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Abstract

In this paper, we present a ninth—order block hybrid method for the numerical solution of stiff and non—stiff systems of first—order differential
equations. The method is based on an interpolation and collocation approach which results in a single continuous formulation; from which eight
discrete schemes that make the block method were obtained. A convergence analysis of our method illustrated that it is A(a)—stable, consistent, and
convergent. We applied our method to some numerical examples which showed that the new method not only outperformed a second derivative

method of order fourteen in the literature but also compared well with the exact solution.
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1. Introduction

Differential equations have their origins in Chemical Kinet-
ics, Engineering, Physics etc. They may or may not have ana-
lytical solutions and there is a need to obtain reliable numeri-
cal methods to obtain their approximate solutions. One of the
numerical methods for obtaining approximate solutions to or-
dinary differential equations (ODE) are Linear Multistep Meth-
ods (Linear Multistep Method) and most importantly block hy-
brid methods of various order. It is a known fact that the higher
the order of a Linear Multistep Method with a corresponding
low error constant, the better the accuracy of the method.

Tavernaro and Mazzia [1] used Linear Multistep Methods
for a special class of nonlinear problems. Kirlinger [2] used
Linear Multistep Methods in solving both linear and non-linear
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first-order ODEs. However, the authors did not use off—grid
points. Albi ef al. [3] analyzed high—order linear multistep
schemes for the solution of ODE arising from optimal control
and hyperbolic partial differential equations. Block methods
have the added feature that all the discrete schemes which con-
stitute the block method are obtained from a single continuous
formulation and are of uniform order. For more on Linear Mul-
tistep Methods and block hybrid methods, see Refs. [4-7].
The authors in Ref. [8] used power series as a ba-
sis function with 4-grid and 4-off grid points which are
{1/2,3/2,5/2,7/2} for the solution of fourth—order initial value
problems. Gragg and Stetter [9] used a generalized predictor—
corrector method, Ref. [10] used a generalized version of the
Runge—Kutta method while Refs. [11, 12] used single—step
methods. However, in this work, we used the four off-grid
points: {3/2,5/2,7/2,9/2} instead besides being a four-and-a-
half block hybrid method, see also Refs. [13] and the references
therein. Kamoh et al. [14] used a shifted Legendre polynomial
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to derive a ninth-order block hybrid method for the solution
of ODE using the following off-grid points: {9/2,13/3,14/3}.
However, our off-grid points are different and the problems con-
sidered in that paper were non—stiff while the present work can
numerically integrate both stiff and non-stiff ODEs. In [15], the
authors used Hermite polynomial as basis functions in deriv-
ing the numerical schemes (see also the works of Fotta et al.
[16], Ayinde and Ibijola [17], Odejide and Adeniran [18] and
Akinola et al. [19]).

Besides, Ismail et al. [20] developed a two—point, fifth order
explicit multistep block method by using Taylor Series interpo-
lation polynomial in solving neural delay differential equation
of Pantograph type. However, in this work, our method is also
two—step and order nine. In a related development, Ref. [21]
derived a Predictor—Corrector method PE(CE)” where m is the
number of iterations of the method, for solving first—order sin-
gle linear Neural Differential Differential Equations with con-
stant and Pantograph delay types. Here, our method is self-
starting and does not depend on predictors or correctors to start
(see also Refs. [22, 23]).

Yakubu et al. [24] used a second derivative approach in de-
riving a block hybrid method of orders seven and fourteen with
the off-grid points {1/2,3/2,5/2} for the numerical integration
of both linear and non-linear initial-valued first-order differ-
ential equations. Nevertheless, we show in this present work
with numerical examples that this second derivative method
can be circumvented by presenting a ninth-order Block Hybrid
Method; based on the first derivative for the solution of linear
and non-linear stiff and non-stiff initial valued first—order differ-
ential systems of equations. This article is structured as follows:
in Section 2, we presented the new block hybrid method, and
showed that the order is uniformly nine, analyzed zero stability
of the method, convergence analysis was done as well as the
region of absolute stability is plotted. This is then followed in
Section 3, where we implemented the methods in some numer-
ical experiments. Results are presented by tables and figures
which enforces the validity of the new method. In this paper,
all norms are the two norms.

2. Materials and methods

To derive the continuous formulation, we used the method
in Ref. [25], where a k—step linear multistep collocation method

k
DOy =0 D B farjs @0 # 0, o #0,
j=0 j=0

(in our case k = 4) with m collocation points defined as:
t—1 m—1
) = 3 @i (0ynej + B0 e M
j=0 =0

The a(x)’s and B;(x)’s are
t+m—1

i
§ Qjiv1 X,

Jj=0

aj(x) =

and
t+m—1
Wi =h > Bjinix,
7=0
for j =0,1,2,---, where ¢ and m are the number of interpola-

tion and collocation points respectively. To derive both the dis-
crete and continuous formulations of the new hybrid method,
we took t = 2, m = 8 such that equation (1) becomes:

y(x) =ag(X)y, + @1(X)yne1 +h

BoC)fu + B1(X) fasr +B3(X) 43
+ﬁ2(-x)fn+2 +B%(x)fn+% +ﬁ3(x)ﬁ1+3 +B%(x)f;l+%

+ Ba(X) fura |- @)

The matrix D used in deriving the continuous scheme is
shown in equation (21). We moved D to the appendix because
of formatting issues. We need the following result to prove the
non-singularity of the matrix D.

Theorem 2.1. The determinant of D is
det(D) = 27515(1)%92625 n3.

Proof: Perform elementary row operations on D after re-
placing x, = Xy41 =, Xps2 = Xpe1 + h, Xp3 = Xpeg + 20,

_ _ h _ 3h
Xpid = Xpp1 + 3h Xppd = Xnel F 5 X3 = Xyl + 5 and

X . Therefore,

+; = Xn+1 +

2751503792625 K7

det(D) = — 178

Theorem 2.2. Let € be a small but positive real number, then

128¢ ;7
h > | 5513057036351 -

. 37
Proof: Since € > 0, then let % > &. The result

is immediate by routine algebraic simplifications. [ |

In the next important result, we give a necessary condition
for D to be non-singular using the above results.

Corollary 2.1. : Ifh > 0.19846, then det(D) # 0 and D is

non-singular.

37 .
Proof: Let 23138620 5 5752 where macheps= 277 is
machine epsilon. Hence

7 128(27%2)
2751503792625’
and

2—45 -

= | Z0.19846,
> | 2751503702625 | = 19846

We defined w = x,4; — x such that x = x,,; — w and af-
ter inverting D, the first row of the inverse gives the following
continuous coefficients respectively:

ap = — (160w’ + 1710hw® + 68401°w’ + 11550 w°
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+2772h*w’ — 16695k° w* — 21060h°w? the appendix We evaluated the continuous formulation (22) at
— 8100h" w?*)/228231°, w = -4 to0 yield:

3

27895280 1608057360

Yned = Yn t+ Yn+1
o1 =(1600° + 1710h0® + 6840120 + 115500%5 + 2772140’ ¢ 163595264077 © 1635952640
5,4 6,3 7,2 ————|5627045f, + 364063338 f,.1 + 608019008
— 16695k w* — 21060h°w® — 8100k’ w 1635952640[ f Jo1 i
+228234°)/228231°, = 20207772042 + 98873280, 5 — 3586153043
+8059392f,,7 — 831213 fn+4]. 3)
Bo = — (2944000° + 3214869hw® + 13407228h*w’ :
+25246025h3 w8 + 1516542304 w° — 168195934° w* Evaluating the continuous formulation at w = —h yields
— 28685457h°w?® — 11822895k w?*)/1725418804 466830 42668640 [
’ 2 = n n 90797,
Y2 = 13135470 T 431354707 T 13135470 S
+ 8365792 f,,1 + 272407041, 5 + 8030520,
B1 = — (15908000° + 16043109408 + 5759941242 Jurt S fus2
+723394491% w°® — 46248972h* W’ — 1844424331 w* —12032f,, s — 15808013 + 50688f,, 7 — 6089fn+4]. )
_ 6, 3 7,2
90846388 + 87694083h We evaluated the continuous formulation at w = —32 to obtain

+ 8627094048 w)/86270940h°,
4980528 322210000

Ynt3 = 327190528 " 327190528
B3 =7720000° + 7292184hw® + 23143464h*w’ 1006785, + 68879650 188193600
Rl nt n+l t n+2
+ 1898372013 w°® — 38387664h*w’ — 66654168h°w* 327190528 " =
+766202415w° + 47188440h" w?)/21567735h° + 1604610002 + 86484160, s — 1113525043
+ 2073600, 1 — 197225 .4 . 5)

B = — (877920’ + 778516hw® + 2201144h%w’
+1065372h3 w® — 4454065h* w’ — 4767119K° w*
+23435851%w? + 2744775 w?)/(1917132h%), Yn+3 =

Evaluating the continuous formulation at w = —2h, yields

15680 1581930 h

2971
1597610°"  1597610° ™" * 1597610[ 7L
+ 306666 f,.1 + 1001920, 3 + 6045304

Bs =(8022400° + 6656808hw® + 167676961 w’

+998784f,, s + 30745043 — 12096, 1 + 675 f,,+4]. (6)
+3592960h3w® — 35946624h*w’ — 271533361 w* : :

+ 1837969645w° + 169005604 wz) /21567735 8 We evaluated the continuous formulation of the scheme at w =
’ Sh to obtain
B3 = — (3242080’ + 2506407hw® + 56436121’ y 1= 27270000 Yo + 1234750608 Vs
s 6 4 s s "2 71262020608 1262020608
+ 78659R3w® — 122124240 w’ — 7708155 w i
——— (5740525, + 290633210f,
1621298810’ + 515470517 w?)/172541881°, " 1262020608 Jut29 Jant

+ 668046400, 3 + 69898500042 + 489137600, 5
By =(129600” + 92864hw® + 1888724’ — 23016k’

+ 80505775043 + 230146560, 3 — 5425525 f,,+4]. (7
—414512K*w’ — 233968R° w* + 211272h%w?

5 Evaluating the continuous formulation at w = =3/ results in:
+ 165528 w?*)/2396415h%,
25515 824320
s = ~Z5ss05" + om0 * omgas| ~ 0210

Ba =— (1172800’ + 774147he® + 1453332h%w’

+ 49856 f41 + 146496 f,, 3 — 89640 .1
—320705K3w® — 3240237h*w’ — 16932094 w*

1 1657447100 + 1251945K w?)/1725418804°. + 911360, 5 + 864043 + 635904, 7 + 114494ﬁ’*4]' ®
The continuous formulation is obtained by substituting the ~ 1ne continuous formulation was evaluated at w = - 3 to yield:
above into equation (2). The resulting continuous formulation 379099280 145391760
of the new block hybrid method is presented in equation (22) of Yntd =

3 233707520"" "~ 233707520°™*!
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— 2512835136, 3 +4218684120f,.2 — 4109579712f, 5
+3023948970 .5 — 1189665792, + 486034101 f,.4 .
)

We differentiated the continuous formulation (22) at w = —Z

2
and obtained the discrete scheme

h
—y, 4 m[473977 £, + 6190578 fn1

— 142562643 + 21960504 ,,> — 22333032, 5
+ 15056670 .3 — 6504408 £, 7 + 1635759 f,.4

Yn+1

- 182584]‘,,%]. (10)

We present the New Block Hybrid Method (consisting of the
above 8 discrete schemes) beginning with y,,,; as follows:

h
sl = Yu = m[473977 fu+ 6190578 1 — 142562641,
+ 2196050445 — 22333032/, 5 + 1505667033

- 6504408fn+% + 1635759 fya — 182584f, 9| = 0,

| 27895280 1608057360

In3 T 1635952640°" ~ 1635952640 """

15627045, + 3640633387,
1635952640 Jut Jur

+ 608019008 f,,5 — 2020777202 + 988732801, 5

— 3586153043 + 8059392fn+% - 831213]‘“4] =0,

466830 42668640  h
43135470°" ~ 23135470° "' T 43135470
+ 83657921 + 272407045 + 80305202

Va2 — [90797fn

— 12032f,,5 - 1580803 + 50688, ; — 6089 f,,+4] =0,

| 4980528 322210000
T3 T 337190528 T 327190528
h
- 750535 | 1006785, + 68879650,.. + 1881936005,

+ 160461000 f,42 + 86484160}‘,”% — 11135250 f,43

+ 2073600fn+% — 19722544 = 0,

15680 1581930 h
- = —— 29717,

1597610°" ~ 1597610° """ 1597610[ v

+ 30666651 + 1001920f,, 3 + 6045302 + 998784, 5

Yn+3 —

+307450f,.3 — 120967 + 675 fn+4] =0, (11)

27270000
Y3 T 1262020608”"

1234750608
1262020608 """

5740525, + 2906332101

1262020608
+ 668046400, 3 + 698985000+ + 489137600, 5

+ 805057750 f,4+3 + 230146560f, .1 — 5425525f,l+4] =0,

3

25515 824320 h
- " |6

798805°" ~ 798805 """ ~ 798805 [ 6210/

+ 498561 + T46496,,3 — 89640f,12 + 9113605, 5

Yn+4 +

+ 8640 5 + 635904, 1 + 114494 f,,+4] =0,

_ 379099280 145391760
Ynt3 T 5337075207 T 233707520° "

h

—2512835136,,; + 42186841202 — 4109579712f,, 5

+ 30239489703 — 1189665792, 7 + 486034101 f,.4| = 0.

The nonlinear system of eight equations in eight unknowns
above can be expressed as F(y) = 0 where

T
y: [)’n+l,y,H.%’}’n+2,yn+%,)’n+3,yn+%’}’n+4,yn+%] ’ (12)

are the unknowns. This will be discussed further under the im-
plementation and algorithm subsection below.

2.1. Convergence analysis

In this section, we examine the order, error constant, zero
stability and convergence of the new block hybrid method given
by equations (3)—(10) in this paper as follows with

- 2041200 1 - 2041200 1 o8 0]
182584 182584
27895280 1608057360 0 1
1635952640 1635952640
466830 42668640 0 0
43135470 43135470
4980528 322210000 0 0
327190528 327190528
Q’O == , X = — , a3 = , @y = s
15680 1581930 2 0 0
1597610 1597610
27270000 1234750608 0 0
1262020608 1262020608
25515 824320 0 0
798805 798805
379099280 145391760 0 0
L 233707520 | L™ 233707520 - e s
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In the same vein,

Bo=
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r 473977
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Theorem 2.3. Each discrete scheme in equations (3)—(10) that
constitutes the new block hybrid method is of order nine.

Proof. We substituted the above vectors in the following and
after some algebraic simplifications, we obtained

C0=a0+a1+a%+a2+a§+ag+a%+a4+a% =

G, =

C3 =

Cy=

1 3\ s (5
CS 25[01 + (5) a% +2 [0%) +(§)
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Table 1: The order (second column) and error constants Cg # 0
(third column) of the new block hybrid method.

Vn+i  Order  Error constant Cjy # 0
Y+l 9 2.023x10™%
Yoz 9 6.411x107%7
2
Yz 9 2.660x107
Vs 9 6.296x1077
2
Yn+3 9 6.161x10798
V1 9 1.565x100
2
Yaea 9 - 6.478%107%
Yarz 9 2.841x10~%
9y’ 1 3\4 5\4
s e (5) o] - gl (5) 828+ (3) 84
+3%8; + (2)4,87 + 448, + (2)4[39 =0
3T\2) P T\ P T

et (5o |-l + () + e+ 3)
+ 378 + (Z) B1+4784 + (—)7[3%] =0,

s (o] b (3 24 (3

v 3%+ (1) By + 4.+ (3) 8] =0

Therefore, Co = C; = C, = ... = Cg = 0and Cyy # O are as
tabulated in the last column of Table 1. Hence, the proof. [

In Table 1, we present the order and error constants of the
New Block Hybrid Method.

In the next section, we present a discussion on the order of
convergence of the method.

2.2. Order of convergence

In this section, we examine the order of convergence of the
newly derived block hybrid method. We begin by presenting
this well-known definition of Lipschitz condition which will
be used shortly.

Definition 2.1. : A function f(x,y) satisfies the Lipschitz con-
dition on a domain D C R?, if there exists a constant L > 0
such that

[£Ce, y) = fO, ¥ < Lly =7,
forall (x,y),(x,y*) € D.

In the same vein, we define the convergence as used in Ref.
[21].

Definition 2.2. : A Linear Multistep Method is said to be con-
vergent if, for all initial value problems subject to the above
Lipschitz conditions

li =y*

hl_I};l)yn y (xn)7
for all solutions {y,} of the method.

Assuming the exact solution of equation (10) is:

h
5031300 | 473977 + 6190578 £

— 142562645 + 21960504 ,.> — 22333032f,, 5
+ 15056670 .3 — 6504408, ,1 + 1635759, .4

189145
93483008

where Ry is the remainder term. Assuming the exact solution
of equation (3) is:

27895280 . 1608057360 .
1635952640°" © 1635952640° !

627045, + 364063338 .1 + 608019008, 5

* —
Yn+1 = Vn +

- 182584fn+%] + R0y 10y + Ry, (13)

y
3
n+2

1635952640 [5

~ 2020777202 + 988732801, 5 — 35861530,

2684971 10 o)
+8059392f,..7 ~ 831213 fya | + Jrazem e Yy 1)
+R10. (14)

Assuming the exact solution of y,; is:

466830 42668640

Yn+2 = 43135470 T 43135470° !

+—— 1907971, + 8365792f,,, + 27240704f. . 5

43135470[9 77, 92w Jues

+ 80305202 — 12032, s — 1580803 + 50688,
22031

— 6089 f,,+4] + R0y 10&,) + Ry, (15)

82820102400

and so on and so forth.
Subtract equation (10) from equation (13) to obtain:

473977f, + 6190578 f,11

h
Tl =Yt 5041200

*
yn+l
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— 14256264f,, 3 + 21960504,
+1505667Qﬁﬁ3-6504408f

— 22333032, 5
1 + 163575914

— 182584 f,,5 [ —yu — [4739771;

2041200
+ 6190578 f1 — 142562643 + 21960504 f,.2

- 22333032fn+% + 15056670 f,43 — 6504408fn+%

+-1635759j;+4-1825841;+%]

189145

+ mhloy*(lo)(fn) + Ryp. (16)

Expanding the above,

Yool = Vsl = Vp = Yn + ;ﬁixvuw% = F s y)]

" % JGonsts V) — f(xn+l,yn+1)]

- %:ﬂxﬂ%’y;g) - f(xn+g’yn+g)]

% :f(xn+27 Vps2) = f(Xns2s yn+2):

- z%%%%g%%ﬁ:f(x”+%’y2+g)“f(xh+g,yn+g)] (17)
% »f (Xn+35 Vya3) = S (Xna3s yn+3)—
?igiﬁgi?[f( SITEPh D R S ,yn+7)

" %[f (Xn+as Vyga) = [ (Xnras yn+4)]
éﬁiﬁgg [ £ 9) = Fs )]

st ) + R

Letdy =y, =Y dpy3 =V, 2 = Vs3> dnet = Yoy = Yurls €LC

in line with Refs. [20, 21]. "lzaking the absolute value of both
sides, using the triangle inequality and imposing appropriate
Lipschitz conditions yield

473977h 343921h
)|d | Lldy |

2041200 /"' 113200

101669h
Lid, 3| + =555 Lidnsa|

501889h

68040
181751h
L|dn+4|

(] < (1 +

594011h

85050

, 310181
28350
30113hle "
9450 2! 226800

. 22823h14d " 189145
255150 +3* 93283008

Lid,. 5] + Lidys|

*(10)(§n +O(hll)

This simplifies to

343921h
(1" 113400 L)w%*‘|s (1

594011h
85050

473977h
)|d |

3041200
101669
————L|d,s|

Lidy g1+ 9450

3101814 5018897 301134
L, s+ o g+ 2 g
8350 il ggoag Hdmsl ¥ g5 Hde]
181751 22823 189145
o Lldyal + So—=Lld e h 0,
* 226800 Ldmral + 355150 M43+ 53ag3008" P @)
+OM"™).

As h — 0, except |d,| every other term on the right-hand side
tends to zero while on the left-hand side, we are left with |d,,.{|
and by the definition of convergence,

: — k
]111_I>I(1)y;1+1 = Yu+1-

Thus, |dyi1] < |da| and y7 | — ¥, < Yur1 — Y, is satisfied. The
convergence of y,,; is established.
Similarly, if we subtract equation (4) from equation (15)

. 42668640 466830

Yni2 = Yn+2 = m[yml — Vur1l + mb’n — ]
gL ) - S

" % »f(x“l’y:m) - f(xn+l’yn+1)]

* % :f(xn+2,y;+2) - f(xn+2»yn+2)]

- %:ﬂ%%’y;g)_f(xn+g,y,1+;)] (18)
- % :f<xn+3,y;i+3> — (3 y,,+3)]

* BT et )~ g

N % ,f (Xntds Yysa) = f (xn+4’yn+4)]

22031

+—————pl% 10y 4 R,
82820102400 &n) +Rwo

Taking the absolute value of both sides and after some rou-
tine simplifications

(1 _ 89228h )| < ( 142668640 8365792h)L| -
479283 )2 S\ T 13135470 © 43135470 )+
+( 466830 90797h )k1|+ 13620352k,
43135470 © 43135470 )" 21567735 9n+
6016h 15808 2816
* 21567735 M+ 31 F 1313587 Hdnl+ 306415
6089% 22031
e . _ 2200 o) +a10) .
* B13s470 M4+ Saga0t00a00” P @] H OB

Taking the limit of both sides as 7 — O,

dal < (42668640)| |+_( 466830 )| |
m2l = 43135470 ) T\ 43135470 )"
= 0.9892/d,.| + 0.010822|d,|
< dal,

and by the definition of convergence,

: — *
]111_{% Vint2 = Ypio-
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Thus, |dy2| < |du| and ) , — ¥, < Va2 — ¥y, is satisfied. The
convergence of y,,, is established in agreement with Ref. [21].

Similarly, it can be shown that the other y,.;’s for i €
{%, %, 3, %,4, %} converge. Therefore, we have shown that the
new block hybrid method is convergent. The remainder term
R which is

Rpet = Cpah? 2y P2 = On™).

Following Ref. [20], p + 2 > 1 is the order of convergence.
Hence, the order of convergence of the new method is 11.

2.3. Region of absolute stability

In this section, we plotted the region of absolute stability
of the new method using the stability polynomial. To get the
stability polynomial which will be used in plotting the region of
absolute stability of the new method, we rewrite the new block
hybrid method in Linear Multistep form as follows:

(2350 0 0 0 0 0 0 O]fYe]
0 1000 0 0 0¥
0 0100 0 0 Of|ve
0 00 100 0 0ffVs
0 0001 0 0 0y
0 0000 1 0 0y,

0 0000 0 1 0|y

0 00000 0 1]y,

5

0 0 0 0 0 0 ZN 0 |[ynr]

49813 2871531
000000 2921344 2921344 Yn—6

247 2576
0000 00 5553 2823 | |Yn-5

44460 2876875
00000 0 0 555m S |[Vns

24 22599
0000 00 5% 22823 |[|Yn-3

63125 2858219
0000 0 0 555 Zomm [P

729 23552
000000 T 22823 22823 In

4738741 1817397
0 0 0000 2921344 2921344 - Yn+1

+h

+h

where

B By B2 B

0 0 0
00 0
00 0
00 0
00 0
00 0
00 0
0 0 0
>225258125300
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0
000
000
00 0
00 0
00 0
000
0 0 0

0 0 T
0 0 22
0 0 2L
0 0 syisess
0 0
0 0 o
0 0 _7822551585
0 0 28373872037852270 -
Bs By Pa By
0000
0000
0000
0000
100 o
0100
0010
0 0 0 I
0 22525812530 0

0 49813 2871531
2921344 2921344

0 247 22576
22823 22823

0 44469 2876875
2921344 2921344

0 224 22599
22823 22823
0 63125 2858219

2921344 2921344

0 — 729 23552
22823 22823

0 4738741  _ 1817397
2921344 2921344 -

] 'fn77-

L Ja ]
1] fo+1]

fn—6
fn—S
f;174

f;1+%
ﬁ1+2
fn+§
fn+3
Joe1

2

fn+4

H frse
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473977

0000000 g
000000 0 220,
0000000 2T
000000 0 R
R ,
0000000 22
000000 0 Hes
0000000 -2
000000 0 =2
S =

B Bz P

The stability polynomial is defined as
pw,z) = det(Pw — Q — Rz — Swy),

where y' = Ay is the test problem z = A4 and w = exp(if) with
i= V-1,0 <6 < 2r Hence,

pw,z) = |Pw—Q—Rz—Swz]
= [(45654581448000w® — 5706822681000w")z

— (479445572793600w® + 271660491424350w’
+2516235750w®)z’ + (2795424991500960w°
+2127232111618515w” — 32003615097075w°)2°

— (11035803283477560w® + 2899801484257566w’

+ 332878936639830w%)2° + (30760767369642240u°
+30680201231114575w” — 2010734128970455w°)z*
— (59509351269997440w® + 11562711533656878w’
+7715950397115282w%)2> + (74510463960629760w®
+ 86891574321745760w” — 19189891950192320w°)z>
— (51110991900702720w® + 38468683257356520w’
+ 28467553549460760w°)z + (11687572850688000w*
+7644272853168000w’

— 19331845703856000w°)|/1045445718876160.

The region of absolute stability of the method is defined as

Ew,2) ={z€C:pw,z)=1,lz| < 1}.

10

Re(z)

Figure 1: Region of absolute stability of the New Block Hybrid
Method. The stability region is shaded in blue. This shows that
the method is A(86°)—stable.

The stability region is obtained by finding the roots of the sta-
bility polynomial and plotting accordingly. This is as shown in
Figure 1. We need the following definition of A(a)-stability to
describe the nature of the region of absolute stability of the new
method.

Definition 2.3. : A numerical method is A(a)-stable (Ref.
[31]), where a € [0, ], if its region of absolute stability con-
tains the wedge

Wy={z=AheCl-a<argz—n<al.

Using the above definition, we computed the value of
a = 86°. Therefore, the New Block Hybrid Method is
A(86°)—stable. The region of absolute stability of the New
Block Hybrid Method is shown in Figure 1 and the stability
region is shaded in blue.

2.4. Zero stability

In this section, we examine the zero stability of the New
Block Hybrid Method. This is done by re-writing the block
method in the following manner:

2041200

U209 0 0 0 0 0 O]fvme]

_ 1608057360 1

1635952640 0 0 0 0 0 OffYuss

42668640
—66680 g 1 0 0 0 0 0|y

322210000
~S500ss 0 0 1 0 0 0 OffYnses

1581930
“Soeo0 0 0 0 1 0 0 Offynes

1234750608
~Theaooes 0 0 0 0 1 0 Offyu

824320
“B80 0 00000 0 1 0|y

145391760
[ 53050 00 0 0 0 0 1] Yn+2 ]
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g 2041200 .
0000000 182584 | |Yn-7

27895280
00 00 0 0 O 1555550 ||Yn-6

000000 0 g, ||ws

4980528

0000000 35 ||ws

27270000
000000 0 2200l ,

255
0000000 =251y

0 00 0 0 0 0 3BREI]y,
+ hRg + hSt,

where
T
(Y /ST ER ATES AR AT ER AR Y
and
T
g= [fn—7, Jn6s fu-5> Jn-ds Jn-3s fu-2s fn—l,fn] .
The characteristic polynomial is:

p(r) = det(rP, — Q1)

HEkr 0.0 0 0 0 0 0

— 1608057366, » 0 0 0 0 0 0
—66680, 9 0 0 0 0 0
322210000

~3519055s7 0 0 r 0 0 0 O

= det

~18%0, 00 0 r 00 0
1234750608

—Boonest 00 0 0 r 00
_%ggégr 0 00O0O0TFrSo

| LsB1i0, 9000 0 0 0 rf

0 0 0 0 0 0 O 2041200

182584

27895280
0000000 16%5952640

466830
0000000 43135470

4980528
0000000 327190528

15680
000000 0 3680

27270000
0000O0O0O0 1262020608

25515
0000000 -255

379099280
0 000000 2;3707520-

10

2551508 — 2551507
- 22823

.. . 8_ 7
The characteristic equation % =0,7"(r-1)=0.

The roots are r equals zero of multiplicities seven and r = 1.

Lemma 2.1. The new block hybrid method is consistent and
zero stable. Hence, convergent.

Proof. The new block hybrid method is consistent because the
order of each of the discrete schemes that constitute the block
is 9 which is greater than one (see, for example, Henrici [32]).
Zero stability is established by the above because the roots of
the characteristic polynomial (zero i.e., multiplicity seven and
one as shown above) have modulus zero which is less than or
equal to one and those of modulus one (i.e, r = 1) is distinct.
Therefore, because the method is both consistent and zero sta-
ble, it is convergent. O

2.5. Implementation and algorithm

In this section, we present an implementation of Newton’s
method to the nonlinear system of eight equations in eight un-
knowns of equation (11) i.e., F(y) = 0, where

T
Y = [ne 1 Yo 3 902 Vs £ V03 s 1o Vet Vg | (19)

are the unknowns and the corresponding algorithm is given. We
are only interested in the unknown ;1.

An application of Newton’s method to F(y) = 0 is as fol-
lows

G(y™)Ay"™ = -F(y™), (20)

where G(y™) is the Jacobian of F(y) and y"*D = y® + Ay®™
forn = 0,1,2,3,--- until there is convergence. The partial
derivatives are:

Ofue1 _ Of (xn + h, y(xa + h))

OYn+1 Oyt

6fn+% B of (x, + %h,y(x,, + %h))
Wpey O3 ’
Ofnra _ Of(xn + 20, y(x, + 2h))
OYns2 B OYns2 ’

e.t.c. The starting values are the initial values of the correspond-
ing systems of ODE under consideration, so there is no need
for predictors and correctors. In addition to this, we present the
Newton-based algorithm for the new block hybrid method.

Algorithm 2.1. Choose the tol and step size h such that the
Jacobian is non-singular. From the given system of differential
equations y' = f(x,y) and for n = 0,1,2,---. Compute the
following partial derivatives:

Ofurr ey 0frn Ofuss 0fis Ofurl 8fs
Oyt Oz Oynea Opys’ O¥nas’ 0%,01  OYnea

1. Evaluate F(y™) using equation (11).
2. Find the LU factorization of G(y™).
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Figure 2: Comparing the performance of the New Block Hybrid
Method with the exact solution on Example 3.1.

3. Solve the linear system G(y™)Ay™ = —F(y™), for Ay™.
4. Update y"*D = y™ + Ay™,
5. Continue until Newton’s method converges.

Output: y, 1.

The stopping criteria for the algorithm are ||Ay™| < tol
and |[F(y"™)|| < tol, where tol is some user—defined toler-
ance. The time complexity of the new method is the cost of the
LU factorization of the Jacobian in step two at each iteration
which is of O(n®). However, for larger systems, one can resort
to iterative methods at a cost of O(n) which is much cheaper for
solving the linear system in step 3 of the above algorithm.

3. Results and discussion

In this section, we compare the performances of the New
Block Hybrid Method with the seventh-order (recognized as
Method 18) and fourteen-order (referred to as Method 21) block
hybrid method of Yakubu et al. [24]. Throughout this section,
all the results are self explanatory.

Example 3.1. We consider the Kaps problem in Ref. [26] which

is a non-linear stiff problem:
[y’l(x)} _ [—IOOZyl(x) - IOOOy%(x)
Y5(x) Y1) = y2(0) = y3(0) |
such that y1(0) = 1,y,(0) = 1.

The exact solution is y1(x) = exp(—2x), y2(x) = exp(—x) and
h=0.1.

The results of numerical experiment for this example is as
shown in Table A1 and Figure 2. The computed stiffness ratio
of this problem at the root is 1002.

Example 3.2. The following non-linear stiff problem was stud-
ied by Gear in Ref. [28]:

—0.0]3)71 - 1000y1y3

¥ ()

11

11

e
U
I

0.8

) ——y,09
06| —E—Y,(%) —H—Y,(0)
e A —F Y0

—&—y,(x)Isode —&—y,(¥) Isode

0.4 ¥,(x)1sode ¥,(¥) Isode

——y,(¥) Isode —6—y,(¥ Isode

021

-0.2

Figure 3: The left Figure shows a plot of the solution on the
interval [0, 10] on the x axis while the right figure was on the
interval [0, 400] on Example 3.2.

1
—— Y, k=Y,
—6—, (x) Exact 0.8 —&—,(x) Exact

Figure 4: Comparing the performance of the New Block Hybrid
Method with the exact solution on Example 3.3.

Y5(x) = —=2500y2y3
y3(x) = —0.013y; — 1000y, y3 — 2500y2y3,
such that
y1(0) 1
»(0)|=|1].
y3(0)] 10

We applied the new block hybrid method with a fixed step
size of h = 0.1, and compared the approximations with octave
1sode [29] and the results are shown in Figure 3. This shows
that the new scheme performed considerably well in compari-
son to known programs in the literature. We found the maxi-
mum absolute eigenvalue of the Jacobian of the system at the
root to be 3998.5, the corresponding minimum absolute eigen-
value was 8.1042 x 107'6, thereby resulting in a stiffness ratio
of 4.9338 x 10'8,
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——y, ()

—O— exp(-10x)(cos(x)+sin(x))

eooo

y
AVONMBMOD O

SO

—*—Y (¥

—O— exp(-0.5%)

12

08 —*—¥,(%)

0.6

—O— exp(-10x)(cos(x)-sin(x))

—*—Y,(

—O— exp(-0.1%)

Figure 5: Comparing the performance of the new block hybrid method with the exact solution on Example 3.4.

Example 3.3. The linear stiff IVP [27]:

Y1) -y @] [1
@[ _| —10y »0)| _ |1
¥5(x) —-100y; | |y3(O)| |1}’
v, [=1000y4]  lys(0)] 11

with a step size of h = 0.1.

The exact solution of the IVPs is:

y1(%) e
v | et
ya(x)| | e 100 |
y4(x) e—lOOOx

Results are shown in Figure 4 and Table A2. The stiffness ratio
of the system of differential equations is 1000.

Example 3.4. We consider the linear stiff IVPs studied by
Fatunla in Ref. [30]:

yi@)]  [-10y; +100y2]  [y1(0) 1
Y5(x)|  [—100y; = 10y2| |y2(0) 1
y3(0| _ —4y; y3(0)| _ (1
Y4 (x) —V4 TyaO)] (1)
Y5(x) —0.5ys ysOf |1
Ve (X) -0.1ys s(0)] |1

12

We used a fixed step size of 7 = 0.1. By the nature of
the matrix, we considered only four components yi, y,, y3 and
va. The results of numerical experiments are compared with
the exact in Figure 5 and recent results in the literature in Table
A3. The stiffness ratio of the system of differential equations
is 1005.

In Table 2, we present the computational time (cputime)
as well as the number of iterations in Newton’s method in all
numerical experiments.

Aside from solving the above examples using the new block
hybrid method, we tried solving the same examples with the
same starting guesses using only y,;; and obtained the results
as shown in Table 3. It was observed that this also gave good re-
sults which were all most at par with the block method albeit the
block method performed far better and is highly recommended
for the numerical integration of linear and non-linear differen-
tial equations.

It is pertinent to mention that due to the “’big gap” in the
absolute errors between the y;’s, there is a need to buttress
this point. These big gaps are because we only used the
scheme involving y,.; alone instead of the whole block hy-
brid method. However, we make the following explanations
for academic purposes. In Example 3.1, the exact solution is
y1(x) = exp(—2x), y2(x) = exp(—x). This implies that y;(x) will



Akinola et al. /J. Nig. Soc. Phys. Sci. 7 (2025) 2028

Table 2: Computational times of the numerical integration of
the IVPs on Examples 3.1, 3.2, 3.3 and 3.4. For x = 5 and
x = 50, there were 50 and 500 number of iterations in Newton’s
method, respectively.

Examples X cputime
Example3.1 5  0.2173
50  1.8539

Example3.2 5  0.2666
50 2.6114

Example3.3 5  0.2423
50  2.2058

Example 3.4 5  0.3416
50  3.3937

Table 3: Absolute errors of the numerical integration of the
IVPs in Examples 3.1, 3.2 and 3.4 using equation (10).

Examples Size x New method
Example 3.1 2x2 5 y; 2.64615455331249 x 10
y,  1.78144787057234 x 10793
Example 3.1 2x2 50 y; 3.97220625567371 x 107#?
vy 1.81946223485350 x 107!
Example 3.3 4x4 5y 1.78060428041512 x 1073
y,  8.88178226825138 x 1071
y3  8.51855127949365 x 1073
Y4 0
Example 3.3 4x4 50 y; 1.81926143035958 x 107!
»2 0
V3 0
V4 0
Example 3.4 6x6 5 y; 9.65312078222632 x 10723
ya  2.74021282732718 x 10723
y3  3.38936239129207 x 1079
ys  1.64739096130308 x 1073
ys  4.96950254397107 x 1073
ve 1.52305949362452 x 10~%3
Example3.4 6x6 50 y 0
2 0
y3  8.62943100710741 x 107*
ys 1.81926143035958 x 107!
ys  1.15422964948989 x 10~!!
ye  1.69429182203972 x 10%

decay twice as fast as y,(x). This is confirmed in row four col-
umn five and row five, column five where the absolute errors are
3.9722062556737173x107*? and 1.8194622348535021x 102!
respectively. We did not bother to do the same for Example 3.2
because the exact solution is not known. We expected in theory
that y4(x) should decay 10 times faster than y3(x), y3(x) should
decay 10 times faster than y,(x) and y,(x) should decay 10 times
faster than y;(x). The computational results confirm the theo-
retical underpinning. That is why there is a ”big gap” in the
absolute errors between the y;’s. In addition, from the exact
solution of Example 3.4:

y1(x) = exp(—10x)(cos(100x) + sin(100x)),

13

13
y2(x) = exp(—10x)(cos(100x) — sin(100x)),

y3(x) = exp(—4x),

y4(x) = exp(—x),

ys(x) = exp(—=0.5x),

Y6(x) = exp(-0.1x),

and by the presence of the exponential function in each of the
solutions, it is not difficult to see that y;(x) decays faster than
y2(x), y2(x) decays faster than y3(x) and so on. This explains the
big gap in the absolute errors of Example 3.4 as shown from the
fourteenth row (downwards) and last column of Table 3.

4. Conclusion

In this work, we derived and implemented a uniform-ninth-
order block hybrid method for the numerical integration of lin-
ear and non—linear first-order ODEs. The method was shown to
be zero—stable, consistent, convergent having a region of abso-
lute stability which depicts, A(a)-stability. A further theoreti-
cal analysis of the method showed that the order of convergence
of the method is eleven. Results of computational experiments
showed that the new method outperformed recent results in the
literature and compared favourably with the exact solution.
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APPENDIX A.
D Matrix
2 3 4 5 6 7 8 9
I x, X, X, X, X, X, X, X, X,
2 3 4 5 6 7 8 9
Lo X Y YN N Yaa N Y N
2 3 4 5 6 7 8
0 1 2xy, 3x; 4x; 5x,, 6x; Tx, 8x, 9x;,
2 3 4 5 6 7 8
0 1 2xn+1 3xn+1 4xn+1 5xn+1 6xn+l 7xn+l 8xn+1 9xn+1
0 1 2x,: 3x¥, 4, 5¢ 0 6x° , 7x5 ., 8x . 9i8
2 n+3 n+s n+3 n+s n+s n+s n+3
D=
2 3 4 5 6 7 8
0 1 2002 33X, AX, SX,, 6, Tx, 8., 9%,
0 1 2x,s 3, 4, 5%, 6x , 7x5, 8x' . 9xd
n+3 n+3 n+3 n+3 n+3 n+3 n+3 n+3
2 3 4 5 6 7 8
0 1 2Xns3 3xn+3 4xn+3 5xn+3 6xn+3 7xn+3 8xn+3 9xn+3
0 1 2x,1 3x¥, 4, 5¢ 06X, 7x8 ., 8x . 9i®
2 n+s n+s nt+s n+s n+s n+3 n+s
2 3 4 5 6 7 8
0 1 244 3xn+4 4'xn+4 5xn+4 6xn+4 7xn+4 8xn+4 9'xn+4—
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Table Al: Comparing the absolute errors of the new block hy-
brid method with those of [24] on Example 3.1.

Method 18 Ref. [24]

Method 21 Ref. [24]

New Method

1.223052805026881 x 10~73
1.290570363021715 x 1079

1.228938367083599 x 10~
1.800318343625484 x 107

4.8405800671225103 x 1077
5.2809007554041609 x 107

X i
5 n
Y2
50 Vi
Y2

3.320709446422848 x 1079
9.887815172193726 x 1079

3.325679258575631 x 107
5.804723043345561 x 107"

3.9663889639351048 x 10~
1.5085805782915302 x 10~

Table A2: Comparing the absolute errors of the New Block
Hybrid Scheme with those of Ref. [24] on Example 3.3.

Xy Method 18 Ref. [24] Method 21 Ref. [24] New Method
Vi 0 0 4.8806444996607468x10~ 1
5 »m 0 0 2.4700101997280476x107%
3 0 0 4.3679599334235881x10780
ys  1.110223024625157x107'¢  1.110223024625157x107'®  2.4544793415072880x107 "8
yi 2.220446049250313x10°1®  2.220446049250313x10°1®  1.5428128255672359x10 >
50 y, 4.440892098500626x107'°  4.440892098500626x10° 0
y3  1.110223024625157x1071¢  1.110223024625157x10'° 0
ys  2.220446049250313x107'°  1.110223024625157x10'° 0
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