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Abstract

Let G = R2⋊S O(2) be the Euclidean motion group, let g be the Lie algebra of G and letU(g) be the universal enveloping algebra of g. ThenU(g)
is an infinite dimensional, linear associative and non-commutative algebra consisting of invariant differential operators on G. The Dirac measure
on G is represented by δG , while the convolution product of functions or measures on G is represented by ∗. Among other notable results, it
is demonstrated that for each u in U(g), there is a distribution E on G such that the convolution equation u ∗ E = δG is solved by method of
convolution. Further more, it is established that the (convolution) operator A′ : C∞c (G)→ C∞(G), which is defined as A′ f = f ∗ T nδ(t) extends to
a bounded linear operator on L2(G), for f ∈ C∞c (G), the space of infinitely differentiable functions on G with compact support. Furthermore, we
demonstrate that the left convolution operator LT denoted as LT f = T ∗ f commutes with left translation, for T ∈ D′(G).
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1. Introduction

A solution of the equation of the form PT = f , for any dis-
tribution f on G, and a solution T (which can also be thought
of as a distribution) of the differential operator P are the pivots
for the existence of a fundamental solution for differential oper-
ators with constant or variable coefficients on a locally compact
group. El-Hussein [1] and Battesti [2], in 1954, proved that
P with constant coefficient on Rn has a solution (fundamental)
on Rn. A solution T ∈ D′ of a differential operator P with
constant coefficient is referred to as a fundamental solution if

∗Corresponding author Tel. No: +234-703-014-8511.
Email address: ueedeke@gmail.com (U. E. Edeke )

PT = f [3]. This result was independently verified by Mal-
grange in 1955 [2, 4]. Hormander [3], in 1958, also proved
that a differential operator P admits a temperate solution; a new
proof of Hormander’s result was given in 1970 by Atiya [5].
Lewy [6], in 1970, showed that P has a different solution when
its coefficients are variables. He showed that for any infinitely
differentiable function f on R3, there is no such T such that
the equation −i∂x + ∂y − 2(x + iy)∂zT = f is satisfied. A solu-
tion of this equation for compactly supported functions was not
considered by Lewy [6]. However, El-Hussein [1] proved that
any P on the Heisenberg group Hn has a fundamental solution.
He obtained the result by considering the Heisenberg group as
R2n+1 with its usual multiplication rather than looking at Hn as
a matrix group. In particular, he proved that for a function f
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on Hn with compact support, there is a distribution T on Hn

such that the equation i∂x + ∂y + iy∂zT = f is satisfied. In this
work, we extend the result of El-Hussein [1], in section 3, to
Euclidean motion group, for n = 2. In section 4, a specified
operator for the subspace made up of equivalent classes of right
K-invariant functions of the H-valued Lp - space on G denoted
by Lp(G : K,H), 1 < p < ∞, and its adjoint A∗ are obtained.
We begin with some preliminaries, in section 2, concerning the
Euclidean motion group, its Haar measure, Lie algebra, spaces
of test functions on S E(2), their topologies and distributions,
and Fourier transform of functions on the space of rapidly de-
creasing functions on G.

2. Preliminaries

2.1. Euclidean motion group
The group S E(n), which is often referred to as the motion

group or group of rigid motions, is defined as the semi-direct
product of Rn with S O(n), that is S E(n) = Rn ⋊ S O(n). Ele-
ments of S E(n) may be denoted as g = (x̄, ξ), where ξ ∈ S O(n)
and x̄ ∈ Rn. For any g1 = (x̄1, ξ1) and g2 = (x̄2, ξ2) ∈ S E(n),
multiplication on SE(n) may be defined as

g1g2 = (x̄1 + ξ1 x̄2, ξ1ξ2),

and the inverse is defined as

g−1 = (−ξt x̄, ξt).

Here ξt denotes a transpose. Alternatively, S E(n) could also
be identified as a matrix group whose arbitrary element may be
identified as (n + 1) × (n + 1) matrix of the form

H(g) =
(
ξ x̄
0t 1

)
,

where ξ ∈ S O(n) and 0t = (0, 0..., 0). The explicit matrix form
of the element of the group S E(n), for n = 2, is given by

g((x1, x2), ϕ) =

 cosϕ −sinϕ x1
sinϕ cosϕ x2

0 0 1

 ,
where ϕ ∈ [0, 2π], (a1, a2) ∈ R2 [4, 7–11]. S E(2) is a non -
compact and non- commutative solvable Lie group [12, 13]. For
all n ≥ 2, S E(n) is a group of affine maps induced by orthogonal
transformations. It is also referred to as a group of rigid motions
on Rn and is applied in robotic, dynamics and motion planning
[9, 14–16].

2.2. Lie algebra of S E(2)
The algebra se(n) is regarded as the Lie algebra of S E(n).

It is the sub-algebra of gl(n + 1,R) which may be written as

se(n) =
{
X =

(
Q M
0 0

)
: Q ∈ Rn, M ∈ so(n)

}
.

gl(n + 1,R) is made up of real matrices U of order n + 1 where
the Lie bracket [U,V] on it is defined as [U,V] = UV − VU for

U,V ∈ gl(n + 1,R); so(n) =
{
U ∈ gl(n + 1,R)|U + U t = 0

}
is

the Lie algebra of S O(n); Q is a skew - symmetric matrix; and
M is a vector in Rn [17]. For n = 2, G = R2 ⋊ S O(2). S O(2)

has the Lie algebra so(2) which is generated by T =
(

0 −1
1 0

)
or T =

(
0 1
−1 0

)
. g = R2 × so(2) with R2, X = (1, 0) and

Y = (0, 1) as generators. That is to say, the generators of g are
(X,Y,T ).

S E(2) is a unimodular Solvable Lie group. A mea-
sure(invariant measure)dµG on it is the product of lebesque
measure on R2 and the normalized Haar measure of S O(2).

2.3. Spaces of test functions on S E(2), their topologies and dis-
tributions

Here we give a brief description of spaces of distributions
and their respective topologies.

2.4. The space C∞(G)
Given a solvable Lie group G endowed with invariant mea-

sure dµ(g), and g its Lie algebra. Lets denote by m the dimen-
sion of g. Fix {X1, ..., Xm} a basis of g. To each α = (α1, ..., αm) ∈
Nm, we put |α| = α1 + ... + αn and associate a differential oper-
ator Xα, which is left invariant, on G acting on f ∈ C∞(G), the
space C∞(G) of infinitely differentiable functions on G, by

Xα f (g) =
∂α1

∂tα1
1
...
∂αm

∂tαm
m

f (g exp(t1X1)...exp(tmXm))|t1=...=tm=0..

The space C∞(G) may be given a topology defined by a system
of seminorms specified as

| f |α,m = S up|α|≤m|Xα f (g)|.

With this topology, C∞(G) is metrizable, locally convex and
complete, hence, it is a Frechet space. This Frechet space may
be denoted as ξ(G).

2.5. The space C∞c (G)
This space C∞c (G) is the space of complex-valued C∞ func-

tion on G with compact support. For any ϵ > 0, put

Bϵ =
{
(ξ, θ) ∈ G : ||ξ|| ≤ ϵ

}
and

Dϵ = D(Bϵ) =
{
f ∈ C∞c (G) : f (ξ, θ) = 0, i f ||ξ|| > ϵ

}
.

Then D(Bϵ) is a Frechet space with respect to the family semi
norms defined as{

Pα( f ) = ∥Dα f ∥∞ : α ∈ N3
}
.

D(G) =
⋃∞

n=1D(Bn) is topologised as the strict inductive limit
of D(Bn). A linear functional on the topological vector space
D(G) that is continuous is known as a distribution on G. Then
D′(G) is the space of distribution on G.

Given a manifold M and a distribution T , T is said to vanish
on a subset V ⊂ M, which is open, if T = 0. Let {Uα}α∈ω
represents the collection of all open sets on which T vanishes
and let U stand for the union of {Uα}α∈ω. M − U, regarded as
the complement of M, is the support of T . We denote ξ′(G) a
distributions space with compact support.
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2.6. The Schwartz space S(G)
Consider the Euclidean motion group S E(2) realised as R⋊

T where T � R/2πZ. If we choose a system of coordinates
(x, y, θ) on G with x, y ∈ R and θ ∈ T, then a complex - valued
C∞ function f on G = S E(2) is called rapidly decreasing if for
any N ∈ N and α ∈ N3 we have

pN,α( f ) = S upθ∈T,ξ∈R2 | (1 + ||ξ||2)N(Dα f )(ξ, θ) |< +∞,

where

Dα =
(
∂

∂x

)α1( ∂
∂y

)α2( ∂
∂θ

)α3

,

(α = (α1, α2, α3); ξ = (x, y)). The space of all rapidly de-
creasing functions on G is denoted by S = S(G). Then S is
a Frechet space in the topology given by the family of semi-
norms {PN,α : N ∈ N, α ∈ N3}.

The space S′(G) of (continuous) linear functionals on S (G)
is referred to as the space of tempered distributions on G =
S E(2). This space can be topologised by strong dual topology,
which is defined as the topology of uniform convergence on the
bounded subsets of S(G) generated by the seminorms pφ(u) =
|u(φ)|, where u : S(G)→ R and φ ∈ S(G). We close this section
by defining the concept of convolution on the space S(G).

Let f1, f2 ∈ S(G) or L2(G). The convolution of f1 and f2 is
defined as

( f1 ∗ f2)(g) =
∫

G
f1(h) f2(h−1g)dµG(h)

=

∫
G

f1(gh) f2(h−1)dµG(h).

The convolution operation obeys the associativity property

( f1 ∗ f2) ∗ f3 = f1 ∗ ( f2 ∗ f3),

whenever all the integrals are absolutely convergent [1, 9, 18–
20].

2.7. Fourier transform for S E(2)
The Fourier transform of the group S E(2) is needed in what

follows, and we need the following preparations.
Let L2([0, 2π], dα

2π ), be the space of square integrable func-
tions on T � [0, 2π] � S O(2). A representation of S E(2) on
L2([0, 2π], dα

2π ) is given as

U(p)(g)φ̃(X) = e−ip(a.X)φ̃(AT X)

for each g ∈ S E(2), where p ∈ R+ and X.Y = x1y1 + x2y2.

A =
(

cosϕ −sinϕ
sinϕ cosϕ

)
, AT =

(
cosϕ sinϕ
−sinϕ cosϕ

)
, so that

AT X =
(

cosϕ sinϕ
−sinϕ cosϕ

) (
x1
x2

)
=

(
x1cosϕ + x2sinϕ
−xsinϕ + x2cosϕ

)
.

The representation U(p)(g) given is unitary and irreducible [9,
21–23].

The following definition of group Fourier transform may be
found in [10, 15, 24, 25].

2.7.1. Definition
The Fourier transform of f ∈ S (G) ( or f ∈ L1(G) ) is a map

F ( f ) : R+∗ → B(L2(G)),

defined as

(F f )(σ) =
∫

G
f (g)Uσ(g−1)dµ(g), f or σ > 0,

and the inverse is defined as

f (g) =
∫ ∞

0
Tr(Uσg f (σ))σdσ,

where g = (x̄, ξ) and dµ(g) stands for a measure on G. F ( f )(σ)
may also be denoted by f̂ (σ) in what follows.

If f and h are integrable functions on G = S E(2), then
the Fourier transform for G satisfies the following properties
[12, 23] which are required for what follows in section 3.

(i) || f̂ (σ)|| ≤ || f ||1, for any σ > 0.
(ii) ( f1 ∗ f2 )̂ = f̂2 f̂1.

(iii) ( f̂ ∗)(σ) = ( f̂ (σ))∗, where f ∗(g) = f (g−1).
(iv)

∫
S E(2) | f (g)|2dµ(g) =

∫ ∞
0 || f̂ (σ)||22σdσ, for f ∈ L2(G).

Property (ii) is called the convolution property and property (iv)
is called the Parseval’s equality also known as the Plancherel
formula for S E(2).

3. Convolution equation on SE(2)

Let the spaces C∞(G), D(G), D′(G) and ξ′(G) be as defined
in section 2. Let U(g) be the enveloping algebra g (= se(n)) of
G = Rn ⋊ S O(n). For f ∈ D(G) (respectively S(G) or ξ(G)),
the operator

Pu := f 7→ u ∗ f

has the range equals ξ′(G). That is,

Pu : D(G) ∋ f 7→ (Pu f )(g) = u ∗ f (g) ∈ ξ′(G).

The fundamental solution of Pu is a distribution E such that
PuE = δG, where δG is the Dirac distribution on G supported at
{e} ( = the identity of G). The equation

u ∗ E = δG,

is called a convolution equation on the group G. Now if u ∈
S(G), then the operator

Pu : S(G) ∋ f 7→ Pu f = u ∗ f ∈ S(G),

is a left multiplication map and is continuous. S(G) is a Frechet
(locally convex) algebra, multiplication in S(G) is seen to be
continuous (jointly).

Let E be a topological vector space and T its subspace. T is
said to be barrel if T is absorbing, balanced, closed and convex.
E is called a Montel space if it is locally convex, barrel and
every closed bounded subset of E is compact [21]. A ⊂ E is
called be pre-compact (or totally bounded) if a finite set M ⊂ E
exists such that A ⊂ M +U, where U is a zero neighborhood in
E. An operator T : E → E, which is linear, is said to be pre-
compact if T (V) is precompact, V being a zero neighborhood
of E. S(G) is an example of a Montel space and the operator,
Pu : S(G) ∋ f 7→ Pu f = u ∗ f ∈ S(G) is pre-compact. The next
result is required in the proof of theorem 3.3, our main result.
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3.1. Theorem

The Fourier transform of a function f ∈ S(G) satisfies the
following:

ǔ ∗ f ((0, 0), 1) =
∫

G
(ǔ ∗ f )̂(σ)dµG(g) =

∫
G

f̂ (σ)(ǔ)̂(σ)dµG(g).

Proof.

ǔ ∗ f ((0, 0), 1) =
∫

G
(ǔ ∗ f )̂(σ)dµG(g)

=

∫
G

∫
G

(ǔ ∗ f )(g)Uσ(g−1)dµG(g)dµG(g)

=

∫
G

∫
G

∫
G

ǔ(h) f (h−1g)Uσ(g−1)dµG(g)dµG(g)µG(g)

=

∫
G

∫
G

∫
G

u(h−1) f (h−1g)Uσ(g−1)dµG(g)dµG(g)µG(g).

Since G = S E(2) is unimodular, we have∫
G

f (hg)dG(g) =
∫

G
f (gh)dµG(g)

=

∫
G

f (g−1)dµG(g)

=

∫
G

f (g)dµG(g).

Since Uσ is a representation, it follows that Uσ(hg)−1 =

Uσ(g−1h−1) = Uσ(g−1)Uσ(h−1). Therefore,∫
G

∫
G

∫
G

u(h−1) f (h−1(hg))Uσ(g−1)dµG(g)dµG(g)dµG(g)

=

∫
G

∫
G

∫
G

u(h−1) f (g)Uσ(g−1)dµG(g)dµG(g)dµG(g)

=

∫
G

∫
G

∫
G

u(h−1) f (h−1(hg))Uσ(g−1)Uσ(h−1)dµG(g)dµG(g)dµG(g).

By Fubini’s theorem∫
G

∫
G

∫
G

u(h−1) f (h−1(hg))Uσ(g−1)Uσ(h−1)dµG(g)dµG(g)dµG(g)

=

∫
G

∫
G

f (g)Uσ(g−1)dµG(g)
( ∫

G
u(h−1)Uσ(h−1)dµG(h)

)
=

∫
G

f̂ (σ)(ǔ)̂(σ)dµG(g).

The next proposition is also required for the main result in the-
orem 3.3.

3.2. Proposition

Let f , u ∈ S(G), then

(ǔ ∗ f )̂(σ) = f̂ (σ)(ǔ)̂(σ).

Proof.

(ǔ ∗ f )̂(σ) =
∫

G
(ǔ ∗ f )(g)Uσ(g−1)dµG(g)

=

∫
G

∫
G

ǔ(h) f (h−1g)(g)Uσ(g−1)dµG(g)µG(g)

=

∫
G

∫
G

u(h−1) f (h−1g)(g)Uσ(g−1)dµG(g)µG(g).

Since S E(2) is unimodular,∫
G

f (hg)dG(g) =
∫

G
f (gh)dµG(g)

=

∫
G

f (g−1)dµG(g)

=

∫
G

f (g)dµG(g),

(ǔ ∗ f )̂(σ) =
∫

G

∫
G

u(h−1) f (h−1hg)(g)Uσ(g−1)dµG(g)dµG(g)

=

∫
G

∫
G

u(h−1) f (g)(g)Uσ(g−1)dµG(g)dµG(g).

Since Uσ is a representation, then Uσ(g−1) = Uσ((gh)−1) =
Uσ(h−1g−1) = Uσ(h−1)U(g−1), so that

(ǔ ∗ f )̂(σ) =
∫

G

∫
G

u(h−1) f (g)(g)Uσ(h−1)Uσ(g−1)dµG(g)dµG(g).

By Fubini’s theorem, we have

(ǔ ∗ f )̂(σ) =
∫

G
f (g)u(g−1)dµG(g)

∫
G

u(h−1)(g)Uσ(h−1)dµG(g)

= f̂ (σ)(ǔ)̂(σ).

The main result of this work is stated and presented in theorem
3.3.

3.3. Theorem

For every u ∈ U(g), one can find E ∈ D′(G) in such a way
that

u ∗ E = δG,

for δG being the Dirac measure of G defined at the origin (iden-
tity).

Proof. Let f ∈ S(G) and let E ∈ D′(G) be defined by

〈
E, f

〉
=

∫
G

∫
Rn

f̂ (σ)
(ǔ)̂(σ)

Ψ(Pξ, ξ)dξdµG(g), (1)

where Ψ(Pξ, ξ) is the Hormander’s function. Ψ(Pξ, ξ) is in-
finitely differentiable and has compact support, it is choosen to
be analytic [2, 26, 27] and Pξ is a polynomial of invariant dif-
ferential operators. Equation (1) is referred to as Hormander’s
construction. Now 〈

(̂u ∗ E, f
〉
=

〈
u ∗ E, f̂

〉
4
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=
〈
E, ǔ ∗ f̂

〉
.

Using the Hormander’s construction in equation (1) above, we
have

〈
E, ǔ ∗ f̂

〉
=

∫
G

∫
Rn

(ǔ ∗ f̂ )̂(σ)
(ǔ)̂(σ)

Ψ(Pξ, ξ)dξdµG(g)

=

∫
G

∫
Rn

( f̂ )̂(σ)(ǔ)̂(σ)
(ǔ)̂(σ)

Ψ(Pξ, ξ)dξdµG(g)

=

∫
G

∫
Rn

( f̂ )̂(σ)Ψ(Pξ, ξ)dξdµG(g)

=

∫
G

∫
Rn

( f̂ )̂(σ)Ψ(Pξ, ξ)dξdµG(g)

=

∫
G

∫
Rn
F ( f̂ )(σ)Ψ(Pξ, ξ)dξdµG(g)

= f̂ ((0, 0), 1) =
〈
δG, f̂

〉
=

〈
δ̂G, f

〉
,

δG being the measure of G at the identity. We, therefore, have

û ∗ E((x, y), θ) = δ̂G((x, y), θ),

and by invariance,

(u ∗ E)((0, 0), 1) = δG((0, 0), 1). (2)

4. Convolution operators on the euclidean motion group

Some convolution operators on the Euclidean motion group
are considered in this section. For G = S E(2) realised as R2 ⋊
T, the convolution operators are defined on the space C∞c (G)
and take values in the space C∞(G). Let H be a Hilbert space
and let G = S E(n) be generated by Rn ⋊ S O(n). A specified
operator for the subspace made up of equivalent classes of right
K-invariant functions of the H-valued Lp - space on G denoted
by Lp(G : K,H), 1 < p < ∞, and its adjoint A∗ are obtained.

The following proposition is needed in what follows.

4.1. Proposition [25]
In the event that f is a rapidly decreasing function on G,

then the Fourier transform of f is as follows

( f̂ (σ)F)(s) =
∫

K
K f (σ; s, r)F(r)dr, (3)

for any σ > 0 and F ∈ L2(K), K = S O(2) � T, r, s ∈ T, where

K f (σ; s, r) =
∫
R2

f (ξ, rs−1)e−i(ξ,rσ)dµ(ξ). (4)

Proof. If F and F′ belong to L2(K) and g = t(ξ)r, then g−1 =

r−1t(−ξ) = t(−r−1ξ)r−1 and

( f̂ (σ)F, F′) =
∫
R2

∫
K

f (ξ, r)(Uσt(−r−1ξ)r−1 F, F′)dµ(ξ)dr

=

∫
R2

∫
K

∫
K

f (ξ, r)e−i(sr−1ξ,sσ)F(rs)F′(s)dµ(ξ)drds

=

∫
R2

∫
K

∫
K

f (ξ, rs−1)e−i(sr−1ξ,sσ)F(r)F′(s)dµ(ξ)drds

=

∫
K

{ ∫
K

K f (σ; s, r)F(r)dr
}
F′(s)ds.

Given that F′ is arbitrary in L2(K), equation (3) holds for nearly
all s in K. This claim demonstrates f̂ (σ) is an integral operator
on L2(K) whose kernel K f is given by section 2.2 iff f ∈ S(G).

4.2. Corollary [25]
As a function of ξ ∈ R2, the ordinary Fourier transform of

f (ξ, r) is represented by f̃ (ζ, r):

f̃ (ζ, r) =
∫
R2

f (ξ, r)e−i(ξ,ζ)dµ(ξ).

Then the kernel K f (σ; s, r) is given by

K f (σ; s, r) = f̃ (rσ, rs−1).

It is necessary to review certain definitions, that may be
needed in this research, on locally convex spaces. Let E be
a vector space over the field of complex numbers. Let E be the
union of an increasing sequence of subspaces En, n = 1, 2, ...,
and let each En, have a Frechet space structure such that the
injection of En into En+1 is an isomorphism, i.e, the topology
induced by En+1 on En is is the same as the topology given on
En initially. Then, we can define the Hausdorff locally convex
space structure on E as follows. Assuming convexity, a sub-
set V of E is a neighbourhood of zero if and only if V ∩ En

is a neighbourhood of zero in the Frechet space En for each
n = 1,2,... We state that E is an LF-space or, equivalently, a
countable strict inductive limit of Frechet spaces when we give
it this topology. We may also state that the sequence of Frechet
spaces, {En}, is a sequence of definitions of E. If every balanced,
convex, bornivorous subset of a locally convex space is a neigh-
bourhood of zero, then the space is said to be bornological. The
spaceC C∞(G) is a metrizable, locally convex, complete space;
on the other hand, the space C∞c (G) is an LF-space. Both spaces
are bornological with respect to their respective topologies.

We can now present the main results of this section. For
the results presented in propositions 3.2 and 3.3 we take G =
S E(n) = Rn ⋊ S O(n) and K = S O(n). For a Hilbert space H
and for 1 ≤ p < ∞, we denote the subspace formed by equiva-
lent classes of right K-invariant functions of the H-valued Lp-
space on G by Lp(G : K,H).

This space is theH-valued Lp on X = G/K, lifted to G. We
are interested in integral operators of the form

Aφ(x) =
∫

X
S (x, y)φ(y)dy,

where S is the kernel

S : X × X → L(H1,H2).

Such that
S (gx, gy) = Uσ1 (g)S (x, y)Uσ2 (g−1),

for all g ∈ G, with some uniformly bounded representations
Uσ1 , Uσ2 of G on the Hilbert spacesH1,H2. By lifting all func-
tions to G we may define an operator A by

A f (g) =
∫

G
Uσ2 (h)k(h−1g)Uσ1 (h−1) f (h)dh, (5)

5
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where k(g) satisfies the identity

k(hgh′) = Uσ1 (h)k(g)Uσ2 (h−1), (6)

for all h, h′ ∈ K. If H1 = H2 = C and Uσ1 , Uσ2 are trivial
representations, then equation (6) only means that k is left and
right invariant (that is, bi-K-invariant) under K. Equation (5) is
called a twisted convolution of f and k denoted by f ∗1,2 k.

Proposition 4.3 shows Lp- boundedness of the operator A
while proposition 4.4 verifies its adjoint.

4.3. Proposition
Let Uσ1 , Uσ2 be representations of G on the Hilbert spaces

H1, H2 having uniform bounds M1, M2 respectively. Let k ∈
L1(G : K, L(H1,H2)) satisfying equation (6). Then for all 1 ≤
p ≤ ∞, A defined by equation (5) is a continuous linear map
Lp(G : K,H1) → Lp(G : K,H2) with bound not greater than
M1M2||k||1.

Proof. Let the operator A be fixed by

A f (g) =
∫

G
Uσ2 (h)k(h−1g)Uσ1 (h−1) f (h)dh.

Letting h = gl and h−1g = (gl)−1g = l−1g−1g = l−1, the operator
A becomes,

A f (g) =
∫

G
Uσ2 (gl)k(l−1)Uσ1 (gl)−1 f (gl)dl.

By applying the Minkowski inequality,

||A f ||p =
( ∫

G
|A f (g)|pdg

) 1
p

≤

∫
G

( ∫
G
|Uσ2 (gl)k(l−1)Uσ1 (gl)−1 f (gl)|pdg

) 1
p

dl

≤

∫
G

( ∫
G
|Uσ2 (gl)|pdg

) 1
p
( ∫

G
|k(l−1)|pdg

) 1
p
)( ∫

G
|Uσ1 (gl)−1|pdg

) 1
p
)

≤ M1M2

( ∫
G
|k(l−1)dg

)( ∫
G
| f (gl)|pdg

) 1
p

dl

≤ M1M2|k(l−1)|
( ∫

G
| f (g)|pdg

) 1
p

= M1M2||k||1|| f ||p.

We denote by ⟨, ⟩ the bilinear form concerning H and its
dual H ′. This may be a complex bilinear or a Hermitian form,
the result that follows hold in either case. The dual of Lp(G :
K,H) contains Lp′(G : K,H ′), here and hereafter, p′ is the dual
exponent of p, p′ = p

p−1 , and coincides with it ifH is reflexive.
We present the following result concerning the adjoint of A.

4.4. Proposition
Let A be as in proposition 3.2. Then, for any φ ∈ Lp′(G :

K,H ′2), the adjoint A∗ of A is given by

A∗φ(g) =
∫

G
Uσ1 (h)∗−1ǩ(h−1g)∗Uσ2 (h∗)φ(h)dh,

where
ǩ(l) = Uσ2 (l)k(l−1)Uσ1 (h)−1.

Proof. For every f ∈ Lp(G : K,H),

⟨ f , A∗φ⟩ = ⟨A f , φ⟩

=

∫
G

〈 ∫
G

Uσ2 (h)k(h−1g)Uσ1 (h)−1 f (h)dh, φ(g)
〉
dg

=

∫
G

〈
f (h),

∫
G

Uσ1 (h)∗−1k(h−1g)∗U2(h)∗φ(g)dg
〉
dh

=

∫
G

〈
f (h),

∫
G

Uσ1 (g)∗−1ǩ(g−1h)∗Uσ2 (g∗)φ(g)dg
〉
dh.

By Fubini’s theorem, the result follows thus

A∗φ(g) =
∫

G
Uσ1 (g)∗−1ǩ(g−1h)∗Uσ2 (g)∗φ(g)dg.

The extension of a convolution operator on G = S E(2) to a
bounded linear operator on L2(G) is presented in the next result.

4.5. Theorem
Let T = ∂

∂t . The operator

A′ : C∞c (G)→ C∞(G),

defined by B f = f ∗T nδ(t), extends to a bounded linear operator
on L2(G) and is unitary up to a constant multiple.

Proof. The space C∞c (G) is an LF- space and hence it is
bornological. The range space C∞(G) is metrizable. Any map
between a bornological space and a metrizable space is linear
and continuous, therefore A′ is linear and continuous. A con-
tinuous operator transfers bounded sets to bounded sets, that
means A′ is continuous and bounded. Following the inclusion
property, C∞c (G) ⊂ C∞(G) ⊂ Lp(G), it means that the range
of the map stays inside Lp(G). The induced topology acquired
by C∞c (G) from C∞(G) is weaker than the strict inductive limit
topology of C∞c (G), therefore, the map A′ is continuous.

For f ∈ C∞c (G), (A′ f )(g) = (T n f ∗δh)(g). Now, ( f ∗δh)(g) =
f (gh−1). Since R2 ⋊ T is abelian, we can write f (gh−1) =
f ((gh)h−1) = f (g). Then for t ∈ T and ξ ∈ R2,

(A′ f )(g) = T n f (g) = T n f (ξ, eit).

For a fixed ξ, (A′ f )(g) has a compact support in t ∈ T. Let Fc

denote the Fourier transform of function on T. Then

FT( f ) =
1

2π

∫ 2π

0
f (t)e−iλtdt, λ ∈ Z.

We compute Fc(A′ f ) as follows.

Fc(A′ f ) =
1

2π

∫ 2π

0
(A′ f )(g)e−iλtdt

=
1

2π

∫ 2π

0
T n f (ξ, eit)e−iλtdt

=
1

2π

∫ 2π

0

[
(i)n f (ξ, eit)e−iλt + (−iλ)n f (ξ, eit)e−iλt

]
dt

=
(
(i)n + (−iλ)n)

1
2π

∫ 2π

0
f (ξ, eit)e−iλtdt.

6
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Following proposition 2.1 and Corollary 2.2, Fc(A′ f ) can be
further expressed as

Fc(A′ f ) =
(
(i)n + (−iλ)n) ∫

R2
Fc(ξ, eiθ)dµ(ξ)

=

(
(i)n + (−iλ)n

)
F f (ξ, eiθ).

Let us define

S : L2(R2 ⋊ T)→ L2(R2 ⋊ T),

by (S F)(ξ, eiθ) =
(
(i)n + (−iλ)n

)
F(ξ, eiθ), then Fc(A′ f ) = SF f ,

for f ∈ C∞c (G). The inclusion relations C∞c (G) ⊂ C∞(G) ⊂
L2(G) holds, therefore, A′ f ∈ L2(G) and A′ f = F −1

c SF f ,
where F −1

c is the inverse of Fc : L2(G) → L2(G). This veri-
fies that A′ can be extended to a constant multiple of a unitary
operator on L2(G).

For the remainder of this section, we consider G = S E(2) =
R2 ⋊ T. Let T ∈ D′(G). The continuous linear map

LT : C∞c (G) ∋ f 7→ T ∗ f ∈ C∞(G)

is called a left convolution map. To every T ∈ D′(G) one can
associate a convolution map.

The following theorem characterizes the left convolution
map on the Euclidean motion group S E(2).

4.6. Theorem
Let T ∈ D′(G). The convolution map LT is a continuous

linear map from C∞c (G) into C∞(G) and it commutes with trans-
lations. Conversely, if L : C∞c (G) ∋ f 7→ T ∗ f ∈ C∞(G) is a
continuous linear map such that

L ◦ τa = τa ◦ L,

for every fixed a ∈ G, there is a unique T ∈ D′(G) such that

L( f ) = T ∗ f , ∀ f ∈ C∞c (G).

Proof. Let T ∈ D′(G) and let a be a fixed element in G, we
denote the left translation of a function f in G by τa. Then
τa f (g) = f (a−1g). Now, put g′ = b−1g for a fixed b ∈ G. Then

[T ∗ (τa f )](g′) =
〈
T, (τa f )(b−1g)

〉
=

〈
T, f (a−1b−1g)

〉
=

〈
T, f ((ba)−1g)

〉
=

(
T ∗ f

)(
(ba)−1g

)
= [τa(T ∗ f )](g′),

which verifies that the map(convolution) commutes with left
translations.

Conversely, suppose that L : C∞c (G) ∋ f 7→ T ∗ f ∈ C∞(G)
is a continuous linear map commuting with translations. The
map

C∞c (G) ∋ f 7→ (L f )((0, 0), 1) ∈ C∞(G)

defines a continuous linear functional on C∞c (G). Hence, there
is a unique T ∈ D′(G) such that

(L f )((0, 0), 1) = ⟨T, f̌ ⟩,

where f̌ (g) = f (g−1). We have also that

(L f )((0, 0), 1) = (T ∗ f )((0, 0), 1).

Since L commutes with left translation and for any g ∈ G, we
have

(L f )(g) = [τa(L f )] = [L(τa f )]((0, 0), 1)
= (T ∗ (τa f ))((0, 0), 1) = ⟨T, (τa f )(g)⟩

= ⟨T, f (a−1g)⟩ = (T ∗ τa f )(g),

and verifies that L is a convolution map. This completes the
proof.

5. Conclusion

In this work, the range of our convolution operator

Pu := f 7→ u ∗ f ,

has been established to be ξ′(G), i.e a distribution space with
compact support. Furthermore, two preliminary results con-
cerning convolution of function, distribution and Fourier trans-
form of functions on the SS E(2) were formulated and proved
as theorems 3.1 and proposition 3.2. Theorem 3.3, which is
the major result for section 3 was stated and proved. This re-
sult is the extension of the work of El-Hussein (see [1]) on the
Heisenberg group to the Euclidean motion group using Hor-
mander construction (see [3]). It is established in theorem 4.3
that the (convolution) operator

A′ : C∞c (G)→ C∞(G),

which is defined as A′ f = f ∗T nδ(t) extends to a bounded linear
operator on L2(G), for f ∈ C∞c (G). It is further demonstrated
that the left convolution operator LT denoted as LT f = T ∗ f
commutes with left translation, for T ∈ D′(G). Lastly, the ad-
joint of a specified operator for the subspace made up of equiv-
alent classes of right K-invariant functions of the H-valued Lp

- space on G denoted by Lp(G : K,H), 1 < p < ∞ is obtained
in proposition 4.4 and its Lp boundedness is demonstrated in
proposition 4.3.
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