − Ad1l1l3l5 − Ad1l1l4l5 − Ad1l1l5l8 − Ad1l2l3l5
− Ad1l2l4l5 − Ad1l2l5l8 − Ad1l3l4l5 − Ad1l3l5l8 − Ad1l4l5l8
− Ad2l1l2l5 − Ad2l1l3l5 − Ad2l1l4l5 − Ad2l1l5l7 − Ad2l2l3l5
− Ad2l2l4l5 − Ad2l2l5l7 − Ad2l3l4l5 − Ad2l3l5l7 − Ad2l4l5l7
+ l1l2l3l4l5 + l1l2l3l5l6 + l1l2l3l5l7 + l1l2l3l5l8 + l1l2l4l5l6
+ l1l2l4l5l7 + l1l2l4l5l8 + l1l2l5l6l7 + l1l2l5l6l8 + l1l2l5l7l8
+ l1l3l4l5l6 + l1l3l4l5l7 + l1l3l4l5l8 + l1l3l5l6l7 + l1l3l5l6l8
+ l1l3l5l7l8 + l1l4l5l6l7 + l1l4l5l6l8 + l1l4l5l7l8 + l1l5l6l7l8
+ l2l3l4l5l6 + l2l3l4l5l7 + l2l3l4l5l8 + l2l3l5l6l7 + l2l3l5l6l8
+ l2l3l5l7l8 + l2l4l5l6l7 + l2l4l5l6l8 + l2l4l5l7l8 + l2l5l6l7l8
+ l3l4l5l6l7 + l3l4l5l6l8 + l3l4l5l7l8 + l3l5l6l7l8 + l4l5l6l7l8
− IS hu · · ·

b5 = · · · β1β3d2τ2 − IS huβ1β3d1τ2 − IS huβ1β2d1l8
− IS huβ1β2d2l7 − IS huβ1β2d1l3 − IS huβ1β2d2l3
− IS hβ1β3d1l2τ1 − IS hβ1β3d1l8τ1 − IS hβ1β3d2l2τ1

− IS hβ1β3d2l7τ1 − IS wβ2β3d1l1τ2 − IS wβ2β3d1l8τ2

− IS wβ2β3d2l1τ2 − IS wβ2β3d2l7τ2 − IS hβ
2
1d1l2l5

− IS hβ
2
1d1l4l5 − IS hβ

2
1d1l5l8 − IS hβ

2
1d2l2l5

− IS hβ
2
1d2l3l5 − IS hβ

2
1d2l4l5 − IS hβ

2
1d2l5l7

− IS wβ
2
2d1l1l5 − IS wβ

2
2d1l3l5 − IS wβ

2
2d1l4l5

− IS wβ
2
2d1l5l8 − IS wβ

2
2d2l1l5 − IS wβ

2
2d2l3l5

− IS wβ
2
2d2l4l5 − IS wβ

2
2d2l5l7 − IV1β

2
3d1l1l5

− IV1β
2
3d1l2l5 − IV1β

2
3d1l4l5 − IV1β

2
3d1l5l8 − IV1β

2
3d2l1l5

− IV1β
2
3d2l2l5 − IV1β

2
3d2l4l5 − IV1β

2
3d2l5l7 − IV2β

2
4d1l1l5

− IV2β
2
4d1l2l5 − IV2β

2
4d1l3l5 − IV2β

2
4d1l5l8 − IV2β

2
4d2l1l5

− IV2β
2
4d2l2l5 − IV2β

2
4d2l3l5 − IV2β

2
4d2l5l7 − IVbβ

2
5d1l1l2

− IVbβ
2
5d1l1l3 − IVbβ

2
5d1l1l4 − IVbβ

2
5d1l1l8 − IVbβ

2
5d1l2l3

− IVbβ
2
5d1l2l4 − IVbβ

2
5d1l2l8 − IVbβ

2
5d1l3l4 − IVbβ

2
5d1l3l8 − IVbβ

2
5d1l4l8

− IVbβ
2
5d2l1l2 − IVbβ

2
5d2l1l3 − IVbβ

2
5d2l1l4 − IVbβ

2
5d2l1l7

− IVbβ
2
5d2l2l3 − IVbβ

2
5d2l2l4 − IVbβ

2
5d2l2l7 − IVbβ

2
5d2l3l4

− IVbβ
2
5d2l3l7 − IVbβ

2
5d2l4l7 − IV1β3β4d2l5τ3 − IV2β4β5d1l1τ4

− IV2β4β5d1l2τ4 − IV2β4β5d1l3τ4 − IV2β4β5d1l8τ4 − IV2β4β5d2l1τ4

− IV2β4β5d2l2τ4 − IV2β4β5d2l3τ4 − IV2β4β5d2l7τ4

b6 = −Ad1l1l2l3l4 − Ad1l1l2l4l8 − Ad1l1l3l4l8 − Ad1l2l3l4l8
− Ad2l1l2l3l4 − Ad2l1l2l4l7 − Ad2l1l3l4l7 − Ad2l2l3l4l7
+ l1l2l3l4l6l7 + l1l2l3l4l6l8 + l1l2l3l4l7l8 + l1l2l4l6l7l8
+ l1l3l4l6l7l8 + l2l3l4l6l7l8 − IS huβ1β2d1l3l8 − IS huβ1β2d2l3l7
− IS huβ1β3d1l8τ2 − IS huβ1β3d2l7τ2 − IS hβ1β3d1l2l8τ1

− IS hβ1β3d2l2l7τ1 − IS wβ2β3d1l1l8τ2 − IS wβ2β3d2l1l7τ2

− IS hβ1β5d1τ1τ3τ4 − IS hβ1β5d2τ1τ3τ4 − IS wβ2β5d1τ2τ3τ4

− IS wβ2β5d2τ2τ3τ4 − IS hβ1β3d1l4l8τ1 − IS hβ1β3d2l2l4τ1

− IS hβ1β3d2l4l7τ1 − IS hβ1β4d1l2τ1τ3 − IS hβ1β4d1l8τ1τ3

− IS hβ1β4d2l2τ1τ3 − IS hβ1β4d2l7τ1τ3 − IS wβ2β3d1l1l4τ2

− IS wβ2β3d1l4l8τ2 − IS wβ2β3d2l1l4τ2 − IS wβ2β3d2l4l7τ2

− IS wβ2β4d1l1τ2τ3 − IS wβ2β4d1l8τ2τ3 − IS wβ2β4d2l1τ2τ3

− IS wβ2β4d2l7τ2τ3 − IV1β3β4d1l1l2τ3 − IV1β3β4d1l1l8τ3

− IV1β3β4d1l2l8τ3 − IV1β3β4d2l1l2τ3 − IV1β3β4d2l1l7τ3

− IV1β3β4d2l2l7τ3 − IS huβ1β2d1l3l4 − IS huβ1β2d1l4l8
− IS huβ1β2d2l3l4 − IS huβ1β2d2l4l7 − IS huβ1β3d1l4τ2

− IS huβ1β3d2l4τ2 − IS hβ1β3d1l2l4τ1 − IS huβ1β4d1τ2τ3

− IS huβ1β4d2τ2τ3 − IS hβ
2
1d1l2l3l4 − IS hβ

2
1d1l2l4l8

− IS hβ
2
1d1l3l4l8 − IS hβ

2
1d2l2l3l4 − IS hβ

2
1d2l2l4l7

− IS hβ
2
1d2l3l4l7 − IS wβ

2
2d1l1l3l4 − IS wβ

2
2d1l1l4l8

− IS wβ
2
2d1l3l4l8 − IS wβ

2
2d2l1l3l4 − IS wβ

2
2d2l1l4l7

− IS wβ
2
2d2l3l4l7 − IV1β

2
3d1l1l2l4 − IV1β

2
3d1l1l4l8

− IV1β
2
3d1l2l4l8 − IV1β

2
3d2l1l2l4 − IV1β

2
3d2l1l4l7

− IV1β
2
3d2l2l4l7 − IV2β

2
4d1l1l2l3 − IV2β

2
4d1l1l2l8

− IV2β
2
4d1l1l3l8 − IV2β

2
4d1l2l3l8 − IV2β

2
4d2l1l2l3

− IV2β
2
4d2l1l2l7 − IV2β

2
4d2l1l3l7 − IV2β

2
4d2l2l3l7
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− IS hβ
2
1d1l2l3l5 − IS hβ

2
1d1l2l4l5 − IS hβ

2
1d1l2l5l8

− IS hβ
2
1d1l3l4l5 − IS hβ

2
1d1l3l5l8 − IS hβ

2
1d1l4l5l8

− IS hβ
2
1d2l2l3l5 − IS hβ

2
1d2l2l4l5 − IS hβ

2
1d2l2l5l7

− IS hβ
2
1d2l3l4l5 − IS hβ

2
1d2l3l5l7 − IS hβ

2
1d2l4l5l7

− IS wβ
2
2d1l1l3l5 − IS wβ

2
2d1l1l4l5 − IS wβ

2
2d1l1l5l8

− IS wβ
2
2d1l3l4l5 − IS wβ

2
2d1l3l5l8 − IS wβ

2
2d1l4l5l8

− IS wβ
2
2d2l1l3l5 − IS wβ

2
2d2l1l4l5 − IS wβ

2
2d2l1l5l7

− IS wβ
2
2d2l3l4l5 − IS wβ

2
2d2l3l5l7 − IS wβ

2
2d2l4l5l7

− IV1β
2
3d1l1l2l5 − IV1β

2
3d1l1l4l5 − IV1β

2
3d1l1l5l8

− IV1β
2
3d1l2l4l5 − IV1β

2
3d1l2l5l8 − IV1β

2
3d1l4l5l8

− IV1β
2
3d2l1l2l5 − IV1β

2
3d2l1l4l5 − IV1β

2
3d2l1l5l7

− IV1β
2
3d2l2l4l5 − IV1β

2
3d2l2l5l7 − IV1β

2
3d2l4l5l7

− IV2β
2
4d1l1l2l5 − IV2β

2
4d1l1l3l5 − IV2β

2
4d1l1l5l8

− IV2β
2
4d1l2l3l5 − IV2β

2
4d1l2l5l8 − IV2β

2
4d1l3l5l8

− IV2β
2
4d2l1l2l5 − IV2β

2
4d2l1l3l5 − IV2β

2
4d2l1l5l7

− IV2β
2
4d2l2l3l5 − IV2β

2
4d2l2l5l7 − IV2β

2
4d2l3l5l7

− IVbβ
2
5d1l1l2l3 − IVbβ

2
5d1l1l2l4 − IVbβ

2
5d1l1l2l8

− IVbβ
2
5d1l1l3l4 − IVbβ

2
5d1l1l3l8 − IVbβ

2
5d1l1l4l8

− IVbβ
2
5d1l2l3l4 − IVbβ

2
5 · · ·

b6 = · · · d1l2l3l8 − Ad1l1l2l3l5 − Ad1l1l2l4l5 − Ad1l1l2l5l8
− Ad1l1l3l4l5 − Ad1l1l3l5l8 − Ad1l1l4l5l8 − Ad1l2l3l4l5
− Ad1l2l3l5l8 − Ad1l2l4l5l8 − Ad1l3l4l5l8 − Ad2l1l2l3l5
− Ad2l1l2l4l5 − Ad2l1l2l5l7 − Ad2l1l3l4l5 − Ad2l1l3l5l7
− Ad2l1l4l5l7 − Ad2l2l3l4l5 − Ad2l2l3l5l7 − Ad2l2l4l5l7
− Ad2l3l4l5l7 + l1l2l3l4l5l6 + l1l2l3l4l5l7 + l1l2l3l4l5l8
+ l1l2l3l5l6l7 + l1l2l3l5l6l8 + l1l2l3l5l7l8 + l1l2l4l5l6l7
+ l1l2l4l5l6l8 + l1l2l4l5l7l8 + l1l2l5l6l7l8 + l1l3l4l5l6l7
+ l1l3l4l5l6l8 + l1l3l4l5l7l8 + l1l3l5l6l7l8 + l1l4l5l6l7l8
+ l2l3l4l5l6l7 + l2l3l4l5l6l8 + l2l3l4l5l7l8 + l2l3l5l6l7l8
+ l2l4l5l6l7l8 + l3l4l5l6l7l8 − Ad1l1l2l3l8 − Ad2l1l2l3l7
+ l1l2l3l6l7l8 − IS huβ1β2d1l3l5 − IS huβ1β2d1l4l5
− IS huβ1β2d1l5l8
− IS huβ1β2d2l3l5 − IS huβ1β2d2l4l5 − IS huβ1β2d2l5l7
− IS huβ1β3d1l5τ2 − IS huβ1β3d2l5τ2 − IS hβ1β3d1l2l5τ1

− IS hβ1β3d1l4l5τ1 − IS hβ1β3d1l5l8τ1 − IS hβ1β3d2l2l5τ1

− IS hβ1β3d2l4l5τ1 − IS hβ1β3d2l5l7τ1 − IS hβ1β4d1l5τ1τ3

− IS hβ1β4d2l5τ1τ3 − IS wβ2β3d1l1l5τ2 − IS wβ2β3d1l4l5τ2

− IS wβ2β3d1l5l8τ2 − IS wβ2β3d2l1l5τ2 − IS wβ2β3d2l4l5τ2

− IS wβ2β3d2l5l7τ2 − IS wβ2β4d1l5τ2τ3 − IS wβ2β4d2l5τ2τ3

− IV1β3β4d1l1l5τ3 − IV1β3β4d1l2l5τ3 − IV1β3β4d1l5l8τ3

− IV1β3β4d2l1l5τ3 − IV1β3β4d2l2l5τ3 − IV1β3β4d2l5l7τ3

− IV1β3β5d1l1τ3τ4 − IV1β3β5d1l2τ3τ4 − IV1β3β5d1l8τ3τ4

− IV1β3β5d2l1τ3τ4 − IV1β3β5d2l2τ3τ4 − IV1β3β5d2l7τ3τ4

− IV2β4β5d1l1l2τ4 − IV2β4β5d1l1l3τ4 − IV2β4β5d1l1l8τ4

− IV2β4β5d1l2l3τ4 − IV2β4β5d1l2l8τ4 − IV2β4β5d1l3l8τ4

− IV2β4β5d2l1l2τ4 − IV2β4β5d2l1l3τ4 − IV2β4β5d2l1l7τ4

− IV2β4β5d2l2l3τ4 − IV2β4β5d2l2l7τ4 − IV2β4β5d2l3l7τ4

− IVbβ
2
5d1l2l4l8 − IVbβ

2
5d1l3l4l8 − IVbβ

2
5d2l1l2l3

− IVbβ
2
5d2l1l2l4 − IVbβ

2
5d2l1l2l7 − IVbβ

2
5d2l1l3l4

− IVbβ
2
5d2l1l3l7 − IVbβ

2
5d2l1l4l7 − IVbβ

2
5d2l2l3l4

− IVbβ
2
5d2l2l3l7 − IVbβ

2
5d2l2l4l7 − IVbβ

2
5d2l3l4l7

− IS hβ
2
1d1l2l3l8 − IS hβ

2
1d2l2l3l7 − IS wβ

2
2d1l1l3l8

− IS wβ
2
2d2l1l3l7 − IV1β

2
3d1l1l2l8 − IV1β

2
3d2l1l2l7

b7 = −Ad1l1l2l3l4l5 − Ad1l1l2l3l5l8 − Ad1l1l2l4l5l8
− Ad1l1l3l4l5l8 − Ad1l2l3l4l5l8 − Ad2l1l2l3l4l5 − Ad2l1l2l3l5l7
− Ad2l1l2l4l5l7 − Ad2l1l3l4l5l7 − Ad2l2l3l4l5l7 + l1l2l3l4l5l6l7
+ l1l2l3l4l5l6l8 + l1l2l3l4l5l7l8 + l1l2l3l5l6l7l8 + l1l2l4l5l6l7l8
+ l1l3l4l5l6l7l8 + l2l3l4l5l6l7l8 − IS hβ

2
1d1l2l3l4l8

− IS hβ
2
1d2l2l3l4l7 − IS wβ

2
2d1l1l3l4l8 − IS wβ

2
2d2l1l3l4l7

− IV1β
2
3d1l1l2l4l8 − IV1β

2
3d2l1l2l4l7 − IV2β

2
4d1l1l2l3l8

− IV2β
2
4d2l1l2l3l7 − IS huβ1β5d1τ2τ3τ4 − IS huβ1β5d2τ2τ3τ4

− IS huβ1β2d1l3l4l5 − IS huβ1β2d1l3l5l8 − IS huβ1β2d1l4l5l8
− IS huβ1β2d2l3l4l5 − IS huβ1β2d2l3l5l7 − IS huβ1β2d2l4l5l7
− IS huβ1β3d1l4l5τ2 − IS huβ1β3d1l5l8τ2 − IS huβ1β3d2l4l5τ2

− IS huβ1β3d2l5l7τ2 − IS huβ1β4d1l5τ2τ3 − IS huβ1β4d2l5τ2τ3

− IS hβ1β3d1l2l4l5τ1 − IS hβ1β3d1l2l5l8τ1 − IS hβ1β3d1l4l5l8τ1

− IS hβ1β3d2l2l4l5τ1 − IS hβ1β3d2l2l5l7τ1 − IS hβ1β3d2l4l5l7τ1

− IS hβ1β4d1l2l5τ1τ3 − IS hβ1β4d1l5l8τ1τ3 − IS hβ1β4d2l2l5τ1τ3

− IS hβ1β4d2l5l7τ1τ3 − Il2S hβ1β5d1τ1τ3τ4 − Il8S hβ1β5d1τ1τ3τ4

− Il2S hβ1β5d2τ1τ3τ4 − Il7S hβ1β5d2τ1τ3τ4 − IS wβ2β3d1l1l4l5τ2

− IS wβ2β3d1l1l5l8τ2 − IS wβ2β3d1l4l5l8τ2 − IS wβ2β3d2l1l4l5τ2

− IS wβ2β3d2l1l5l7τ2 − IS wβ2β3d2l4l5l7τ2 − IS wβ2β4d1l1l5τ2τ3

− IS wβ2β4d1l5l8τ2τ3 − IS wβ2β4d2l1l5τ2τ3 − IS wβ2β4d2l5l7τ2τ3

− Il1S wβ2β5d1τ2τ3τ4 − Il8S wβ2β5d1τ2τ3τ4 − Il1S wβ2β5d2τ2τ3τ4

− Il7S wβ2β5d2τ2τ3τ4 − IV1β3β4d1l1l2l5τ3 − IV1β3β4d1l1l5l8τ3

− IV1β3β4d1l2l5l8τ3 − IV1β3β4d2l1l2l5τ3 − IV1β3β4d2l1l5l7τ3

− IV1β3β4d2l2l5l7τ3 − IV1β3β5d1l1l2τ3τ4 − IV1β3β5d1l1l8τ3τ4

− IV1β3β5d1l2l8τ3τ4 − IV1β3β5d2l1l2τ3τ4 − IV1β3β5d2l1l7τ3τ4

− IV1β3β5d2l2l7τ3τ4 − IV2β4β5d1l1l2l3τ4 − IV2β4β5d1l1l2l8τ4

− IV2β4β5d1l1l3l8τ4 − IV2β4β5d1l2l3l8τ4 − IV2β4β5d2l1l2l3τ4

− IV2β4β5d2l1l2l7τ4 − IV2β4β5d2l1l3l7τ4 − IV2β4β5d2l2l3l7τ4

− IS hβ
2
1d1l2l3l4l5 − IS hβ

2
1d1l2l3l5l8 − IS hβ

2
1d1l2l4l5l8

− IS hβ
2
1d1l3l4l5l8 − IS hβ

2
1d2l2l3l4l5 − IS hβ

2
1d2l2l3l5l7

− IS hβ
2
1d2l2l4l5l7 − IS hβ

2
1d2l3l4l5l7 − IS wβ

2
2d1l1l3l4l5

− IS wβ
2
2d1l1l3l5l8 − IS wβ

2
2d1l1l4l5l8 − IS wβ

2
2d1l3l4l5l8

− IS wβ
2
2d2l1l3l4l5 − IS wβ

2
2d2l1l3l5l7 − IS wβ

2
2d2l1l4l5l7

22



Nwaibeh et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 2001 23

− IS wβ
2
2d2l3l4l5l7 − IV1β

2
3d1l1l2l4l5 − IV1β

2
3d1l1l2l5l8

− IV1β
2
3d1l1l4l5l8 − IV1β

2
3d1l2l4l5l8 − IV1β

2
3d2l1l2l4l5

− IV1β
2
3d2l1l2l5l7 − IV1β

2
3d2l1l4l5l7 − IV1β

2
3d2l2l4l5l7

− IV2β
2
4d1l1l2l3l5 − IV2β

2
4d1l1l2l5l8 − IV2β

2
4d1l1l3l5l8

− IV2β
2
4d1l2l3l5l8 − IV2β

2
4d2l1l2l3l5 − IV2β

2
4d2l1l2l5l7

− IV2β
2
4d2l1l3l5l7 − IV2β

2
4d2l2l3l5l7 − IVbβ

2
5d1l1l2l3l4

− IVbβ
2
5d1l1l2l3l8 − IVbβ

2
5d1l1l2l4l8 − IVbβ

2
5d1l1l3l4l8

− IVbβ
2
5d1l2l3l4l8 − IVbβ

2
5d2l1l2l3l4 − Ad1l1l2l3l4l8

− Ad2l1l2l3l4l7 + l1l2l3l4l6l7l8 − IVbβ
2
5d2l1l2l3l7

− IVbβ
2
5d2l1l2l4l7 − IVbβ

2
5d2l1l3l4l7 − IVbβ

2
5d2l2l3l4l7

− IS huβ1β2d1l3l4l8 − IS huβ1β2d2l3l4l7 − IS huβ1β3d1l4l8τ2

− IS huβ1β3d2l4l7τ2 − Il8S huβ1β4d1τ2τ3 − Il7S huβ1β4d2τ2τ3

− IS hβ1β3d1l2l4l8τ1 − IS hβ1β3d2l2l4l7τ1 − IS hβ1β4d1l2l8τ1τ3

− IS hβ1β4d2l2l7τ1τ3 − IS wβ2β3d1l1l4l8τ2 − IS wβ2β3d2l1l4l7τ2

− IS wβ2β4d1l1l8τ2τ3 − IS wβ2β4d2l1l7τ2τ3 − IV1β3β4d1l1l2l8τ3

− IV1β3β4d2l1l2l7τ3

b8 = −IS hβ
2
1d1l2l3l4l5l8 − IS hβ

2
1d2l2l3l4l5l7 − IS wβ

2
2d1l1l3l4l5l8

− IS wβ
2
2d2l1l3l4l5l7 − IV1β

2
3d1l1l2l4l5l8 − IV1β

2
3d2l1l2l4l5l7

− IV2β
2
4d1l1l2l3l5l8 − IV2β

2
4d2l1l2l3l5l7 − IVbβ

2
5d1l1l2l3l4l8

− IVbβ
2
5d2l1l2l3l4l7 − Ad1l1l2l3l4l5l8 − Ad2l1l2l3l4l5l7

+ l1l2l3l4l5l6l7l8 − IS huβ1β2d1l3l4l5l8 − IS huβ1β2d2l3l4l5l7
− IS huβ1β3d1l4l5l8τ2 − IS huβ1β3d2l4l5l7τ2 − IS huβ1β4d1l5l8τ2τ3

− IS huβ1β4d2l5l7τ2τ3 − IS huβ1β5d1l8τ2τ3τ4

− IS huβ1β5d2l7τ2τ3τ4 − IS hβ1β3d1l2l4l5l8τ1

− IS hβ1β3d2l2l4l5l7τ1 − IS hβ1β4d1l2l5l8τ1τ3

− IS hβ1β4d2l2l5l7τ1τ3 − IS hβ1β5d1l2l8τ1τ3τ4

− IS hβ1β5d2l2l7τ1τ3τ4 − IS wβ2β3d1l1l4l5l8τ2

− IS wβ2β3d2l1l4l5l7τ2 − IS wβ2β4d1l1l5l8τ2τ3

− IS wβ2β4d2l1l5l7τ2τ3 − IS wβ2β5d1l1l8τ2τ3τ4 − IS wβ2β5d2l1l7τ2τ3τ4

− IV1β3β4d1l1l2l5l8τ3 − IV1β3β4d2l1l2l5l7τ3 − IV1β3β5d1l1l2l8τ3τ4

− IV1β3β5d2l1l2l7τ3τ4 − IV2β4β5d1l1l2l3l8τ4 − IV2β4β5d2l1l2l3l7τ4
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