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Abstract

Malaria remains a global threat and the conventional methods used for combating the disease leave out mosquitoes that feed outdoors. This study
addresses the challenge posed by such mosquitoes based on a tool called ivermectin drug which is lethal to mosquitoes that ingest bloodmeal
containing a concentration of it. We formulated a mathematical model with three control tools (insecticide treated nets, treatment of infective
individuals and ivermectin drug on livestock and humans) for the transmission and control of malaria under optimal condition. The model’s basic
reproduction number, R0 was estimated and the local and global stability analyses of the disease-free and endemic equilibrium points of the model
were carried out. Sensitivity analysis carried out showed that R0 is most sensitive to the mosquito biting rate and to the proportion of blood meal
on human with cattle availability in such a way that any percent increase in the value of any of these parameters will lead to an equal percent
increase in the value of R0. The result of an optimal control analysis based on three time dependent controls suggests that the combination of
all three controls gives the best result followed by the strategy that combines the use of ivermectin drug and the treatment of infective human.
Depending on available resources, any of these is recommended to be adopted in malaria intervention programmes because of their effectiveness
on both the infective human and mosquito populations with the potential of contributing significantly to the disease elimination within a minimal
time frame.
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1. Introduction

Malaria, a preventable and curable disease remains a ma-
jor public health threat especially in Sub-Saharan Africa. Ac-
cording to the 2022 World Malaria Report, an estimated global
malaria death stood at 619 000 in 2021 with 247 million cases
[1]. Despite the huge effort invested to achieve elimination and
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eradication, several obstacles undermine it. An important fac-
tor that contributes to the delay on achieving the prospect of
malaria elimination and possible eradication is the behavioral
changes in mosquito feeding and resting habits with an increase
in outdoor activities for some species of the vector whereby an
intervention that uses insecticide treated nets (ITNs) and indoor
residual spraying (IRS) may not capture them. It was noted by
Kiware et al. [2] that these vectors feed predominantly on ani-
mals and can sustain malaria transmission even if they only bite
humans infrequently. As a result, there arose the need for new
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strategies that will address such gaps.
An intervention for controlling malaria known as zoopro-

phylaxis that captures both zoophilic and zoophagic vectors
was earlier proposed in Ref. [3]. This proposed strategy works
in such a way that the attention of mosquitoes are diverted from
humans to livestock for bloodmeal given that the malaria par-
asites that infect humans has no effect on livestock. In line
with this, the malaria elimination community as reported in
Ref. [4] is currently giving increased attention to the poten-
tial use of ivermectin (IVM), endo and ectoparasites in the live-
stock [5] and its role in increasing the mortality of Anophe-
les mosquitoes that ingest it in a blood meal was buttressed by
the world health organization in 2016 [6] and also captured in
Ref. [7]. It was also noted that modelling based on these stud-
ies indicates endectocides, as an additional vector control tool
and this increasing attention is driven by the increased impor-
tance of outdoor/residual malaria transmission and the threat
of insecticide resistance. The drug is used in treating livestock
as it has the ability to reduce the burden of both endo and ec-
toparasite in the livestock [5]. It was also noted that modelling
based on these studies indicates that mass drug administration
(MDA) with IVM has the potential to reduce malaria transmis-
sion mainly by negatively impacting mosquito survival, fitness,
and fertility, and also potentially inhibits sporogony. In this
regard several studies that are based on mathematical models,
with the aim of bringing down the malaria vector population
and thereby reducing malaria transmission through the use of
IVM have been carried out. One of such is an investigation
on the potential impact of combining artemisinin-combination
therapy (ACT) and IVM in MDA campaigns for the control of
malaria [8].

It was noted in the study that the effect of adding ivermectin
during individual malaria treatment led to a minimal additional
transmission suppression while an accelerated time to elimi-
nation was the case when ivermectin MDA is added to anti-
malarial MDA. Extending and then validating a population-
level mathematical model using a clinical and an entomological
data, the effect of ivermectin mass drug administration on the
malaria vector population and malaria transmission was further
explored in Ref. [7]. It was estimated that MDA with iver-
mectin will reduce malaria prevalence and incidence, thereby
suggesting the need for considering MDA with ivermectin
malaria control in areas where the transmission of malaria is
highly persistent with existing interventions not sufficient and
also in those areas tending towards elimination. The use of iver-
mectin drug in the control of malaria was extended further on
both human and livestock populations [9] based on mathemati-
cal model on which the effects of livestock on malaria transmis-
sion were observed to be non-linear. Although the strategy, ac-
cording to the authors, is likely to be more beneficial to the peo-
ple in areas where zoophilic malaria vectors are predominant,
nevertheless applying it under certain conditions shows the pos-
sibility of bringing down the malaria burden substantially in ar-
eas with moderately zoophilic vectors like sub-Saharan Africa.
A mathematical model consisting of ordinary differential equa-
tions for both human and mosquito populations was formulated
by Yakob [10] and was used to explore the effect of endectocide

treated-livestock and several mosquito biting hosts on malaria
transmission and control. The model was based on an open
population where no birth nor death were considered. It was
observed that endectocides used on cattle had equivalent, and in
some cases, improved efficacy over bed nets and spray in con-
trolling the spread of malaria. Building on that work, Yakob et
al. [11] then carried out an investigation on the combined use of
endectocide-treated livestock with LLINs for malaria control.
Based on the findings of that study, it was concluded that treat-
ing livestock with endectocides as a target for mosquito feed-
ing serves as very useful complement to the use of LLINs for
malaria control. The investigations of their study was without
optimal control analysis which would be applied in the current
study.

A parsimonious mathematical model that accounts for a di-
verse range of host-biting behaviors and also assesses their im-
pact on combining LLINs with treating livestock with one of
these endectocides was considered in Yakob et al. [11]. The re-
sult from simulations of the model showed marked differences
across biting ecologies in the efficacy of both LLINs as a stand-
alone tool and the combination of LLINs with endectocide-
treated cattle. Furthermore, Waite et al. [12] observed a high
propensity of mosquito to feed on livestock (cattle) and rest in
outdoor structures such as cattle shelters. Unlike the studies
earlier mentioned, in Ochigbo et al. [13] an explicit compart-
ment representing a proportion of susceptible humans treated
with ivermectin drug for the purpose of controlling malaria bur-
den through the reduction of its vector population was formu-
lated. The model was based on a system of ordinary differen-
tial equations which also captures the relapse of the infection
in humans. Numerical simulations of the model showed that
treatment alone, in the presence of relapse was not sufficient
to bring about the desired elimination goal but the inclusion of
ivermectin as a control tool was observed to bring down the
vector population tremendously, thereby reducing transmission
intensity. It was estimated that MDA with ivermectin will re-
duce malaria prevalence and incidence, hence it is highly rec-
ommended in areas where the transmission of malaria is highly
persistent with existing interventions not sufficient and also in
those areas tending towards elimination [7].

The aim of our current study is to formulate an optimal
control mathematical model using multiple control tools that
include the use of IVM on livestock (cattle) and human pop-
ulations, ITNs and treatment of infective humans to study the
transmission and control of malaria. Specifically, three con-
trols (ivermectin administration, long-lasting insecticidal nets
(LLINs) and the treatment of infective humans) are imple-
mented under four combinations as strategies with comparison
carried out. The method of optimal analysis adopted here is the
Pontryagin’s Maximum Principle [14] which was used to find
the necessary optimality conditions. This principle has been
applied in several other studies [15–19] on the transmission dy-
namics and control of malaria.
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2. Model formulation

In this section, we present the formulated malaria model
consisting of a nonlinear system of ordinary differential equa-
tions representing the human and mosquito population to study
the transmission and control of malaria. The human and
mosquito populations are divided into three compartments each
given as Susceptible (S h), Exposed/Latent (Lh), Infectious
(Ih) compartments for the human population and Susceptible
(S v), Exposed/Latent (Lv), Infectious (Iv) compartments for the
mosquito population. We assumed that the mosquito popula-
tion consists of only the female Anopheles mosquito. In ad-
dition, there is no immunity and so the proportion of treated
humans become susceptible again. The model parameters and
description are represented on Table 1 and the model equations
are given as follows:

dS h

dt
= λh + (v + σu2)Ih −

(1 − u1abqIvS h

Nh
− µhS h

dLh

dt
=

(1 − u1abqIvS h

Nh
− (µh + θ)Lh

dIh

dt
= θLh − (v + σu2 + δ + µh)Ih

dS v

dt
= λv −

(1 − u1kbqIhS v

Nh
− (τu3 + µv)S v

dLv

dt
=

(1 − u1kbqIhS v

Nh
− (ω + τu3 + µv)Lv

dIv

dt
= ωLv − (τu3 + µv)Iv, (1)

where τ = bcm(S 0
h + Al) accounts for a reduction in the vec-

tor population as a result of bites on a proportion of the ini-
tial susceptible human (S 0

h) population and available cattle (Al)
population both having ivermectin in their blood at the level of
killing mosquito with m as a modification parameter. The rate
of the reduction also depends on the mosquito biting and con-
tact rates, b and c respectively. Among other parameters, the
force of infection from vectors to humans and vice versa each
depends on the term, q which represents the proportion of feeds
taken on humans (human blood index - HBI) with cattle avail-
ability (see Ref. [9]). It is assumed here that only susceptible
humans partake in the ivermectin treatment as a control strat-
egy. Furthermore, u1, u2 and u3 are the control parameters for
the use of ITNs, treatment of infectious human and the iver-
mectin administration respectively.

3. Model analysis

From equation (1), we have that
dNh

dt
=λh − µhNh − δIh

dNv

dt
=λv − (τu3 + µh)Nv.

(2)

The initial value of the individual in each compartment is given
as:

S h(0) = S 0
h ≥ 0, Lh(0) = L0

h ≥ 0, Ih(0) = I0
h ≥ 0,

S v(0) = S 0
v ≥ 0, Lv(0) = L0

v ≥ 0, Iv(0) = I0
v ≥ 0. (3)

Given equation (3), then for all time (t > 0),

S h(t) ≥ 0, Lh(t) ≥ 0, Ih(t) ≥ 0, S v(t) ≥ 0, Lv(t) ≥ 0, Iv(t) ≥ 0.

Also, from equation (2) we have that

lim sup Nh ⩽
λh

µh
,

and

lim sup Nv ≤
λv

(τu3 + µv)
.

And so the feasible region of biological interest is given as:

Ω = Ωh ×Ωv ⊂ ℜ
3
+ ×ℜ

3
+,

where

Ωh =

{
(S h, Lh, Ih) ∈ ℜ3

+ : S h + Lh + Ih = Nh ⩽
λh

µh

}
,

and

Ωv =

{
(S v, Lv, Iv) ∈ ℜ3

+ : S v + Lv + Iv = Nv ⩽
λv

A1

}
.

Ω is positively invariant with respect to system in equation
(1). It implies that for all time, t ≥ 0 all feasible solutions
of the equation (1) remain positive and are attracted in the re-
gion. Therefore, apart from the malaria model being biologi-
cally meaningful, it is also mathematically well-posed in that
domain

3.1. The basic reproduction number, R0

The malaria model of system in equation (1) has two steady
states, namely disease free equilibrium (DFE) and endemic
equilibrium. The DFE is given as:

E0 =
{
S 0

h, L
0
h, I

0
h , S

0
v , L

0
v , I

0
v

}
=

{
λh

µh
, 0, 0,

λv

A1
, 0, 0

}
. (4)

Applying the next generation matrix method, the basic repro-
duction number is obtained as

R0 =

√
(1 − u1)2ab2kq2ωθλhλv

µhN2
h A2

1(µh + θ)(A1 + ω)(σu2 + δ + v + µh)
. (5)

This threshold parameter is used for the stability analysis of the
model at the equilibrium points. We investigate the local stabil-
ity of the disease-free equilibrium using the theorem below.

3.2. Local stability analysis of the disease-free equilibrium

Theorem 1 The disease-free equilibrium point for the
malaria model of equation (1) is locally asymptotically stable
if R0 < 1 and unstable if R0 > 1.

3
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Proof The Jacobian matrix (JE0 ) evaluated at the DFE point
equation (4) is given as:

JE0 =



−µh 0 (v + σu2) 0 0 −M1 J1λh
µh

0 −A4 0 0 0 −M1 J1λh
µh

0 θ −A3 0 0 0
0 0 −M1 J1λv

A1
−A1 0 0

0 0 M1 J1λv
A1

0 −A2 0
0 0 0 0 ω −A1,


, (6)

where M1 = (1−u1), A2 = (τu3+ω+µv), A3 = (δ+v+µh+σu2),
A4 = (µh + θ), J1 =

abq
A1

, J2 =
kbq
A1

.
The solutions of the characteristics equation |JE0 − λI| = 0

are the eigenvalues of the Jacobian matrix in equation (6) with
the eigenvalues −µh and −A1 extracted from the columns con-
taining only the diagonal elements. The remaining 4 eigenval-
ues are obtained from the matrix in equation (6) as∣∣∣∣∣∣∣∣∣∣∣∣

−µh 0 0 M1 J1λh
µh

θ −A4 0 0
0 M1 J2λv

A1
−A2 0

0 0 ω −A1

∣∣∣∣∣∣∣∣∣∣∣∣ = 0. (7)

Solving equation (7) gives

(λ + A1)(λ + A2)(λ + A3)(λ + A4) − K = 0,

where

K =
M2

1 J1J2ωλhθλv

µhN2
h A1

.

By expansion, we obtain the characteristics polynomial

λ4 + λ3B1 + λ
2B2 + λ

1B3 + B4, (8)

where B1 = A1 + A2 + A3 + A4, B2 = A4(A1 + A2 + A3) +
A3(A1+A2)+A2A1, B3 = A4A3A2+A4A3A1+A4A2A1+A3A2A1,
B4 = A4A3A2A1 − K. Expressing B4 in terms of R0, yields

B4 = A4A3A2A1(1 − R0). (9)

To prove that the roots of the polynomial equation (8) all have
negative real parts, we employ the Routh-Hurwitz criterion [20]
which provides necessary and sufficient conditions for all the
roots of the characteristics polynomial with real coefficients to
lie in the left half of the complex plane.

Theorem 2 By the Routh-Hurwitz criteria, let

P(λ) = λn + λn−1B1 + λ
n−2B2 + ... + λ

1Bn−1 + Bn (10)

be a polynomial of degree n where the coefficients Bi′ s are real
constants with i = 1, 2, 3, . . . . Based on its coefficients, we
define the n Hurwitz matrices as follows:

H1 = (B1),H2 =

(
B1 1
B3 B2

)
,H3 =

 B1 1 0
B3 B2 B1
B5 B4 B3

 ,

H4 =


B1 1 0 · · · 0
B3 B2 B1 · · · 0
...

...
... · · ·

...
0 0 0 · · · Bn

 ,

where B j = 0 if j > n. All the roots of the polynomial
in equation (10) have negative real parts or are negative if
and only if all the determinants of the Hurwitz matrices are
positive. That is, iff det(H j) > 0, j = 1, 2, 3, ..., n.
Proof Equation (8) is a fourth order polynomial
and so, the Routh Hurwitz criteria are as follows:
(B1B2B3B4) > 0, det(H1) = B1 > 0, det(H2) = B1B2 > 0,

det(H3) = B1B2B3 − B2
3 =

(A3
1A2

2A3 + A3
1A2

2A4 + A3
1A2

3A2 + 3A3
1A2A3A4 + A3

1A2
4A2+

A3
1A2

3A4 + A3
1A2

4A3 + A3
2A2

1A3 + A3
2A2

1A4 + 6A2
1A2

2A3A4+

2A2
1A2

2A2
3 + 2A2

1A2
2A2

4 + A3
3A2

1A2 + 6A2
1A2A2

3A4 + A3
4A2

1A2

+ 6A2
1A2A3A2

4 + A3
3A2

1A4 + 2A2
1A2

3A2
4 + A3

4A2
1A3 + A3

2A2
3A1+

3A1A3
2A3A4 + A3

2A2
4A1 + A3

3A2
2A1 + 6A1A2

2A2
3A4 + 6A1A2

2A3A2
4+

A3
4A2

2A1 + 3A1A2A3
3A4 + 6A1A2A2

3A2
4 + 3A1A2A3A3

4 + A3
3A2

4A1+

A3
4A2

3A1 + A3
2A2

3A4 + A3
2A2

4A3 + A3
3A2

2A4 + 2A2
2A2

3A2
4+

A3
4A2

2A3 + A3
3A2

4A2 + A3
4A2

3A2) > 0,

det(H4) = B1B2B3B4 − B2
1B2

4 − B2
3B4 = A4A3A2A1(1 − R0)

(A3
1A2A3A4R0 + 2A2

1A2
2A3A4R0 + 2A2

1A2A3A2
4R0 + A1A3

2A3A4R0+

2A1A2
2A2

3A4R0 + 2A1A2
2A3A2

4R0 + A1A2A2
3A4R0 + 2A1A2A2

3A2
4R0+

A1A2A3A3
4R0 + A3

1A2
2A3 + A3

1A2
2A4 + 2A2

1A2
2A2

3 + 4A2
1A2

2A3A4+

2A2
1A2

2A2
4 + A3

3A2
1A2 + 4A2

1A2A2
3A4 + 4A2

1A2A3A2
4 + A3

4A2
2A1+

A3
3A2

1A4 + 2A2
1A2

2A2
4 + A3

4A2
1A3 + A3

2A2
3A1 + 2A1A3

2A3A4 + A3
2A2

4A1

+ A3
3A2

2A1 + 4A1A2
2A2

3A4 + 4A1A2
2A3A2

4 + A3
4A2

2A1 + 2A1A2A3
3A4+

4A1A2A2
3A2

4 + 2A1A2A3A3
4 + A3

3A2
4A1 + A3

4A2
3A1 + A3

2A2
3A4+

A3
2A2

4A3 + A3
3A2

2A4 + 2A2
2A2

3A2
4 + A3

4A2
2A3 + A3

3A2
4A2 + A3

4A2
3A2).

Now, B4 > 0 provided R0 < 1 and so det(H4) > 0. With
this, we have that for R0 < 1, all the determinants of the Hur-
witz matrices are positive, which implies that all the eigenval-
ues of the Jacobian matrix equation (7) have negative real parts
under such circumstance. Hence the disease free equilibrium
point is locally asymptotically stable whenever R0 < 1. The
epidemiological implication of this situation is that the disease
can be controlled in the population. On the other hand, when-
ever R0 > 1, then the coefficient B4 < 0 (negative) which differs
in sign from all the other coefficients. This means that not all
the roots of the polynomials will have negative real parts and
hence the disease free equilibrium is locally asymptotically un-
stable for R0 > 1. Also, the epidemiological implication of such
situation is that the disease will persist in the population.

3.3. Global stability of the disease-free equilibrium
For the global stability, define the Lyapunov function

FL = n1Lh + n2Ih + n3Lv + n4Iv.

Therefore,

dFL

dt
= n1

dLh

dt
+ n2

dIh

dt
+ n3

dLv

dt
+ n4

dIv

dt
4
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= n1[M1J1IvS h − A4Lh] + n2[θLh − A3Ih]
+ n3[M1J2IhS v − A2Lv] + n4[ωLv − A1Iv]. (11)

Now choosing

n1 =
θ

muhA4A3A2
1A2
, n2 =

1
muhA3A2

1A2
, n3 =

1
λvJ2
, n4 = 1.

(12)

By equating the right hand side of the system of equation (1)
to zero and representing the state variables in terms of Iv , we
obtain

Lh =
M1J1IvS h

A4
, Ih =

M1J1θIvS h

A4A3
, Lv =

M2
1 J1J2θS hS vIv

A4A3A2
.

(13)

Substituting equations (12) & (13) into equation (11) and sim-

plifying yields
dFL

dt
≤ A1(R2

0 − 1)Iv. Now,
dFL

dt
< 0 provided

R0 < 1. On the other hand,
dFL

dt
= 0 ⇐⇒ R0 = 1 or Iv = 0.

Since Iv → 0 as t → ∞, then t → ∞. Therefore the largest
positively invariant set in{

S 0
h, L

0
h, I

0
h , S

0
v , L

0
v , I

0
v

}
=

{
λh

µh
, 0, 0,

λv

A1
, 0, 0

}
,

when R0 < 1 is the singleton E0. Hence by LaSalle’s invari-
ance principle [21], it follows that all trajectories starting in Ω
approach E0 as t → ∞. That is, the DFE, E0 is globally asymp-
totically stable in Ω if R0 < 1, hence the proof.

3.4. Existence of endemic equilibrium points
By equating the right hand side of the malaria model of sys-

tem in equation (1) to zero and solving simultaneously, we ob-
tain the following

L∗v =
M1kbqI∗hλv

(A1 + ω)(M1kbqI∗h + NhA1)
, S ∗v =

λvNh

M1kbqI∗h + NhA1
,

L∗h =
(r + δ + µh)I∗h

θ
, I∗v =

M1wkbqλvI∗h
A1(A1 + ω)(M1kbqI∗h + NhA1)

,

S ∗h =
λh(M1abqI∗h + M2Nh

µhNhA1R2
0

,

where M2 = (v + σu2). It follows that the endemic equilibrium
is either given as I∗h = 0 which corresponds to the DFE or in
form of the polynomial

AI∗2h + BI∗h +C = 0, (14)

where

A = M2
1 A1Nhwk2b2q2µhλh + M2

1 A2
1Nhk2b2q2µhλh

+ M3
1wak2b3q3λvλh + M1M2A2

1N2
h Kbqµhw

− M1M2N2
h KbqµhR2

0, (15)

B = M2
1 A1Nhawkb2q2λvλh

+ 2M1A3
1N2

h kbqµhλh + 2M1A2
1N2

h wk2bqµhλh

− M2A3
1N3

hµhwR2
0 − A4

1N3
hµhR2

0

− M1A3
1N2

hλhkbqµhR2
0 − M1A2

1N2
hλhwkbqµhR2

0, (16)

and

C = (A4
1N3

hµhλh + A3
1N3

hµhw)(1 − R2
0).

(17)

Considering the quadratic equation (14), the possibility of mul-
tiple endemic equilibrium can be analysed whenever R0 < 1.
Note that the coefficients A and B and the constant term, C of
the quadratic equation (14) as represented in equations (15) -
(17) are positive whenever R0 < 1, hence the following results:
Theorem 3 The malaria model has
1. One unique endemic equilibrium if C < 0 iff R0 > 1.
2. One unique endemic equilibrium if B < 0 and C = 0 or
B2 − 4AC = 0.
3. Two unique endemic equilibrium if B < 0, C > 0 and
B2 − 4AC > 0.

3.5. Bifurcation analysis

The possibility of the existence of backward bifurcation, a
phenomena that makes the control of any disease to be more
difficult is investigated using the Centre Manifold theory as de-
scribed by Castilo-Chavez and Song [22]. Let fk be the kth com-
ponent of equation (1) with

a1 =
v
2

Dxx f (0, 0)w2 =
1
2

n∑
i, j,k=1

viw jwk
∂2 fi
∂x j∂xk

(0, 0), (18)

b1 = vDxa f (0, 0)w =
n∑

i, j,k=1

viw j
∂2 fi
∂x j∂a

(0, 0). (19)

To proceed with the application of the Centre Manifold The-
orem on the system in equation (1), we consider the following
change of variables for convenience. Let

x1 = S h, x2 = Lh, x3 = Ih, x4 = S v, x5 = Lv, x6 = Iv,

so that Nh = x1 + x2 + x3 and Nv = x4 + x5 + x6. The vector
representation of the system is given by

dx1

dt
= f1 =λh + M2Ih −

M1abqIvS h

Nh
− µhS h,

dx2

dt
= f1 =

(M1abqIvS h

Nh
− (µh + θ)Lh,

dx3

dt
= f1 =θLh − (M2 + δ + µh)Ih,

dx4

dt
= f1 =λv −

M1kbqIhS v

Nh
− (τu3 + µv)S v,

dx5

dt
= f1 =

M1kbqIhS v

Nh
− (ω + τu3 + µv)Lv,

dx6

dt
= f1 =ωLv − (τu3 + µv)Iv,

(20)

5
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where M1,M2 and A1 are as previously defined. Taking Nh =
λh
µh

and choosing ’a’ as the bifurcation parameter with a = a∗, from
equation (5) at R0 = 1 we obtain the bifurcation parameter

a∗ =
A2

1λh(µh + θ)(A1 + ω)(M2 + δ + µh)

M2
1b2kq2wθµhλv

.
(21)

Linearizing equation (19) at the DFE point, and considering
equation (20) we obtain the Jacobian matrix given as

J(E0,a∗) =



−µh 0 M2 0 0 −k1
0 −A4 0 0 0 k1
0 θ −A3 0 0 0
0 0 −k2 −A1 0 0
0 0 k2 0 −A2 0
0 0 0 0 ω −A1


, (22)

where k1 =
M1a∗bqλh
µhNh

, k2 =
M1kbqλv

A1Nh
.

One of the eigenvalues of the matrix (22) is a simple zero
and all others have negative real parts which allows for the ap-
plication of the Centre Manifold theorem. And so to obtain the
right eigenvector, w from the matrix (22), we have that

−µhw1 + M2w3 − k1w6 = 0,
−A4w2 + k1w6 = 0,
θw3 + A3w3 = 0,

−k2w3 − A1w4 = 0,
k2w3 − A2w5 = 0,
ωw5 − A1w6 = 0.

. (23)

Solving the equation (23), we have the following:

w1 =

(
M2θ

k2µh
−

k1ωk2θ

µhA1A2A3

)
w2

w2 =

(
k1ωk2θ

A1A2A3A4

)
w2

w3 =
θ

A3
w2

w4 = −
k2θ

A1A3
w2

w5 = −
k2θ

A2A3
w2

w6 = −
ωk2θ

A1A2A3
w2. (24)

Similarly, the matrix for the left eigenvector v which corre-
sponds to the zero eigenvalue, vDx f (0, 0) = 0 when R0 = 1
is given as:

JE0,a∗ =



−µh 0 0 0 0 0
0 −A4 θ 0 0 0

M2 0 −A3 −k2 k2 0
0 0 0 −A1 0 0
0 0 0 0 −A2 ω
−k1 k1 0 0 0 −A1


. (25)

From equation (25), we obtain

−µhv1 = 0,
A4v2 + θv3 = 0,

M2v1 + A3v3 − k2v4 + k2v5 = 0,
−A1v4 = 0,

k2v5 + ωv6 = 0,
−k1v1 + k2v2 − A1v6 = 0.

(26)

Solving equation (26) yields the left eigenvector, v as

v1 = 0, v4 = 0,

v2 =

(
k1ωk2θ

c

)
v2,

v3 =
ωk1k2

A1A2A3
v2,

v5 =
ωk1

A2A1
v2,

v6 =
k1

A1
v2. (27)

To examine the sign of a0 in equation (27), the non-zero second
partial derivatives obtained from equation (19) are as follows:

∂2 f2
∂x1∂x6

=
∂2 f2
∂x6∂x1

=
M1abq

Nh
,

∂2 f5
∂x3∂x4

=
∂2 f5
∂x4∂x3

=
M1kbq

Nh
.

Now, from equation (17), for vk , 0 we obtain

a0 = v2w1w6
M1abqµh

λh
+ v5w3w4

M1kbqµh

λh

= v2w2
2

M1kbqωθ2

A2
1A2

2A2
3λh

[χ1 − χ2], (28)

where χ1 = A1A2A3M2a, χ2 = k1k2(ωa + kµhA2).
It therefore follows from equation (28) that a0 > 0 provided

χ1 > χ1 and a0 < 0 for χ1 < χ1.
Similarly for b0, the required non-zero second partial

derivatives at the DFE based on equation (18) are

∂2 f2
∂xa∂x6

=
∂2 f2
∂x6∂xa

=
M1bqx1

Nh
= M1bq.

And so, b0 = 2v2w6M1bq =
M1bqθωk2

A1A2A3
> 0.

Since the coefficient of b0 is always positive, therefore we
conclude with the following results as established in (Castillo
Chavez & Song [22]):
Theorem 4
The malaria model in equation (1) exhibits the phenomenon of
backward bifurcation at R0 = 1 whenever a0 > 0 and b0 > 0.
On the other hand, whenever a0 < 0 and b0 > 0, then the model
in equation (1) exhibits a forward bifurcation at R0 = 1.

6
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3.6. Sensitivity analysis

Applying the method of normalized forward sensitivity in-
dex (see Ref. [23]) on the basic reproduction number, the sen-
sitivity indices of the parameters in the expression of equation
(5) were estimated as represented in Table 1.

The positive indices on Table 1 indicate that an increase in
any of such parameter value will result in an increase of the
value of R0 and vice versa while the negative indices imply that
increase in such parameter values will result to a decrease in
the value of R0 and vice versa. The parameters with the most
impact on R0 are the mosquito biting rate and the parameter
that controls livestock availability. Followed by mosquito mor-
tality rate and the rate at which the mosquitoes are killed due
to ivermectin consumption during bloodmeal. These parame-
ters project the importance of vector reduction and reducing the
bites on human which both the livestock availability and treat-
ing them with ivermectin takes care off. Thus handling one of
the gaps from the conventional control methods.

4. Optimal control analysis

To have an idea on the optimal level of efforts that would be
required to achieve maximum success for any intervention pro-
gramme that is aimed at controlling malaria disease at minimal
cost, an optimal control analysis is carried out. To begin with,
we modified the system of equations (1) by considering time de-
pendent controls u1(t) (use of mosquito treated bed nets), u2(t)
(the treatment of infectious humans) and u3(t) (the use of iver-
mectin drug).The goal is to minimize the number of infected
humans so as to curtail the spread of the disease through the
given controls of the study while keeping the costs of these con-
trol as low as possible based on a defined objective functional
that includes relative costs associated with each control. The
modified model is as follows:

dS h

dt
=λh + (v + σu2(t))Ih −

(1 − u1(t)abqIvS h

Nh
− µhS h

dLh

dt
=

(1 − u1(t)abqIvS h

Nh
− (µh + θ)Lh

dIh

dt
=θLh − (v + σu2(t) + δ + µh)Ih

dS v

dt
=λv −

(1 − u1(t)kbqIhS v

Nh
− (τu3(t) + µv)S v

dLv

dt
=

(1 − u1(t)kbqIhS v

Nh
− (ω + τu3(t) + µv)Lv

dIv

dt
=ωLv − (τu3(t) + µv)Iv.

(29)

Given the time dependent control functions, ui(t) for i =
1, 2, 3, ... which are bounded, Lebesque integrable functions.
u1(t) and u3(t) model the effort geared towards bringing down
the mosquito population to zero if possible by killing the adult
mosquitoes seeking for blood meal while u2(t) models the ef-
forts required for the treatment of infectious humans with the
WHO recommended antimalarial drugs. Here, σ and τ each
represents the efficacy of the antimalarial drug and the ef-
fect of ivermectin drug respectively, with the assumption that

0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1 and 0 ≤ u3(t) ≤ 1. Consider the
objective functional J defined over a feasible set of controls and
given as

J(u1, u2, u3) =
∫ t f

0
[PIh + Qu2

1 + Ru2
2 + S u2

3]dt, (30)

where P, Q, R, S are the desired positive weights on the ben-
efits of the disease control. PIh is the cost (social cost) as-
sociated with malaria infection and Qu2

1,Ru2
2, S u2

3 each repre-
sents the relative cost weights of bed net usage, infectious hu-
man treatment and the ivermectin administration respectively,
while t f is the expected final time for implementing the con-
trols. As regards the epidemiological cost of controlling dis-
eases, the choice of a quadratic cost on the controls is in line
with what is applicable in other literature (see Refs. [16, 28–
31]) and this is based on the assumption that no linear relation-
ships exist between the coverage of these control measures and
their corresponding costs. Here, we seek an optimal control
u∗ = (u∗i ), i = 1, 2, 3, which minimizes the objective function, J
such that

J(u∗) = min J(u1, u2, u3)|ui ∈ W,

where

W = {ui(t) : 0 ≤ ui(t) ≤ 1,

is Lebesque measurable with 0 ≤ ui(t) ≤ 1, i = 1, 2, 3 for t ∈
[0, t f ]} is the control set. In optimization problems, there exists
a principle that provides suitable conditions with differential
equations as constraints. It is known as the Pontryagin’s Max-
imum Principle [14] which provides the necessary conditions
that an optimal control must satisfy and this principle works in
such a way that equations (29) and (30) are transformed into a
problem of point-wise minimization of the Hamiltonian (HC)
with respect to and The Hamiltonian formed from the objective
function in equation (30) subject to the model equation (29) is
given as:

HC = [PIh + Qu2
1 + Ru2

2 + S u2
3]dt

+ λS h

[
λh + (v + σu2(t))Ih −

(1 − u1(t)abqIvS h

Nh
− µhS h

]
+ λLh

[
(1 − u1(t)abqIvS h

Nh
− (µh + θ)Lh

]
+ λIh

[
θLh − (v + σu2(t) + δ + µh)Ih

]
+ λS v

[
λv −

(1 − u1(t)kbqIhS v

Nh
− (τu3(t) + µv)S v

]
+ λLv

[
(1 − u1(t)kbqIhS v

Nh
− (ω + τu3(t) + µv)Lv

]
+ λIv

[
ωLv − (τu3(t) + µv)Iv

]
. (31)

where λS h, λLh, λIh, λS v, λLv and λIv are the adjoint or co-state
variables. The proof of the existence of an optimal control given
in Ref. [32] is valid here. Implying that the control set W is
closed and convex and the convexity of the integrand of the
objective functional in equation (30) with respect to W. In ad-
dition to these, the a priori boundedness of the state solutions,

7
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Table 1: Descriptions, values, references and sensitivity indices of the parameters of R0.

Parameter Description Parameter Value Reference Sensitivity Index
q Proportion of vector bloodmeals on humans 0.485 [9] +1
b Mosquito Biting rate 0.5 [19] +1
τ Effect of ivermectin 0.02-0.5 Estimated -0.660256
µv Mosquito natural death 0.05 [9] -0.660256
k Probability of mosquito being infected by an infectious human 0.09 [19] +0.5
a Probability of human being infected by an infectious mosquito 0.3 [19] +0.5
λh Human birth rate 0.00011 [19] -0.5
λv Mosquito birth rate 0.071 [19] +0.5
µh Human natural death rate 0.0000548 [24] +0.4998879
σ Treatment efficacy 0.01-0.7 [25] -0.478810
ω Mosquito Progression rate from Latent to Infectious state 0.056 [26] +0.3205128
δ Disease induced death rate 0.0003454 [27] -0.0008559
θ Human Progression rate from Latent to Infectious state 0.058824 [24] +0.0004654

and the Lipschitz property of the state system with respect to
the state variables S ∗h, L∗h, I∗h , S ∗v , L∗v, I∗v also satisfies the nec-
essary conditions for the existence of an optimal control. To
obtain the optimal solution, following the Pontryagin’s Maxi-
mum Principle with the existence result for the optimal control
from Ref. [32], we obtain the following theorem.

Theorem 5 Let (u∗1, u
∗
2, u
∗
3) be an optimal control and be

the optimal state solutions of the corresponding state system
in equation (29) which minimizes the objective functional,
J(u1, u2, u3) over W. Then there exists co-state variables λ∗S h,
λ∗Lh, λ∗Ih, λ∗S v, λ∗Lv and λ∗Iv that satisfy the following system of
equations:

λS h

dt
= (λS h − λLh)

[
(1 − u1(t)abqIv

Nh

(
1 −

S h

Nh

)]
+ µhλS h −

(1 − u1(t)kbqIhS v

N2
h

(λS v − λLv),

λLh

dt
= (λLh − λS h)

 (1 − u1(t)abqIvS h

N2
h

 − θλIh

+ (µh + θ)λLh −
(1 − u1(t)kbqIhS v

N2
h

(λS v − λLv),

λIh

dt
= −P − (λS h − λLh)

 (1 − u1(t)abqIvS h

N2
h


− (r + σu2(t))λS h + (r + σu2(t) + δ + µh)λIh

+ (λS h − λLh)
[
(1 − u1(t)kbqS v

Nh

(
1 −

Ih

Nh

)]
,

λS v

dt
= (λS v − λLv)

[
(1 − u1(t)kbqIh

Nh

]
+ (τu3(t) + µv)λS v,

λLv

dt
= (τu3(t) + ω + µv)λLv − ωλIv,

λIv

dt
= (τu3(t) + µv)λIv + (λS h − λLh)

[
(1 − u1(t)abqIvS h

Nh

]
.

(32)

and transversality conditions λS h(t f ) = λLh(t f ) = λIh(t f ) =
λS v(t f ) = λLv(t f ) = λIv(t f ) = 0, whereby the controls u∗1, u

∗
2, u
∗
3

satisfy the optimality conditions

u∗1 = max
{

0,min
(
1,

abqI∗v (λLh − λS h)S ∗h + kbqI∗h(λLv − λS v)S ∗v
2QNh

)}
,

u∗2 = max
{

0,min
(
1,
σ(λIh − λS h)I∗h

2R

)}
,

u∗3 = max
{

0,min
(
1,
τ(S ∗vλS v + L∗vλLv + I∗vλIv)

2S

)}
. (33)

Proof Differentiating the Hamiltonian function with respect to
each state variable and evaluating at the optimal control, we ob-
tain the differential equations that governs the adjoint variable
with the adjoint system as

λS h

dt
= −
∂HC

∂S h
= (λS h − λLh)

[
(1 − u1(t)abqIv

Nh

(
1 −

S h

Nh

)]
,

+ µhλS h −
(1 − u1(t)kbqIhS v

N2
h

(λS v − λLv),

λLh

dt
= −
∂HC

∂S h
= (λLh − λS h)

 (1 − u1(t)abqIvS h

N2
h

 − θλIh

+ (µh + θ)λLh −
(1 − u1(t)kbqIhS v

N2
h

(λS v − λLv),

λIh

dt
= −
∂HC

∂S h
= −P − (λS h − λLh)

 (1 − u1(t)abqIvS h

N2
h


− (r + σu2(t))λS h + (r + σu2(t) + δ + µh)λIh

+ (λS h − λLh)
[
(1 − u1(t)kbqS v

Nh

(
1 −

Ih

Nh

)]
,

λS v

dt
= −
∂HC

∂S h
= (λS v − λLv)

[
(1 − u1(t)kbqIh

Nh

]
+ (τu3(t) + µv)λS v,

λLv

dt
= −
∂HC

∂S h
= (τu3(t) + ω + µv)λLv − ωλIv

λIv

dt
= −
∂HC

∂S h
= (λS h − λLh)

[
(1 − u1(t)abqIvS h

Nh

]
+ (τu3(t) + µv)λIv, (34)

8
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with transversality conditions

λS h(t f ) = λLh(t f ) = λIh(t f ) = λS v(t f ) = λLv(t f ) = λIv(t f ) = 0.
(35)

By solving the equations

∂HC

∂u1
= 0,

∂HC

∂u2
= 0,

∂HC

∂u3
= 0,

on the interior of the control sets, that is 0 ≤ u1(t) ≤ 1,
0 ≤ u2(t) ≤ 1 and 0 ≤ u3(t) ≤ 1, we have

∂HC

∂u1
= 2Qu∗1 +

abqI∗v (λS h − λLh)S ∗h
Nh

+
kbqI∗h(λS v − λLv)S ∗v

Nh
= 0,

∂HC

∂u2
= 2Ru∗2 + σI∗h(λS h − λLh) = 0,

∂HC

∂u3
= 2S u∗3 − τ(S

∗
hλS h + L∗hλLh + I∗hλIh) = 0.

It then follows that

u∗1 =
abqI∗v (λLh − λS h)S ∗h + kbqI∗h(λLv − λS v)S ∗v

2QNh

u∗2 =
σ(λLh − λS h)I∗h

2R

u∗3 =
τ(S ∗hλS h + L∗hλLh + I∗hλIh)

2S
,

with the optimality conditions given as

u∗1 = max {0 ,

min
(
1,

abqI∗v (λLh − λS h)S ∗h + kbqI∗h(λLv − λS v)S ∗v
2QNh

)}
,

u∗2 = max
{

0,min
(
1,
σ(λIh − λS h)I∗h

2R

)}
,

u∗3 = max
{

0,min
(
1,
τ(S ∗vλS v + L∗vλLv + I∗vλIv)

2S

)}
.

5. Numerical results and discussion

Our focus in this section is basically to obtain an optimal re-
sult numerically for the malaria model for some combinations
of the control strategies under consideration. This we achieved
by solving the optimality system consisting of six ODE’s each
for the state in equation (29) and adjoint equations (32) using
an iterative scheme adopted from Ref. [33] and also applied in
several other studies such as Refs. [15, 30, 34]. The process
begins by solving the state equations (26) forward in time over
a simulated time using the fourth order Runge-Kutta scheme
with an initial guess for the controls. Next is to solve the adjoint
equations backward in time applying the backward fourth order
Runge-Kutta scheme which uses the current iterations solution
of the state equations. The choice of this scheme is because of
the transversality conditions. The controls are then updated us-
ing a convex combination of the current and previous control by

entering the new values of the state and adjoint equations into
the characterization of the optimal control. This procedure is
repeated until the values of the unknowns are sufficiently close
to the corresponding ones at the previous iteration (verifying
convergence) after which the iteration stops and output the cur-
rent values as the required solutions.

Considering the three malaria control tools, we formed four
different strategies (S1 - S4) based on a combination of any two
and all three tools. These are Strategy S1 which is a combi-
nation of the use of treated bed net and treatment of infective
individuals (i.e. u1 , 0 and u2 , 0, with u3 = 0), Strategy S2
which combines the use of treated bed net and ivermectin usage
(i.e. u1 , 0 and u3 , 0, with u2 = 0), Strategy S3 consisting of
the treatment of infective individuals and ivermectin usage (i.e.
u2 , 0 and u3 , 0, with u1 = 0) and Strategy S4, a combination
of all three controls (i.e u1 , 0, u2 , 0 and u3 , 0).

Numerically, we explored the optimal control of malaria
based on the impact of each of the strategies S1 - S4 on both
the human and mosquito populations using the following initial
conditions S h(0) = 700, Lh(0) = 100, Ih(0) = 0, S v(0) = 5000,
Lv(0) = 300, Iv(0) = 30 and the parameter values of Table 1
with which the basic reproduction number obtained with con-
trols at zero level is R0 = 5.3362. Since the cost associated with
u2 includes the cost of antimalarial drugs, medical examinations
and hospitalization [30], it is assumed that the weight constant
R associated with u2 is greater than Q and S each associated
with controls u1 and u3. And so the values chosen for these
weight constants are P = 0.8,Q = 0.25,R = 0.6 and S = 0.1.

Strategy S1: Optimal use of treated bed net (u1) and treatment
of infectious human (u2)

In this scenario, by setting the control on the use of iver-
mectin to zero, we applied the control on the use of treated bed
nets (u1) and the treatment of infectious individuals (u1) to op-
timize the objective function, J while the control on the use
of ivermectin is set to zero. The results on Figure 1 a and b
shows very drastic reduction in the infectious human popula-
tion as compared to that of the infectious mosquito population
which makes it not so effective for malaria elimination. In Fig-
ure 1c, the control profile for the optimal use of ITNs (u1) is
shown to be at upper bound for 61 days followed by a drastic
drop to its lower bound at the final time interval. Similarly, the
optimal treatment of infective human (u2) is shown to maintain
an upper bound for 54 days after which it gradually declines to
64% at day t = 78 but then followed an increasing trend slightly
for about 27 days before dropping gradually to its lower bound
at the final time.

Strategy S2: optimal use of treated bed net (u1) and Ivermectin
usage (u3)

The control on the use of treated bed nets (u1) and the ad-
ministration of ivermectin to livestock and human (u1) are used
to optimize the objective function, J while the control on the
treatment of infective individuals is set to zero. The result on
Figure 2b shows that the strategy has very strong effect on the
mosquito population with the potential of bringing it to zero

9



Ochigbo et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 2025 10

Figure 1: The impact of the optimal use of treated bed net (u1) and treatment of infectious individuals (u2 ) on (a) infective human
and (b) infective mosquito, with the corresponding control profile (c).

Figure 2: The impact of the optimal use of treated bed net (u1) and ivermectin (u3) on (a) infective human and (b) infective mosquito,
with the control profile (c).

level. As for the infectious human population (Figure 2a), al-
though there is a huge drop in the total infectious population
with this strategy as compared to the case of zero control, nev-
ertheless the population remained almost at an equilibrium even
to the final time and so not feasible for the disease elimination
[17]. The control profiles of Figure 2c shows that a maximum
coverage (100%) of the optimal use of treated bed net for pro-
tection (u1) is maintained for 27 days then dropped gradually
to about 90% at time t = 52 day after which it continued on
the average with 100% coverage to time t = 123 day. This was

followed by a drastic decline in the control effort to 63% within
a period of 9 days and then rose gradually to a coverage of 84%
at the final time of the intervention. On the other hand, for the
optimal administration of ivermectin drug (u3) as a means of re-
ducing the mosquito population through bite of humans having
the drug concentration in the blood, it started with a 48% cover-
age and maintained a slow decline to the lower bound after 133
days.

10
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Figure 3: The optimal treatment of (a) infective individuals (u2) and ivermectin usage (u3) on infective human and (b) infective
mosquito with the control profile (c).

Figure 4: The impact of the optimal use of treated bed nets (u1), treatment of infective individuals (u2) and ivermectin usage (u3)
on (a) infective iuman and (b) infective mosquito with the control profile (c).

Strategy S3: optimal treatment of infective individuals (u2) and
Ivermectin usage (u3)

In this scenario, the control on the treatment of infective hu-
mans (u2) and the administration of ivermectin (u3) were used
to optimise the objective functional, J while the control on ITNs
is set to zero. A very interesting result is obtained with this
strategy as compared to those of strategies S1 and S2 given that

its effectiveness is strongly seen on both the infective human
and mosquito populations as shown in Figures 3a and b where
both populations dropped drastically near zero level within a
short period of time. Furthermore, in Figure 3c the control pro-
file for the treatment of infectious humans (u2) shows 100%
coverage for 55 days after which a gradual decrease is noticed
to its lower bound at the end of the intervention, while for iver-

11
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Figure 5: Simulations for strategy S2 with t = 2000 as final implementation time.

mectin administration (u3), the effort was at upper bound for
just 11 days before declining gradually to its lower bound.

Strategy S4: the optimal use of treated bed nets (u1), treatment
of infective individuals (u2) and Ivermectin usage (u3)

With this scenario, all three controls ITNs (u1), treatment of
infective individuals (u2) and ivermectin usage (u3) are used to
optimize the objective function J. Like the result of strategy S3,
this strategy has very significant effect on both the infective hu-
man and mosquito populations. This strategy shows an optimal
use of ITNs (u1) at maximum coverage for 6 days followed by
a drastic drop to day 16 which continues gradually to its lower
bound at the final time. Similarly, the control on ivermectin
administration (u3) had a coverage of 100% within the first 10
days of the intervention followed by a drastic decline but not as
much as that of control profile after which a very slow decline
is maintained to its lower bound at day 134. As for an opti-
mal treatment of infectious humans (u2), a maximum coverage
(100%) is maintained for the first 54 days after which a gradual
decrease is noticed till the end of the intervention.

5.1. A comparison of the control strategies (S1 - S4)
In Table 2, a clear picture on the effectiveness of each of the

four control strategies on both the human and mosquito pop-
ulations based on the level of decline (in percent) of each of
the infectious mosquito and infectious human populations pro-
jected at 40 days into an intervention is presented. The purpose
of this is for easy comparison among the four strategies consid-
ered in this study to aid a more accurate recommendation on the
best option to be considered for an intervention that would yield
desired results within a short time frame given limited available
resources and time. The decline is obtained based on the dif-
ference between each population with no control and the pop-
ulation with each strategy at that set time using the population
with no control at that set time as the baseline.

Both Figures 1 and 2 and Table 2 show a kind of biased-
ness on the effects of strategies S1 and S2. While the effect of
strategy S1 is strong on the infectious human population that of
strategy S2 is tilted towards the mosquito population. On the
contrary, the effectiveness of strategies S3 and S4 are shown to
distribute fairly across both the infectious human and mosquito
populations (see Figures 3 and 4, Table 2) as required for suc-
cessful intervention with the target of elimination. In terms of
the level of decline of the populations with each strategy, we
have the following: Strategy S4 ranks first position with the
highest decline of the infectious individuals having an average
decline of 99.75%. The next is strategy S3 with an average de-
cline rate of 99.73% while strategy S2 takes the third position
with an average decline rate of 87.13%. The least performed
strategy in terms of average decline of the infectious popula-
tion with time is strategy S1 with 84.66%. Nonetheless, with
strategy S2, it would require over two thousand days (> 2000
days) (Figure 5) to bring down the infectious human popula-
tion to a level obtained just in 98 days with strategy S1 among
the infectious mosquito population. As a result, strategy S1 is
more feasible and more promising in the long run than strategy
S2. It is seen that all the strategies (S2, S3 and S4) with iver-
mectin as a control had the highest decline rate and this control
tool basically work on the vector reduction through additional
vector mortality with cattle availability thus corresponding to
the outcome of the sensitivity analysis for mosquito biting rate
and the proportion of blood meal on humans due to ivermectin
treated cattle availability. Now, with respect to the human pop-
ulation, those strategies (S1 and S4) where the use of ITN to
prevent disease transmission and the treatment of infective hu-
mans to reduce transmission from humans to mosquitoes are
included, the highest decline of the infective human population
is recorded and this is in line with the impact of the mosquito
biting rate and treatment efficacy parameters on the basic repro-
duction number obtained from the sensitivity result.
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Table 2: Percentage decline in the infectious human and infectious mosquito populations at day 40 of intervention implementation
for each strategy.

Infectious Population Control Strategies (S1 - S4)
Strategy S1 Strategy S2 Strategy S3 Strategy S4

Human 99.51% 74.26% 99.47% 99.51%
Mosquito 68.81% 99.99% 99.99% 99.99%

6. Conclusion

In this study, we formulated a mathematical model compris-
ing of a system of ordinary differential equations with control
tools for malaria transmission and control. The disease free
equilibrium was found to be locally and globally asymptoti-
cally stable. The endemic equilibrium of the model was also
found to be locally asymptotically stable and the possibility of
the model exhibits a phenomenon known as bifurcation was ex-
plored based on the Centre Manifold theory approach. To as-
certain the impact of the model’s parameters to malaria inci-
dence through a threshold parameter called the basic reproduc-
tion number, a sensitivity analysis was carried out based on the
normalized forward sensitivity index method. It was found to
be most sensitive to the mosquito biting rate and the proportion
of bloodmeal on human with cattle availability with positive
index. The implication of such is that reducing the exposure
of humans to the mosquito bites by increasing the use of ITNs
and also decreasing the proportion of bloodmeal on human host
through increasing the availability of cattle, especially in areas
where the zoophagic vectors are predominant by any percent
has the potential of bringing down malaria transmission by an
equal percent and such knowledge is very crucial for achieving
elimination. And so reasonable efforts should be channeled to-
wards bringing down the values of these parameters as it will
go a long way in minimizing the chances of new malaria cases
thereby controlling the disease transmission.

Next on the impact of the model’s parameters to the basic
reproduction number is the mosquito mortality rate with neg-
ative index. The implication such impact is that vector reduc-
tion is very crucial towards malaria elimination and this can
be greatly achieved using one of the control tools of this study
that is ivermectin on livestock and/or human which has dual
benefits as it helps to improve the health of the livestock and
then their productivity (milk and meat) while being lethal to
mosquitoes that ingest blood meal having the drug concentra-
tion. We carried out an optimal control analysis and based on
the outcome from the numerical simulations we recommend
two strategies to be adopted for malaria control. The first of
which is the combination of insecticide treated bed net (trans-
mission blocker) for prevention, treatment of infective human
that is aimed at clearing the parasite from the human popula-
tion thereby reducing the transmission probability from human
to mosquito and livestock/ivermectin usage which also reduces
the disease transmission as it serves as an alternate biting host
and then minimizes the disease spread and prevalence through
vector reduction. This strategy clearly aligns with the current

public health policies of prevention, treatment and reduction of
disease transmission as key focus for any disease control and
elimination.

Now, in the event of limited resources, the strategy that
combines all three control tools may be more expensive. If
that be the case our second recommendation is the strategy
that combines only the treatment of infective human and iver-
mectin usage with cattle availability as an alternative interven-
tion to be adopted for malaria control and elimination given
that it showed to be also highly effective on both the infective
humans and mosquito populations with the potential of con-
tributing significantly to the disease elimination. This strategy
also aligns with the current public health policies as it covers
treatment of infective human which clears the parasite and so
reduce the transmission probability from human to mosquito
and then cattle availability helps to reduce the disease transmis-
sion by acting as alternative biting host while ivermectin con-
trols the spread of the disease through vector reduction. With
the strategies recommended in this study, there is likely dou-
ble benefits which has to do with the animal health and public
health. This is because ivermectin drug is not only lethal to
the mosquitoes but also improves the health of the livestock
thereby promoting the livestock productivity (milk and meat).
Now, the benefit of treating infective human cannot be overem-
phasized as it improves their health and well-being, minimize
malaria related death and reduce the transmission from human
to mosquito. This can contribute to achieving the WHO target
of 90% reduction of malaria burden as it also minimize malaria
transmission across local and international communities.

Malaria being a global threat, and as the benefits of these
strategies cut across both public and animal health any of the
recommended strategies can be realistically implemented de-
spite the socio-economic constraints in malaria-endemic re-
gions with the support of individuals, non-governmental or-
ganizations and global funding. These findings are therefore
important to aid malaria elimination stakeholders, national and
global malaria control programmes and policymakers to arrive
at an objective conclusion when evaluating the consequences of
the available strategies required for dealing with the disease.

References

[1] World Health Organization [WHO] (2022). World Malaria Report
2022 (Issue Brief No. 978-92-4-006489-8). Geneva, Switzerland. [On-
line]. Retrieved January 12, 2023 from https://www.who.int/teams/
global-malaria-programme/reports/world-malaria-report-2022.

13

https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022
https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022


Ochigbo et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 2025 14

[2] S. S. Kiware, N. Chitnis, S. J. Moore, G. J. Devine, S. Majambere &
G. F. Killeen, “Simplified models of vector control impact upon malaria
transmission by zoophagic mosquitoes”, PLoS One 7 (2012) 5. https://
doi.org/10.1371/journal.pone.0037661.

[3] World Health Organization (WHO), “Manual on environmental man-
agement for mosquito control with special emphasis on mosquito
vectors”, 1982. https://iris.who.int/bitstream/handle/10665/37329/
9241700661 eng.pdf.

[4] C. J. Chaccour, N. R. Rabinovich, H. Slater, S. E. Canavati, T. Bousema,
M. Lacerda, F. Kuile, C. Drakeley, Q. Bassat, B. D. Foy & K. Kobylinski,
“Establishment of the ivermectin research for malaria elimination net-
work: Updating the research agenda”, Malaria Journal 14 (2015) 243.
https://doi.org/10.1186/s12936-015-0691-6.

[5] M. L. Fritz, P. Y. Siegert, E. D. Walker, M. N. Bayoh, J. R. Vulule &
J. R. Miller, “Toxicity of bloodmeals from ivermectin-treated cattle to
Anopheles gambiaes.l”, Ann. Trop. Med. Para. 103 (2009) 6. https://doi.
org/10.1179/000349809X12459740922138.

[6] World Health Organization [WHO] (2016). World Malaria Report 2016.
Geneva, Switzerland. (9789241511711-eng.pdf pp. 1–186). [Online]. Re-
trieved January 16, 2023 from https://apps.who.int/iris/rest/bitstreams/
1069305/retrieve.

[7] H. C. Slater, B. D. Foy, K. Kobylinski, C. Chaccour, O. J. Watson, J.
Hellewell, G. Aljayyoussi, T. Bousema, J. Burrows, U. D’Alessandro,
H. Alout, F. O. Ter Kuile, P. G. T. Walker, A. C. Ghani, M. R. Smit,
“Ivermectin as a novel complementary malaria control tool to reduce in-
cidence and prevalence: a modelling study”, Lancet Infect Dis. 20 (2020)
4. https://doi.org/10.1016/s1473-3099(19)30633-4.

[8] H. C. Slater, P. G. Walker, T. Bousema, L. C. Okell & A. C.Ghani, “The
potential impact of adding ivermectin to a mass treatment intervention
to reduce malaria transmission: A modelling study”, J. Infect Dis. 210
(2014) 12. https://doi.org/10.1016/S1473-3099(19)30633-4.

[9] A. O. Franco, M. G. M. Gomes, M. Rowland, P. G. Coleman & C. R.
Davies, “Controlling malaria using livestock-based interventions: A one
health approach”, PLoS ONE 9 (2014) 7. https://doi.org/10.1371/journal.
pone.0101699.

[10] L. Yakob, “Endectocide-treated cattle for malaria control: a coupled en-
tomological epidemiological model”, Parasite Epidemiology and Control
1 (2016) 1. https://doi.org/10.1016/j.parepi.2015.12.001.

[11] L. Yakob, M. Cameron & J. Lines, “Combining indoor and outdoor meth-
ods for controlling malaria vectors: an ecological model of endectocide-
treated livestock and insecticidal bednets”, Malar. J. 16 (2017) 114.
https://doi.org/10.1186/s12936-017-1748-5.

[12] J. L. Waite, S. Swain, P. A. Lynch, S. K. Sharma, M. A. Haque, J.
Montgomery & M. B. Thomas, “Increasing the potential for malaria
elimination by targeting zoophilic vectors”, Sci. Rep. 7 (2017) 40551.
https://doi.org/10.1038/srep40551.

[13] J. E. Ochigbo, M. I. Ali, O. E. Oche, C. E. Okorie & K. A.
Adamu, “Mathematical model with relapse and the effect of iver-
mectin on malaria transmission dynamics”, International Journal of
Research and Innovation in Applied Science IV (2019) 1. https:
//www.academia.edu/85907846/Mathematical Model with Relapse
and the Effect of Ivermectin on Malaria Transmission Dynamics.

[14] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze & E. F.
Mishchenko, The mathematical theory of optimal processes, Wiley,
New York, Sydney, 1962, pp. 1–360. https://doi.org/10.1002/zamm.
19630431023.

[15] K. O. Okosun, R. Ouifki & N. Marcus, “Optimal control analysis of a
malaria disease transmission model that includes treatment and vaccina-
tion with waning immunity”, Biosystems 106 (2011) 2. https://doi.org/10.
1016/j.biosystems.2011.07.006.

[16] B. M. Adams, H. T. Banks, H. Kwon & H. T. Tran, “Dynamic mul-
tidrug therapy for HIV: Optimal and STI control approaches”, Mathe-
matical Biosciences and Engineering 1 (2004) 2. https://doi.org/10.3934/
mbe.2004.1.223.

[17] K. O. Okosun, O. Rachid & N. Marcus, “Optimal control strategies and
cost-effectiveness analysis of a malaria model”, Biosystems 111 (2013)
2. https://doi.org/10.1016/j.biosystems.2012.09.008.

[18] O. G. Otieno, Optimal control strategies for minimizing malaria
transmission in Kenya, Ph.D dissertation, Department of Biostatistics,
Moi University, Eldoret, Kenya, 2016, pp. 1–197. http://ir.mu.ac.ke:
8080/xmlui/bitstream/handle/123456789/1058/Okello$%$20Gabriel$%
$20Otieno$%$202016.pdf?sequence=1$&$isAllowed=y.

[19] S. Olaniyi, K. O. Okosun, S. O. Adesanya & R. S. Lebeloe, “Modelling
malaria dynamics with partial immunity and protected travelers: Optimal
control and cost-effectiveness analysis”, Journal of Biological Dynamics
14 (2020) 1. https://doi.org/10.1080/17513758.2020.1722265.

[20] J. L. Willems, Stability theory of dynamical systems, Wiley Interscience
Division, Nelson, New York, 1970, pp. 1–201. https://books.google.
com.ng/books/about/Stability Theory of Dynamical Systems.html?id=
dlivAAAAIAAJ&redir esc=y.

[21] J. P. LaSalle, The Stability of Dynamical Systems, SIAM, Philadelphia,
Philadelphia, Pennsylvania, 1976, pp. 1–76. https://epubs.siam.org/doi/
pdf/10.1137/1.9781611970432.fm.

[22] C. Castillo-Chavez & B. Song, “Dynamical models of tuberculosis and
their applications”, Mathematical Biosciences and Engineering 1 (2004)
2. https://doi.org/10.3934/mbe.2004.1.361.

[23] N. Chitnis, J. M. Hyman & J. M. Cushing, “Determining important pa-
rameters in the spread of malaria through the sensitivity analysis of a
mathematical model”, Bulletin of Mathematical Biology 70 (2008) 5.
https://doi.org/10.1007/s11538-008-9299-0.

[24] B. Kbenesh, C. Yanzhao & K. Hee-Dae, “Optimal control of vector-borne
diseases: treatment and prevention”, Discrete Continuous Dynamical
System series B. 11 (2009) 3. https://doi.org/10.3934/dcdsb.2009.11.587.

[25] O. D. Makinde & K. O. Okosun, “Impact of chemo-therapy on optimal
control of malaria disease with infected immigrants”, BioSystems 104
(2011) 1. https://doi.org/10.1016/j.biosystems.2010.12.010.

[26] R. J. Smith & S. D. Hove-Musekwa, “Determining effective spraying
periods to control malaria via indoor residual spraying in sub-saharan
Africa”, Journal of Applied Mathematics and Decision Sciences 2008
(2008) 745463. https://doi.org/10.1155/2008/745463.

[27] G. G. Mwanga, H. Haario & B. K.Nannyonga, “Optimal control of
malaria model with drug resistance in presence of parameter uncertainty”,
Applied Mathematical Sciences 8 (2014) 55. http://dx.doi.org/10.12988/
ams.2014.43197.

[28] J. A. M. Felippe de Souza, A. L. C. Marco & Y. Takashi, ”Optimal con-
trol theory applied to the Anti-viral treatment of AIDS”, Proceedings of
the IEEE Conference on Decision and Control, Sydney, 2000, pp. 4839–
4844. https://doi.org/10.1109/CDC.2001.914696.

[29] D. Kirschner, S. Lenhart & S. Serbin, “Optimal control of the chemother-
apy of HIV”, J. Math. Biol. 35 (1997) 775. https://doi.org/10.1007/
s002850050076.

[30] F. B. Agusto, N. Marcus & K. O. Okosun, “Application of optimal con-
trol to the epidemiology of malaria”, Electronic Journal of Differential
Equations 81 (2012) 1. http://ejde.math.txstate.edu.

[31] K. O. Okosun & O. D. Makinde, “A co-infection model of malaria and
cholera diseases with optimal control”, Mathematical Biosciences 258
(2014) 19. https://doi.org/10.1016/j.mbs.2014.09.008.

[32] W. H. Fleming & R. W. Rishel, Deterministic and stochastic optimal
control, Springer Verlag, New York, 1975, pp. 1–222. https://doi.org/10.
1007/978-1-4612-6380-7.

[33] S. Lenhart & J. T. Workman, ”Optimal control applied to biological mod-
els”, Chapman & Hall/CRC Mathematical and Computational Biology
Series, Chapman & Hall/CRC, Boca Raton, Florida, 2007, pp. 1–261.
https://doi.org/10.1201/9781420011418.

[34] H. S. F. Rodrigues, Optimal control and numerical optimization ap-
plied to epidemiological models, Ph.D dissertation, Departamento de
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