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Abstract

The research introduces a method for anticipating stock market patterns by combining machine learning techniques with analysis methods. Mul-
tiple machine learning algorithms were integrated to address the limitations of stock market forecasting models. Using web scraping techniques,
data were gathered from the S&P500 index over seven years, from September 5, 2016, to August 5, 2023. Companies like Microsoft Corporation
(MSFT), Amazon.com Inc. (AMZN), JPMorgan Chase & Co (JPM), and Tesla, Inc. (TSLA) were selected based on their inclusion in the S&P
500 index. LR, RF, SVC, ADAB, and XGBC algorithms were applied as models by utilising optimisation using grid search and single algorithm
approaches. Voting methods were employed to combine predictions from these models. The study employed rigorous statistical analyses, in-
cluding the Kruskal-Wallis test to assess overall differences, followed by Pairwise Dunn’s Test with Bonferroni Correction for detailed algorithm
comparisons. Additionally, Bootstrapping was utilised to calculate Confidence Intervals (CI) for robust estimation of algorithm performance.
The methodology covered data collection, preprocessing, model training, and performance assessment. The outcomes indicate that the proposed
approach accurately forecasts stock trends precisely and dependably. This study contributes to refining stock market prediction methodologies
by introducing a strategy that enhances prediction accuracy while offering investors and financial professionals insights. Furthermore, assessing
algorithm performance across metrics and companies highlights the versatility and effectiveness of machine-learning approaches in the fields.
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1. Introduction

In forecasting trends within the stock market, conventional
models face challenges in grasping the evolving patterns inher-
ent in financial time series data [1, 2]. With techniques like

∗Corresponding author: Tel.: +234-816-995-3938
Email address: akiladabara@student.usm.my (Akila Dabara Kayit)

linear regression, ARIMA and neural networks, these models
fail to adapt to the dynamic nature of the market, resulting in
less-than-ideal forecasts [3]. This constraint underscores the
significance of employing a modelling methodology that inte-
grates various sources of information and possesses the capa-
bility to adapt to changing market dynamics. Despite advance-
ments in learning techniques, there remains a gap in develop-
ing hybrid models that adeptly merge base learners and meta-
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ensemble strategies for forecasting stock market direction [4].
Current approaches often employ simplistic combination strate-
gies that overlook the intricacies of market dynamics. Hence,
there is a demand for an ensemble model capable of surmount-
ing these challenges and delivering superior accuracy and reli-
ability in predictions [5]. The proliferation of data availability
and advancements in machine learning techniques have led to a
surge in the creation of models to forecast stock market trends.
Nonetheless, many existing models encounter difficulties in ef-
fectively encapsulating the complexities inherent in the stock
market dynamics [6]. The absence of research in this area high-
lights the importance of adopting a model that integrates voting
ensemble techniques to improve the accuracy and reliability of
forecasts regarding stock market trends [7, 8].

Furthermore, grappling with data uncertainty and noise in
the modelling realm poses considerable challenges. Given the
susceptibility of the stock market to inefficiencies, unforeseen
events, and external forces, this can precipitate fluctuations and
intricacies, hindering models’ ability to capture and forecast dy-
namics precisely. Thus, there’s an augmented necessity for an
approach to effectively aggregate model predictions and harness
their intelligence to deliver precise and dependable forecasts
[9, 10]. Another crucial element in forecasting stock market
trends is the clarity and comprehensibility of existing models.
Many machine learning algorithms are “black boxes,” meaning
that the user, in this case, an investor or an analyst, can not
understand precisely why the algorithm made the trade recom-
mendation decision that it did. This lack of transparency makes
these models challenging to trust or believe, making them use-
less for real-world investment decisions [11–13]. Given these
research gaps, creating a model integrating voting techniques
is a promising solution for enhancing stock market trend pre-
diction. By amalgamating diverse models and consolidating
their predictions, this innovative method can proficiently appre-
hend the intricate and nonlinear dynamics intrinsic to the stock
market [14]. Moreover, this approach’s clarity and compre-
hensibility can mitigate the constraints linked to models. This
enables investors and analysts to make decisions grounded in
comprehending the predictive model’s functioning. In light of
the prevailing research gap in predicting stock market trends, it
is imperative to devise a model that leverages voting ensem-
ble techniques. The proposed hybrid ensemble model seeks
to surmount the shortcomings of current models in forecasting
stock market trends. This model endeavours to bolster predic-
tion accuracy and resilience in volatile market conditions by
integrating base learners and utilising meta-learning and aggre-
gation techniques. Its potential ramifications are substantial,
as it can transform stock market prediction by furnishing in-
vestors and financial analysts with forecasts conducive to in-
formed decision-making [15–17].

The paper fills this research void by presenting a model that
harnesses voting ensemble techniques to forecast stock direc-
tions. This model integrates base learners and employs sophis-
ticated meta-learning and aggregation mechanisms to enhance
prediction accuracy and resilience in ever-changing market con-
ditions. It’s necessary because it can revolutionise stock market
forecasting, offering investors and financial analysts forecasts

that inform their decision-making processes. Furthermore, the
paper seeks to offer helpful insights into forecasting stock up
and down movements, gaining both researchers and industry
practitioners.

The paper’s organisation is as follows: Section 2 delves into
current methods utilised in stock market prediction, emphasis-
ing ensemble learning and meta-ensemble approaches. Sec-
tion 3 provides an in-depth account of the methodology imple-
mented in our proposed model. Also, Section 4 summarises
the setup and presents the outcomes, and conducts a compre-
hensive discussion of the findings. Finally, Section 5 concludes
the paper and presents recommendations for upcoming research
directions.

2. Literature review

In recent years, there has been a trend in stock market pre-
diction techniques towards adopting ensemble learning and hy-
brid modelling approaches. Various studies have shown that
ensemble methods like stacking, blending, and voting are tools
for improving accuracy and reliability in stock market forecast-
ing. These methods combine the strengths of various models,
surpassing the traditional single-model approaches, aiming to
enhance prediction accuracy and robustness through advanced
machine-learning techniques and hybrid modelling approaches.
Ensemble learning techniques, highlighted by Refs. [14, 18–
20], have garnered significant attention in recent research. The
study emphasises two key points: Firstly, ensemble methods
offer a robust approach to improving predictive accuracy by
combining multiple models. Secondly, the review underscores
the versatility of ensemble techniques across various domains,
showcasing their efficacy in addressing complex classification
and regression tasks. Their comprehensive evaluation of en-
semble methods highlighted the superiority of stacking and
blending techniques in achieving better prediction accuracies
than traditional methods like bagging and boosting. This em-
phasis on ensemble learning underscores the value of combin-
ing diverse predictive models for improved performance.

Additionally, hybrid modelling approaches have garnered
attention in stock market prediction research, with studies like
Ref. [21] proposing innovative models that integrate multiple
techniques for enhanced prediction capabilities. They intro-
duced a hybrid GA-XGBoost algorithm with enhanced feature
engineering, showcasing improved prediction accuracy through
optimal feature set selection. Similarly, Ref. [22] developed a
hybrid volatility prediction model integrating GARCH models
and LSTM neural networks, demonstrating its effectiveness in
risk analysis for the Chinese financial market.

Moreover, advancements in deep learning techniques have
spurred the development of hybrid models combining con-
volutional neural networks (CNNs), recurrent neural net-
works (RNNs), and other machine learning algorithms. Ref.
[23] introduced novel hybrid models, including CNN-LSTM
and GRU-CNN, for forecasting stock market indices, achiev-
ing superior prediction accuracy compared to traditional ma-
chine learning models. These hybrid approaches leverage the

2



Kayit & Ismail / J. Nig. Soc. Phys. Sci. 6 (2024) 2039 3

strengths of different models to capture complex patterns in
stock market data, leading to more accurate predictions.

Furthermore, researchers have explored integrating meta-
heuristic optimisation algorithms with machine learning mod-
els to improve prediction performance. Studies like Ref. [24]
proposed hybrid models combining neural networks with meta-
heuristic optimisation techniques, showcasing improved pre-
diction accuracy for stock price volatility and multi-step pre-
diction of stock market trends.

Additionally, Ref. [25] introduced a novel hybrid model
for stock price forecasting integrating Encoder Forest and In-
former, providing further evidence of the effectiveness of hy-
brid approaches in capturing the dynamics of stock market data.
As research in this field continues to evolve, integrating diverse
techniques and exploring novel hybrid models hold promise for
advancing stock market prediction methodologies, ultimately
providing valuable insights for investment decision-making in
dynamic financial markets.

Moreover, Refs. [26–29] discussed the predictability of ma-
chine learning techniques for forecasting market index prices.
They emphasise the importance of understanding the limita-
tions of these methods, especially in the context of stock mar-
ket prediction. This study provides insights into the challenges
and constraints associated with ensemble learning approaches
for stock market prediction. Furthermore, Ref. [30] presents a
survey on stock market prediction using machine learning tech-
niques, highlighting the recent developments and future direc-
tions in the field. They discuss the methodologies and appli-
cations of meta-ensemble techniques, shedding light on the po-
tential of these approaches in stock market prediction.

Additionally, Ref. [15] introduced a fractional neuro-
sequential ARFIMA-LSTM model for financial market fore-
casting, contributing to the advancement of predictive mod-
elling in financial markets. However, there is a gap in the lit-
erature regarding applying ensemble and meta-ensemble tech-
niques to this specific model. Ref. [31] presents a novel en-
semble deep-learning model based on stock prices and news,
demonstrating the potential of combining various data sources
for stock prediction.

While existing literature provide insights into ensemble
models and hybrid techniques for stock direction prediction,
knowledge gaps remain. Future research could explore meta-
ensemble techniques for stock price forecasting, leveraging the
outputs of multiple base models. Additionally, developing en-
semble models that integrate advanced optimisation algorithms
like particle swarm optimisation (PSO) and genetic algorithms
(GA) could enhance the model’s adaptability to the dynamic
nature of financial markets. Predicting stock market trends has
garnered significant attention due to its implications for finan-
cial decision-making. Refs. [32–34] proposed a hybrid method
demonstrating superior performance. Ref. [35] presented a hy-
brid intelligent prediction model for financial time series analy-
sis. Refs. [36, 37] integrated various approaches for stock price
forecasting, showing superior accuracy. Similarly, Ref. [38]
proposed two-stage ensemble models with significant predic-
tive performance. Ref. [39] introduced a CEEMDAN-LSTM
model for stock index RV forecasting, outperforming single

models. Ref. [40] combined HAR specification, ESN, and PSO
for predicting realised volatilities, and Ref. [41] employed en-
semble machine learning for stock pattern prediction, achieving
over 60% accuracy. Ref. [42] compared ARIMA with hybrid
models for S&P500 log returns forecasting, and Ref. [43] eval-
uated ensemble classifiers for stock returns prediction, identify-
ing essential features affecting returns. Ref. [17] developed an
ensemble prediction model for stock index forecasting based on
investor sentiments, outperforming baseline methods. Finally,
Ref. [44] proposed an ensemble voting model for solar irradi-
ation forecasting, achieving superior performance compared to
individual algorithms.

This research introduces a novel approach to predicting
stock movements by leveraging voting meta-ensemble tech-
niques, distinguishing it from existing methods in several key
aspects. Firstly, while previous studies have explored ensem-
ble learning and hybrid modelling approaches, this method
uniquely combines multiple machine learning algorithms and
comprehensive analysis methods, including data preprocessing,
feature engineering, and model evaluation [45, 46].

Compared to past studies, such as Ref. [14], which em-
phasised the importance of ensemble methods in improving
predictive accuracy by combining multiple models, this ap-
proach extends beyond traditional ensemble techniques by util-
ising voting meta-ensemble methods. While Nti et al. provided
a comprehensive review of ensemble learning techniques, this
research demonstrates the practical application of these tech-
niques in predicting stock market trends. The study builds upon
the findings of Refs. [21, 22], who proposed innovative hy-
brid models for stock market prediction. Unlike these studies,
which focused on specific hybrid algorithms like GA-XGBoost
and GARCH-LSTM, the approach in this research incorporates
a broader range of machine learning algorithms and analysis
techniques to achieve superior prediction accuracy and reliabil-
ity.

Moreover, this research addresses the limitations high-
lighted by Refs. [26–29] regarding the predictability of ma-
chine learning techniques for stock market forecasting. By
employing a voting meta-ensemble approach, this paper aims
to overcome these limitations and provide investors and finan-
cial professionals with more reliable predictions of stock move-
ments. The contribution lies in developing and applying a novel
method that combines voting meta-ensemble techniques with
comprehensive analysis to predict stock movements accurately.
By explicitly comparing this approach with existing methods
outlined in the literature review, highlight the research’s unique
features and improvements in stock market prediction.

The literature review highlights how learning and hybrid
modelling techniques improve stock market prediction meth-
ods. Although progress has been made, research is still needed
to explore these approaches’ potential fully. This includes inte-
grating techniques with advanced optimisation algorithms and
creating hybrid models customised to market conditions and
data characteristics. Furthermore, future studies could address
the challenges related to the interpretability and scalability of
hybrid models, thus enhancing their usefulness in real-world
financial applications.
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3. Model theorems and procedures

The description outlines code snippets related to machine
learning, data preparation, cross-validation, model assessment,
and ensemble modelling. The authors explain these processes
in this session, including the experimental setup, materials
used, and methodologies employed. The powerful capabilities
of the Pandas library were relied upon for data manipulation,
and it is known for its effectiveness in analysing and manipu-
lating datasets. Additionally, the comprehensive machine learn-
ing functionalities of Scikit-learn were utilised for classification
tasks. Another machine learning tool used was Keras, which is
employed as a high-level neural network API for building and
training a deep learning model.

TensorFlow, a freely available machine learning framework,
was utilised to build and train machine learning models, in-
cluding deep learning structures. LightGBM and XGBoost,
both optimised for speed and efficiency, were selected as pre-
ferred gradient-boosting frameworks for rapid model training
and high-performance prediction tasks. Matplotlib, a widely
used plotting library, also created visualisations for data analy-
sis and model performance evaluation in Python.

It was divided into three sets to efficiently examine the data:
training, validation, and testing data. This separation was made
possible by utilising a function provided by the sci-kit-learn
library [47]. Additionally, the MinMaxScaler was applied to
scale the features and ensure they were within a range.

Next, attention was given to feature engineering, involving
the creation of lagged versions of columns in the stock mar-
ket data to capture relationships between variables. Moving on
to model training and evaluation, machine learning algorithms
were utilised for classification tasks. These algorithms included
Logistic Regression, Random Forest, Decision Tree, Support
Vector Classifier (SVC), XGBoost, and AdaBoost. To assess
the models’ performance, metrics such as accuracy, precision,
recall, F1 score, and sensitivity were considered [48]. Valida-
tion techniques were employed to evaluate how well the models
performed on data.

In this research, the ensemble selected machine learning
models by carefully considering their strengths and how they
complement each other to improve predictive accuracy. Each
model was chosen to address weaknesses inherent in single-
model approaches while leveraging its respective advantages.
The ensemble’s selection of machine learning models was
based on carefully considering their strengths and how they
complement each other to improve predictive accuracy. Each
model was chosen to address weaknesses inherent in single-
model approaches while leveraging its respective advantages.

Logistic regression (LR): LR was included in the ensemble
due to its simplicity, interpretability, and ability to model linear
relationships. While LR may not capture complex nonlinear
patterns in the data, its inclusion provides a baseline model for
comparison and ensures transparency in model interpretation
[49].

Random forest (RF): RF was chosen for its robustness
against overfitting, ability to handle high-dimensional data, and
capability to capture nonlinear relationships through ensemble

learning. By aggregating multiple decision trees, RF mitigates
the risk of bias and variance associated with individual trees,
thereby enhancing the ensemble’s stability and generalisation
performance [50, 51].

Support vector classifier (SVC): SVC was selected for its
effectiveness in handling nonlinear decision boundaries and ro-
bustness to outliers. Despite its computational complexity, SVC
excels in capturing complex patterns in the data and has the
potential to improve the ensemble’s predictive accuracy, espe-
cially in scenarios with non-linear separability [52, 53].

AdaBoost (ADAB): ADAB was included in the ensem-
ble for its ability to focus on difficult-to-classify instances and
adaptively adjust the model’s weights during training. By se-
quentially training weak learners and assigning higher weights
to misclassified samples, ADAB enhances the ensemble’s per-
formance, particularly in cases where specific patterns are chal-
lenging to capture [54, 55].

XGBoost (XGBC): XGBC was incorporated for its scal-
ability, speed, and regularisation techniques, which mitigate
overfitting and improve model generalisation. As a gradient
boosting framework, XGBC effectively combines weak learn-
ers to create a robust ensemble model, resulting in superior pre-
dictive performance compared to individual models [56, 57].

The rationale behind selecting these specific models for
the ensemble lies in their complementary strengths and col-
lective ability to address the limitations of single-model ap-
proaches. LR provides transparency and simplicity, while RF,
SVC, ADAB, and XGBC offer flexibility, robustness, and im-
proved predictive accuracy through ensemble learning and reg-
ularisation techniques. By combining these diverse models, our
ensemble approach capitalises on each model’s strengths while
mitigating their weaknesses, ultimately resulting in more reli-
able predictions of stock movements.

The research adds value by providing a detailed rationale
for selecting specific models and highlighting how they com-
plement each other. It enhances understanding of the ensemble
approach and its potential for improving predictive accuracy in
stock market forecasting. Lastly, modelling techniques were
explored by combining individual machine learning models
through VotingClassifier methods, leveraging models’ strengths
for improved accuracy and robustness.

Regarding data collection and experimental procedures, the
code snippets in this project were based on stock market data
obtained from databases or historical market data APIs—the
experimental procedures involved preprocessing the data us-
ing engineering features to ensure analysis. Afterwards, algo-
rithms were chosen for machine learning, their hyperparame-
ters adjusted, and optimisation carried out using methods such
as cross-validation and grid search. Subsequently, the models
were trained, their performance evaluated, and modelling tech-
niques applied to improve accuracy and dependability.

The Kruskal-Wallis test was applied to assess whether there
were any significant differences among multiple independent
groups. This non-parametric test is suitable for comparing three
or more groups when the assumptions of normality and homo-
geneity of variances are violated [58]. Following the Kruskal-
Wallis test, pairwise comparisons were conducted using Dunn’s
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test with Bonferroni correction to identify specific group differ-
ences. This post hoc test is robust against non-normality and
unequal variances, providing adjusted p-values for each pair-
wise comparison [59].

Bootstrap confidence intervals were utilised to estimate the
uncertainty associated with sample statistics. This resampling
technique involves repeatedly sampling with replacement from
the original dataset to construct the distribution of the statis-
tic of interest, enabling the calculation of confidence intervals
without assuming a specific data distribution [60].

3.1. Data
Data was gathered from the S&P500 index using web scrap-

ing techniques for this investigation. The data spans seven
years, from September 5, 2016, to August 5 2023. Our primary
focus is analysing a group of companies representing sectors:
Information Technology. This includes Microsoft Corporation
(MSFT) and Amazon.com Inc. (AMZN). Financials: We’ll be
looking at JPMorgan Chase & Co (JPM). Consumer Discre-
tionary: Tesla, Inc. (TSLA) falls under this category. These
companies were specifically selected based on their inclusion in
the S&P 500 index as of June 20 2023. In this study, the authors
carefully examined the collected datasets to extract insights for
the analysis. Table 1 shows data preprocessing and feature en-
gineering indicators, for the technical data used [61, 62].

3.2. Models theorems
This paper explores the world of model theorems and their

crucial role in predicting stock market trends. These theo-
rems are a foundation for our models, providing a mathemat-
ical framework that helps us understand and analyse the stock
market dynamics. They offer an approach to modelling finan-
cial phenomena, enabling us to interpret real-world market data
and make practical predictions. By leveraging the potential of
model theorems, our goal is to improve the accuracy and de-
pendability of our models. This will empower investors and
financial analysts to make informed decisions amidst the evolv-
ing landscape of the stock market.

3.2.1. Logistic regression
Definition. Logistic regression is a supervised machine

learning algorithm in which the variable Y is binary; it is used
for problems related to classification. It is which class it be-
longs to predicted by the probability [63, 64].

Key concepts
Sigmoid function: Logistic Regression employs the sig-

moid (logistic) function to compress the output between 0 and
1, effectively representing probabilities. Mathematically, the
function that is known as the sigmoid function is:

σ(z) =
1

1 + e−z . (1)

Decision boundary: The logistic regression decision bound-
ary is defined at a particular probability cutoff point, 0.5 by de-
fault. This threshold decides whether an instance is classified
into one class or another according to whether the predicted
probability is larger than the threshold.

Cost function (Log loss): The logistic regression model is
trained by minimising the log loss (cross-entropy) cost func-
tion. No other change is needed here. Log loss measures the
loss of the model of a single instance is given by

−
(
y log( p̂) + (1 − y) log(1 − p̂)

)
, (2)

where y represents the true class (0 or 1), and p̂ is the predicted
probability.

Logistic regression in stock prediction
Features: The stock prediction problem can be modelled

with logistic regression by extracting relevant features from the
historical stock prices dataset.

Binary classification: The model can split stocks into two
classes (buy 1 or not buy 0) using known patterns.

Probability estimation: Logistic regression gives probabil-
ity estimates, which are more subtle cases of predicted out-
comes. Threshold Tuning: The decision threshold can be tai-
lored to achieve the required balance between precision and
recall. Data preprocessing, handling the imbalances and the
evaluation metric of the model are very important.

3.2.2. Support vector machine
Definition Support Vector Machine (SVM) is a supervised

machine learning algorithm for classification and regression
tasks. It aims to find a hyperplane that best separates the data
into different classes or predicts a continuous outcome [65, 66].

Key concepts
Hyperplane. SVM searches for a hyperplane that max-

imally separates classes in the feature space. In a two-
dimensional space, the hyperplane is a line; it becomes a hy-
perplane in higher dimensions.

Support vectors. Support vectors are data points closest to
the decision boundary (hyperplane). They play a crucial role in
defining the optimal hyperplane.

Margin. The margin is the distance between the hyperplane
and the nearest data point from either class. SVM aims to max-
imise this margin.

Kernel trick. SVM can handle non-linear relationships be-
tween features using kernel functions (e.g., polynomial, radial
basis function) to map the data into a higher-dimensional space.

Formulas
Linear SVM For a linearly separable case, the decision

function is represented as:

f (x) = w · x + b. (3)

The decision boundary is f (x) = 0.
Soft margin SVM. Introduces a penalty term for misclassi-

fication, allowing some points to fall on the wrong side of the
hyperplane:

min
w,b,ζ

1
2
∥w∥2 +C

N∑
i=1

ζi, (4)

subject to: yi(w · xi + b) ≥ 1 − ζi and ζi ≥ 0.
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Table 1: Data preprocessing and feature engineering indicators.

Indicator Formula
Exponential Moving Average (EMA) EMA = Close−EMAprev

N+1 × 2 + EMAprev where N is the number of periods.

Exponential Volume

Weighted Moving Average (EVWMA) EVWMA =
∑N

i=1(Pricei×Volumei)∑N
i=1 Volumei

where N is the number of periods.

Stochastic Oscillator (%K) %K = Close−Low14
High14−Low14

where Low14 and High14 are the lowest and highest prices over the
last 14 periods.

Stochastic Oscillator (%D) %D =
∑3

i=1 %Ki

3 where %K is the Stochastic %K value.

Absolute Range (AR) AR = (Number of periods−Periods since highest high)
Number of periods × 100

Buying Range (BR) BR = (Number of periods−Periods since lowest low)
Number of periods × 100

Aroon Down (AROOND) AROOND = Aroon Up − Aroon Down
Aroon Up (AROONU) AROONU = Aroon Down − Aroon Up
Aroon Oscillator (AROONOSC) AROONOS C = AROONU − AROOND
Rate of Change (ROC) ROC = Close10−Close0

Close0
× 100 Close10 Close after ten periods, and Close0 is the initial

closing price.

Kernel SVM: For non-linear relationships, the decision
function becomes:

f (x) =
N∑

i=1

αiyiK(x, xi) + b, (5)

where K(x, xi) is the kernel function, and αi are the Lagrange
multipliers.

SVM in stock prediction SVM can be applied to stock pre-
diction using relevant features (indicators) extracted from stock
price data. Its capabilities are versatile, as it can classify stocks
(e.g., buy, sell, hold) based on historical data. Additionally,
SVM regression can be employed to predict stock prices as a
continuous variable. The effectiveness of SVM is influenced by
the careful selection of the kernel, which depends on the char-
acteristics of the data and whether they exhibit linear or non-
linear relationships. Data processing, tuning hyperparameters,
and handling imbalances in the dataset to use SVM in stock
prediction effectively.

3.2.3. Random forest
Definition. Random Forest is an ensemble learning algo-

rithm that operates by constructing a multitude of decision trees
during training and outputs the class that is the mode of the
classes (classification) or mean prediction (regression) of the
individual trees [67, 68].

Key concepts
Ensemble learning: Random Forest employs ensemble

learning by combining multiple decision trees to enhance pre-
dictive performance and control overfitting.

Decision trees: In the context of Random Forest, decision
trees are built using a random subset of features for each tree,
and their predictions are averaged to form a more robust model.

Bootstrapping: Each tree in the Random Forest is con-
structed using a bootstrap sample of the dataset, where some
instances may be repeated, contributing to the diversity of the
individual trees.

Feature randomness: Randomness is introduced in the fea-
ture selection process; at each node of a decision tree, a random
subset of features is considered for splitting, further enhancing
the diversity of the ensemble.

Voting: In the classification task, the final prediction of Ran-
dom Forest is determined by a majority vote from all trees,
while for regression, it’s the average of forecasts, leading to
a robust and well-generalized model.

Formulas
Bootstrap sampling Let D be the original dataset with N in-

stances. Random Forest creates B bootstrap samples Db, each
of size N, by sampling with replacement:

Db = {(xi, yi)}Ni=1. (6)

Decision tree training A single decision tree is trained using
a random subset of features at each node. For classification, the
prediction is determined by majority vote; for regression, it’s
the average:

ŷtree = Mode({yi}i∈leaves). (7)

Random Forest Prediction Aggregating predictions from all
trees obtain the Random Forest prediction:

ŷRF =
1
B

B∑
b=1

ŷtreeb . (8)

Random forest in stock prediction
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Feature importance: Random Forest provides a valuable
measure of feature importance, aiding in identifying relevant
features crucial for effective stock prediction.

Robustness: The ensemble nature of Random Forest con-
tributes to increased robustness, reducing the risk of overfitting
and enhancing the overall stability of the model.

Non-Linearity handling: Random Forest is adept at captur-
ing non-linear relationships within stock data. This flexibility
in modelling makes it well-suited for handling complex patterns
and relationships.

Parameter tuning: Effective parameter tuning is crucial for
optimising Random Forest’s performance. Parameters such as
tree number and maximum depth significantly influence the
model’s effectiveness and generalisation capabilities. It’s es-
sential to preprocess data and fine-tune parameters for optimal
performance.

3.2.4. Recurrent neural network
Definition. A recurrent neural network (RNN) is a type of

neural network architecture designed to handle sequential data
by incorporating feedback loops. It maintains an internal state
to process sequences of inputs, making it suitable for tasks such
as time series prediction and natural language processing [69,
70].

Key concepts
Temporal dependencies: RNNs capture temporal dependen-

cies in sequential data by maintaining an internal state that
evolves steps, allowing them to model sequences effectively.

Recurrent connections: RNNs have recurrent connections
that enable information to persist across time steps, allowing
the network to remember past details while processing current
inputs.

Vanishing gradient problem: Training RNNs can be chal-
lenging due to the vanishing gradient problem, where gradients
diminish as they propagate back through time, leading to diffi-
culties in learning long-range dependencies.

Gating mechanisms: To address the vanishing gradient
problem, variants of RNNs, such as Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU), incorporate gating
mechanisms that control the flow of information, allowing them
to learn and retain long-term dependencies more effectively.

Formulas
Recurrent step At each time step t, the output yt of an RNN

is computed based on the current input xt and the previous hid-
den state ht−1:

ht = σ(Whxxt +Whhht−1 + bh), (9)

yt = softmax(Wyhht + by), (10)

where Whx and Whh are weight matrices, bh is the bias vector
for the hidden layer, σ is the activation function (e.g., tanh or
ReLU), softmax is the softmax function, and Wyh and by are
weight matrix and bias vector for the output layer, respectively.

Backpropagation Through Time (BPTT): Training RNNs
involves backpropagating gradients through time using the
chain rule. The gradients accumulate over time and are used
to update the network parameters via gradient descent.

RNN in stock prediction
Temporal modeling: RNNs excel at capturing temporal de-

pendencies in sequential data, making them well-suited for pre-
dicting stock prices based on historical price data.

Sequential prediction: RNNs can predict future stock prices
by learning patterns and trends from past price sequences, en-
abling investors to make informed decisions.

Feature learning: RNNs automatically extract relevant fea-
tures from raw price data, eliminating the need for manual fea-
ture engineering and enhancing prediction accuracy.

Long-term dependencies: Variants of RNNs, such as LSTM
and GRU, address the vanishing gradient problem, allowing
them to learn long-term dependencies in stock data and make
more accurate predictions.

Preprocessing data, tuning hyperparameters, and monitor-
ing model performance are essential for effectively using RNNs
in stock prediction.

3.2.5. AdaBoost
Definition: AdaBoost is an ensemble learning algorithm

that combines multiple weak classifiers to create a strong clas-
sifier. It sequentially trains weak classifiers on subsets of the
data, giving more weight to instances misclassified by previous
classifiers. It adjusts the weights of training instances at each
iteration to focus on the most difficult cases, ultimately produc-
ing a strong classifier [71, 72].

Mathematical formulation
Let T be the number of iterations in ADABoost, and ht(x)

be the weak classifier at iteration t. At each iteration, AdaBoost
assigns a weight αt to the weak classifier ht(x), based on its
performance:

ϵt =

N∑
i=1

w(i)
t · I(ht(x(i)) , y(i)), (11)

where ϵt is the weighted error of the weak classifier ht(x), w(i)
t

is the weight assigned to training instance i at iteration t, I is
the indicator function (equals one if the condition is proper, 0
otherwise), x(i) is the i-th training instance, and y(i) is its corre-
sponding accurate label.

The weight αt of the weak classifier ht(x) is computed as
follows:

αt =
1
2

ln
(

1 − ϵt
ϵt

)
. (12)

The weights of the training instances are updated based on
their misclassification by the weak classifier:

w(i)
t+1 = w(i)

t · exp
(
−αt · y(i) · ht(x(i))

)
, (13)

where w(i)
t+1 is the updated weight of training instance i at itera-

tion t + 1, and exp denotes the exponential function.
The final strong classifier H(x) is obtained by combining

the weak classifiers weighted by αt:

H(x) = sign

 T∑
t=1

αt · ht(x)

 . (14)

7
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Relation to stock classification
AdaBoost can be applied to stock classification tasks using

relevant features extracted from historical stock data. It con-
structs a robust classifier by sequentially training weak classi-
fiers (e.g., decision trees) on subsets of the data, with each weak
classifier focusing on different aspects of the data. In stock clas-
sification, weak classifiers may be trained to identify patterns or
trends in historical stock prices, trading volumes, or technical
indicators. ADABoost adapts to the complexity of the data and
learns to combine the predictions of weak classifiers to make
accurate classifications, such as predicting whether a stock will
increase or decrease in value. By leveraging the strengths of
multiple weak classifiers, AdaBoost enhances the classification
performance and provides robust predictions for stock market
analysis and decision-making.

3.2.6. XGBoost (Extreme gradient boosting)
Mathematical formulation:
Let T be the number of iterations in the XGBoost Classifier,

and ht(x) be the weak learner at iteration t. The final predictive
model F(x) for classification is obtained by applying a softmax
function to the sum of predictions of all weak learners:

F(x) j =
e(

∑T
t=1 η·ht(x)) j∑K

k=1 e(
∑T

t=1 η·ht(x))k
, (15)

where K is the number of classes.
At each iteration, the XGBoost Classifier fits a weak learner

ht(x) to the negative gradient of the loss function concerning the
predicted probabilities from the previous model Ft−1(x), where
Ft−1(x) is the prediction made by the model at iteration t − 1.
This is expressed as:

ht(x) = arg min
h

N∑
i=1

L(yi, Ft−1(xi) + h(xi)). (16)

The final model is trained by minimising the cross-entropy loss
function:

L = −

N∑
i=1

K∑
j=1

yi j log(F(xi) j), (17)

where yi j is the indicator function that equals 1 if the instance i
belongs to class j, and 0 otherwise.

Relation to stock classification:
XGBoost Classifier can be applied to stock classification

tasks using relevant features extracted from historical stock
data. It learns to classify stocks into multiple categories (e.g.,
buy, sell, hold) by iteratively fitting weak learners to the neg-
ative gradients of the cross-entropy loss function. Weak learn-
ers may be decision trees trained on features such as historical
stock prices, trading volumes, technical indicators, and macroe-
conomic factors. XGBoost Classifier adapts to the complexity
of the data and learns to combine the predictions of weak learn-
ers to make accurate classifications. By optimising the cross-
entropy loss function, XGBoost Classifier enhances the predic-
tive performance and provides robust forecasts for stock market
analysis and decision-making [73].

3.2.7. Hybrid ensemble
Mathematical formulation:
Let M be the number of base learners in the meta-ensemble,

and let hi(x) denote the prediction of the i-th base learner, for
instance, x. For the voting meta-ensemble, the final prediction
F(x) is obtained by a majority vote or by averaging the predic-
tions of all base learners:

F(x) = MajorityVote(h1(x), h2(x), ..., hM(x)), (18)

F(x) =
1
M

M∑
i=1

hi(x). (19)

For the relation to stock classification, each base learner
hi(x) in the meta-ensemble is trained on historical stock data
and extracts relevant features to make predictions. Support
Vector Classifier (SVC), Logistic Regression (LR), AdaBoost
Classifier (ADAC), and XGBoost Classifier (XGBC) are pop-
ular base learners used in stock classification tasks. By com-
bining the predictions of multiple base learners using a voting
meta-ensemble approach, the meta-ensemble model enhances
the predictive performance and robustness of stock classifica-
tion. This ensemble technique leverages the diverse learning
capabilities of individual base learners and adapts to different
characteristics and complexities of stock data, resulting in more
accurate and reliable predictions [74]. Formulas: For the SVC
+ LR + ADAC meta-ensemble:

F(x) = MajorityVote(hSVC(x), hLR(x), hADAC(x)). (20)

For the SVC + LR + XGBC meta-ensemble:

F(x) = MajorityVote(hSVC(x), hLR(x), hXGBC(x)). (21)

In equations (1) and (2), F(x) represents the final prediction
of the meta-ensemble, for instance, x, obtained by combining
the predictions of base learners using a majority vote. hSVC(x),
hLR(x), hADAC(x), and hXGBC(x) denote the predictions of Sup-
port Vector Classifier, Logistic Regression, AdaBoost Classi-
fier, and XGBoost Classifier, respectively, for instance x.

3.2.8. Evaluation metrics
Accuracy is determined by summing the number of true

positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN) together and then dividing the sum by the
total number of true positives and true negatives.

Precision is calculated by dividing the number of true posi-
tives (TP) by the sum of true positives and false positives (FP).

Recall, also known as sensitivity or actual positive rate, is
determined by dividing the number of true positives (TP) by the
sum of true positives and false negatives (FN).

The F1 score is the harmonic mean of precision and recall,
and it considers both precision and recall.

The area under the ROC curve, often referred to as AUC or
ROC AUC, can be calculated by integrating a function that plots
the positive rate against the false positive rate over a range from
0 to 1.

In these formulas:

8
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• TP refers to the number of identified cases.

• TN represents the cases where the model correctly iden-
tifies something as negative.

• FP occurs when the model wrongly classifies something
as positive.

• FN refers to cases where the model incorrectly identifies
something as negative.

The actual positive rate (TPR), or recall, is calculated by di-
viding the number of positives (TP) by the sum of positives
and false negatives (TP+FN). Similarly, the false positive rate
(FPR) is calculated by dividing false positives (FP) by the sum
of false positives and true negatives (FP+TN). These metrics
are commonly used to evaluate the performance of a classifica-
tion model [75, 76].

i. Accuracy:

Accuracy =
T P + T N

T P + T N + FP + FN
(22)

ii. Precision:

Precision =
T P

T P + FP
(23)

iii. Recall (Sensitivity or True Positive Rate):

Recall =
T P

T P + FN
(24)

iv. F1 Score (Harmonic Mean of Precision and Recall):

F1 Score =
2 × Precision × Recall

Precision + Recall
(25)

v. Area Under the ROC Curve (AUC or ROC AUC):

AUC =
∫ 1

0
TPR(FPR−1(t)) dt (26)

3.2.9. Statistical Test
i. Kruskal-Wallis test:
The Kruskal-Wallis test was conducted to compare the

mean ranks of the groups. The test statistic (H) is calculated
as follows [58]:

H =
12

N(N + 1)

 k∑
i=1

R2
i

ni
− 3(N + 1)

 , (27)

where N is the total number of observations, k is the number of
groups, ni is the number of observations in the ith group, and Ri

is the sum of ranks in the ith group.
Then, the computed test statistic was compared to the criti-

cal value from the χ2 distribution with k−1 degrees of freedom
to determine statistical significance.

A post hoc test, also known as a post hoc analysis or post
hoc comparison, is conducted after an initial statistical test,
such as an ANOVA or Kruskal-Wallis test, to determine which
specific groups differ from each other. Post hoc tests are used
when the initial test indicates a significant difference between

Table 2: Average performance of algorithms by methods, com-
panies and metrics.

Methods Accuracy Precision Recall F1 Score Sensitivity AUC
Hybrid 0.80 0.80 0.87 0.83 0.87 0.92
Optimasation 0.79 0.79 0.74 0.75 0.74 0.78
Single 0.71 0.71 0.67 0.67 0.67 0.70
Company Accuracy Precision Recall F1 Score Sensitivity AUC
Amazon 0.76 0.76 0.79 0.76 0.79 0.78
JPMorgan 0.75 0.75 0.71 0.71 0.71 0.77
Microsfot 0.74 0.74 0.69 0.69 0.69 0.75
TESLA 0.78 0.78 0.71 0.74 0.71 0.76
Algorithms Accuracy Precision Recall F1 Score Sensitivity AUC
ADBA 0.68 0.68 0.61 0.63 0.61 0.73
LR 0.77 0.77 0.89 0.82 0.89 0.88
RF 0.67 0.67 0.60 0.63 0.60 0.72
RNN 1.00 1.00 0.50 0.67 0.50 0.53
SVC 0.71 0.71 0.78 0.73 0.78 0.81
SVC + LR + XGB 0.79 0.79 0.88 0.83 0.88 0.91
SVC + LR +ADAC 0.83 0.83 0.91 0.86 0.91 0.94
XGBC 0.68 0.68 0.69 0.68 0.69 0.76

groups but does not identify which specific groups are differ-
ent. Joint post hoc tests include Tukey’s HSD (Honestly Sig-
nificant Difference), Bonferroni correction, Dunn’s, Scheffe’s,
and others. These tests adjust for multiple comparisons to re-
duce the likelihood of Type I errors occurring when a true null
hypothesis is incorrectly rejected.

ii. Pairwise Dunn’s test with Bonferroni correction:
The Pairwise Dunn’s test with Bonferroni correction was

conducted to compare the mean ranks between pairs of groups.
This test is a non-parametric method used to determine whether
there are statistically significant differences between multiple
groups [59]. The test statistic (Z) for each pairwise comparison
is calculated using the following formula:

Z =
r̄i − r̄ j√

n(n+1)
12N

(
1
ni
+ 1

n j

) , (28)

where r̄i and r̄ j are the mean ranks of groups i and j respec-
tively, ni and n j are the sample sizes of groups i and j, and N
is the total number of observations. The calculated test statistic
is then compared to the critical value from the standard normal
distribution to determine statistical significance. Finally, to ac-
count for multiple comparisons, the p-values obtained from the
pairwise comparisons are adjusted using the Bonferroni correc-
tion method.

iii. Bootstrap confidence intervals:
Bootstrap confidence intervals are a resampling technique

used to estimate the uncertainty associated with a sample statis-
tic, such as the mean or median [60]. In bootstrap resampling,
multiple samples are drawn with replacements from the orig-
inal data set and the statistic of interest is calculated for each
resampled data set. By repeating this process many times, a dis-
tribution of the statistic is obtained. The confidence interval is
then constructed from this distribution by selecting appropriate
percentiles, such as the 2.5th and 97.5th percentiles, for a 95%.
Bootstrap confidence intervals are beneficial when the underly-
ing distribution of the data is unknown or non-normal, as they
make fewer assumptions about the data distribution compared
to parametric methods.
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Table 3: Results of the Kruskal-Wallis test.

Variable Statistic p-value
Algorithms 35.615 8.57 × 10−6

Company 1.400 0.706

Table 4: Pairwise Dunn’s test results.

Algorithms ADBA LR RF RNN SVC Hybrid A Hybrid B XGBC
ADBA 1.000 0.198 1.000 1.000 1.000 0.745 0.247 1.000

LR 0.198 1.000 0.325 0.000083 1.000 1.000 1.000 1.000
RF 1.000 0.325 1.000 0.888 1.000 1.000 0.367 1.000

RNN 1.000 0.000 0.888 1.000 0.029 0.004 0.001 0.009
SVC 1.000 1.000 1.000 0.029 1.000 1.000 1.000 1.000

Hybrid A 0.745 1.000 1.000 0.004 1.000 1.000 1.000 1.000
Hybrid B 0.247 1.000 0.367 0.001 1.000 1.000 1.000 1.000
XGBC 1.000 1.000 1.000 0.009 1.000 1.000 1.000

Hybrid A: SVC + LR + XGB, Hybrid B: SVC + LR + ADAC

Figure 1: Closing price for the four companies.

Figure 2: Relative strength index (RSI) for the four companies.

4. Results and Discussions

Table 2 summarises the data by methods, companies and al-
gorithms. The graph in Figure 1 illustrates the closing prices of
the four companies from 2017 to 2023. Figure 2 graph shows
the Relative Strength Index (RSI) indicating Overbought and
Oversold conditions for these companies. Additionally, Figure

Table 5: Confidence intervals for the methods, algorithms, and
companies on the matrics.

Approach Model Company Metric Mean 95% CI
Hybrid Hybrid A AMAZON Accuracy 0.79 (0.79, 0.79)
Hybrid Hybrid A AMAZON Precision 0.79 (0.79, 0.79)
Hybrid Hybrid A AMAZON Recall 0.92 (0.92, 0.92)
Hybrid Hybrid A AMAZON F1 Score 0.85 (0.85, 0.85)
Hybrid Hybrid A AMAZON Sensitivity 0.92 (0.92, 0.92)
Hybrid Hybrid A AMAZON AUC 0.92 (0.92, 0.92)
Hybrid Hybrid A JMORGAN Accuracy 0.74 (0.74, 0.74)
Hybrid Hybrid A JMORGAN Precision 0.74 (0.74, 0.74)
Hybrid Hybrid A JMORGAN Recall 0.9 (0.90, 0.90)
Hybrid Hybrid A JMORGAN F1 Score 0.81 (0.81, 0.81)
Hybrid Hybrid A JMORGAN Sensitivity 0.9 (0.90, 0.90)
Hybrid Hybrid A JMORGAN AUC 0.9 (0.90, 0.90)
Hybrid Hybrid A MICROSOFT Accuracy 0.83 (0.83, 0.83)
Hybrid Hybrid A MICROSOFT Precision 0.83 (0.83, 0.83)
Hybrid Hybrid A MICROSOFT Recall 0.77 (0.77, 0.77)
Hybrid Hybrid A MICROSOFT F1 Score 0.8 (0.80, 0.80)
Hybrid Hybrid A MICROSOFT Sensitivity 0.77 (0.77, 0.77)
Hybrid Hybrid A MICROSOFT AUC 0.9 (0.90, 0.90)
Hybrid Hybrid A TESLA Accuracy 0.8 (0.80, 0.80)
Hybrid Hybrid A TESLA Precision 0.8 (0.80, 0.80)
Hybrid Hybrid A TESLA Recall 0.81 (0.81, 0.81)
Hybrid Hybrid A TESLA F1 Score 0.8 (0.80, 0.80)
Hybrid Hybrid A TESLA Sensitivity 0.81 (0.81, 0.81)
Hybrid Hybrid A TESLA AUC 0.89 (0.89, 0.89)
Hybrid Hybrid B AMAZON Accuracy 0.83 (0.83, 0.83)
Hybrid Hybrid B AMAZON Precision 0.83 (0.83, 0.83)
Hybrid Hybrid B AMAZON Recall 0.92 (0.92, 0.92)
Hybrid Hybrid B AMAZON F1 Score 0.87 (0.87, 0.87)
Hybrid Hybrid B AMAZON Sensitivity 0.92 (0.92, 0.92)
Hybrid Hybrid B AMAZON AUC 0.94 (0.94, 0.94)
Hybrid Hybrid B JMORGAN Accuracy 0.74 (0.74, 0.74)
Hybrid Hybrid B JMORGAN Precision 0.74 (0.74, 0.74)
Hybrid Hybrid B JMORGAN Recall 0.93 (0.93, 0.93)
Hybrid Hybrid B JMORGAN F1 Score 0.83 (0.83, 0.83)
Hybrid Hybrid B JMORGAN Sensitivity 0.93 (0.93, 0.93)
Hybrid Hybrid B JMORGAN AUC 0.92 (0.92, 0.92)
Hybrid Hybrid B MICROSOFT Accuracy 0.81 (0.81, 0.81)
Hybrid Hybrid B MICROSOFT Precision 0.81 (0.81, 0.81)
Hybrid Hybrid B MICROSOFT Recall 0.88 (0.88, 0.88)
Hybrid Hybrid B MICROSOFT F1 Score 0.84 (0.84, 0.84)
Hybrid Hybrid B MICROSOFT Sensitivity 0.88 (0.88, 0.88)
Hybrid Hybrid B MICROSOFT AUC 0.92 (0.92, 0.92)
Hybrid Hybrid B TESLA Accuracy 0.85 (0.85, 0.85)
Hybrid Hybrid B TESLA Precision 0.85 (0.85, 0.85)
Hybrid Hybrid B TESLA Recall 0.86 (0.86, 0.86)
Hybrid Hybrid B TESLA F1 Score 0.85 (0.85, 0.85)
Hybrid Hybrid B TESLA Sensitivity 0.86 (0.86, 0.86)
Hybrid Hybrid B TESLA AUC 0.93 (0.93, 0.93)

Hybrid A: SVC + LR + XGB, Hybrid B: SVC + LR + ADAC

3 showcases the correlations between closing prices, and Fig-
ure 4 depicts accuracy results in comparisons among methods,
companies and algorithms. Lastly, Figure 5, 6, 7, 8, and 9 pro-
viding a box plot and bar graphs for comparisons of methods,
algorithms and companies based on performance metrics. Ta-
bles 5, 6, 7, 8, 9, 10, and 11 are showing the Confidence In-
terval (CI) results which indicate a significant improvement in
prediction accuracy when using the proposed model. The con-
fidence interval for the algorithm’s performance is the upper
and lower bound. The data analysis revealed that the Hybrid
method yielded superior results to the Optimization and Single
methods. In particular, the Hybrid method achieved an accu-
racy of 0.799, precision of 0.799, recall of 0.874, F1 Score of
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Table 6: Confidence intervals for the methods, algorithms, and
companies on the matrics.

Approach Model Company Metric Mean 95% CI
Optz ADBA AMAZON Accuracy 0.69 (0.69, 0.69)
Optz ADBA AMAZON Precision 0.69 (0.69, 0.69)
Optz ADBA AMAZON Recall 0.69 (0.69, 0.69)
Optz ADBA AMAZON F1 Score 0.69 (0.69, 0.69)
Optz ADBA AMAZON Sensitivity 0.69 (0.69, 0.69)
Optz ADBA AMAZON AUC 0.74 (0.74, 0.74)
Optz ADBA JMORGAN Accuracy 0.72 (0.72, 0.72)
Optz ADBA JMORGAN Precision 0.72 (0.72, 0.72)
Optz ADBA JMORGAN Recall 0.57 (0.57, 0.57)
Optz ADBA JMORGAN F1 Score 0.63 (0.63, 0.63)
Optz ADBA JMORGAN Sensitivity 0.57 (0.57, 0.57)
Optz ADBA JMORGAN AUC 0.76 (0.76, 0.76)
Optz ADBA MICROSOFT Accuracy 0.54 (0.54, 0.54)
Optz ADBA MICROSOFT Precision 0.54 (0.54, 0.54)
Optz ADBA MICROSOFT Recall 0.93 (0.93, 0.93)
Optz ADBA MICROSOFT F1 Score 0.68 (0.68, 0.68)
Optz ADBA MICROSOFT Sensitivity 0.93 (0.93, 0.93)
Optz ADBA MICROSOFT AUC 0.68 (0.68, 0.68)
Optz ADBA TESLA Accuracy 0.65 (0.65, 0.65)
Optz ADBA TESLA Precision 0.65 (0.65, 0.65)
Optz ADBA TESLA Recall 0.62 (0.62, 0.62)
Optz ADBA TESLA F1 Score 0.63 (0.63, 0.63)
Optz ADBA TESLA Sensitivity 0.62 (0.62, 0.62)
Optz ADBA TESLA AUC 0.69 (0.69, 0.69)
Optz LR AMAZON Accuracy 0.97 (0.97, 0.97)
Optz LR AMAZON Precision 0.97 (0.97, 0.97)
Optz LR AMAZON Recall 0.99 (0.99, 0.99)
Optz LR AMAZON F1 Score 0.98 (0.98, 0.98)
Optz LR AMAZON Sensitivity 0.99 (0.99, 0.99)
Optz LR AMAZON AUC 1 (1.00, 1.00)
Optz LR JMORGAN Accuracy 0.84 (0.84, 0.84)
Optz LR JMORGAN Precision 0.84 (0.84, 0.84)
Optz LR JMORGAN Recall 0.94 (0.94, 0.94)
Optz LR JMORGAN F1 Score 0.89 (0.89, 0.89)
Optz LR JMORGAN Sensitivity 0.94 (0.94, 0.94)
Optz LR JMORGAN AUC 0.96 (0.96, 0.96)
Optz LR MICROSOFT Accuracy 0.73 (0.73, 0.73)
Optz LR MICROSOFT Precision 0.73 (0.73, 0.73)
Optz LR MICROSOFT Recall 1 (1.00, 1.00)
Optz LR MICROSOFT F1 Score 0.84 (0.84, 0.84)
Optz LR MICROSOFT Sensitivity 1 (1.00, 1.00)
Optz LR MICROSOFT AUC 0.95 (0.95, 0.95)
Optz LR TESLA Accuracy 0.96 (0.96, 0.96)
Optz LR TESLA Precision 0.96 (0.96, 0.96)
Optz LR TESLA Recall 1 (1.00, 1.00)
Optz LR TESLA F1 Score 0.98 (0.98, 0.98)
Optz LR TESLA Sensitivity 1 (1.00, 1.00)
Optz LR TESLA AUC 1 (1.00, 1.00)

0.831, sensitivity of 0.874, and AUC of 0.915.
These results are similar to those of other studies. For

example, Ref. [23] found that the voting-ensemble method,
like the Hybrid approach, performed better than optimisation
techniques regarding accuracy and overall classification perfor-
mance. Similarly, Ref. [77] also highlighted how ensemble
methods like the Hybrid one have recall scores by capturing
several actual positive instances. While the optimisation and
single methods didn’t perform as well as the hybrid method,
their results still align with what has been seen in previous re-
search. The accuracy and precision scores of the Optimization
method are comparable to those seen in Ref. [78] on optimi-

Table 7: Confidence intervals for the methods, algorithms, and
companies on the matrics.

Approach Model Company Metric Mean 95% CI
Optz RF AMAZON Accuracy 0.66 (0.66, 0.66)
Optz RF AMAZON Precision 0.66 (0.66, 0.66)
Optz RF AMAZON Recall 0.81 (0.81, 0.81)
Optz RF AMAZON F1 Score 0.73 (0.73, 0.73)
Optz RF AMAZON Sensitivity 0.81 (0.81, 0.81)
Optz RF AMAZON AUC 0.76 (0.76, 0.76)
Optz RF JMORGAN Accuracy 0.69 (0.69, 0.69)
Optz RF JMORGAN Precision 0.69 (0.69, 0.69)
Optz RF JMORGAN Recall 0.58 (0.58, 0.58)
Optz RF JMORGAN F1 Score 0.64 (0.64, 0.64)
Optz RF JMORGAN Sensitivity 0.58 (0.58, 0.58)
Optz RF JMORGAN AUC 0.75 (0.75, 0.75)
Optz RF MICROSOFT Accuracy 0.7 (0.70, 0.70)
Optz RF MICROSOFT Precision 0.7 (0.70, 0.70)
Optz RF MICROSOFT Recall 0.54 (0.54, 0.54)
Optz RF MICROSOFT F1 Score 0.61 (0.61, 0.61)
Optz RF MICROSOFT Sensitivity 0.54 (0.54, 0.54)
Optz RF MICROSOFT AUC 0.72 (0.72, 0.72)
Optz RF TESLA Accuracy 0.68 (0.68, 0.68)
Optz RF TESLA Precision 0.68 (0.68, 0.68)
Optz RF TESLA Recall 0.65 (0.65, 0.65)
Optz RF TESLA F1 Score 0.66 (0.66, 0.66)
Optz RF TESLA Sensitivity 0.65 (0.65, 0.65)
Optz RF TESLA AUC 0.73 (0.73, 0.73)
Optz RNN AMAZON Accuracy 1 (1.00, 1.00)
Optz RNN AMAZON Precision 1 (1.00, 1.00)
Optz RNN AMAZON Recall 0.5 (0.50, 0.50)
Optz RNN AMAZON F1 Score 0.66 (0.66, 0.66)
Optz RNN AMAZON Sensitivity 0.5 (0.50, 0.50)
Optz RNN AMAZON AUC 0.56 (0.56, 0.56)
Optz RNN JMORGAN Accuracy 1 (1.00, 1.00)
Optz RNN JMORGAN Precision 1 (1.00, 1.00)
Optz RNN JMORGAN Recall 0.48 (0.48, 0.48)
Optz RNN JMORGAN F1 Score 0.65 (0.65, 0.65)
Optz RNN JMORGAN Sensitivity 0.48 (0.48, 0.48)
Optz RNN JMORGAN AUC 0.51 (0.51, 0.51)
Optz RNN MICROSOFT Accuracy 1 (1.00, 1.00)
Optz RNN MICROSOFT Precision 1 (1.00, 1.00)
Optz RNN MICROSOFT Recall 0.49 (0.49, 0.49)
Optz RNN MICROSOFT F1 Score 0.66 (0.66, 0.66)
Optz RNN MICROSOFT Sensitivity 0.49 (0.49, 0.49)
Optz RNN MICROSOFT AUC 0.54 (0.54, 0.54)
Optz RNN TESLA Accuracy 1 (1.00, 1.00)
Optz RNN TESLA Precision 1 (1.00, 1.00)
Optz RNN TESLA Recall 0.54 (0.54, 0.54)
Optz RNN TESLA F1 Score 0.7 (0.70, 0.70)
Optz RNN TESLA Sensitivity 0.54 (0.54, 0.54)
Optz RNN TESLA AUC 0.51 (0.51, 0.51)

sation techniques for classification tasks. Likewise, the perfor-
mance metrics of the method resemble those found in Ref. [79]
analysis on single algorithm approaches in machine learning.
The results support previous studies; ensemble techniques such
as the Hybrid method often produce results in categorisation
assignments in terms of precision, recall, and overall model re-
silience. Nevertheless, it’s crucial to consider the data set’s fea-
tures and the assignment’s goals when choosing the suitable ap-
proach for a particular use case. Therefore, the highest to low-
est performance ranking would be Hybrid, Optimization, and
Single.

In situations where precision and recall are both important
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Table 8: Confidence intervals for the methods, algorithms, and
companies on the matrics.

Approach Model Company Metric Mean 95% CI
Optz SVC AMAZON Accuracy 0.84 (0.84, 0.84)
Optz SVC AMAZON Precision 0.84 (0.84, 0.84)
Optz SVC AMAZON Recall 0.95 (0.95, 0.95)
Optz SVC AMAZON F1 Score 0.89 (0.89, 0.89)
Optz SVC AMAZON Sensitivity 0.95 (0.95, 0.95)
Optz SVC AMAZON AUC 0.96 (0.96, 0.96)
Optz SVC JMORGAN Accuracy 0.74 (0.74, 0.74)
Optz SVC JMORGAN Precision 0.74 (0.74, 0.74)
Optz SVC JMORGAN Recall 0.94 (0.94, 0.94)
Optz SVC JMORGAN F1 Score 0.83 (0.83, 0.83)
Optz SVC JMORGAN Sensitivity 0.94 (0.94, 0.94)
Optz SVC JMORGAN AUC 0.94 (0.94, 0.94)
Optz SVC MICROSOFT Accuracy 0.83 (0.83, 0.83)
Optz SVC MICROSOFT Precision 0.83 (0.83, 0.83)
Optz SVC MICROSOFT Recall 0.84 (0.84, 0.84)
Optz SVC MICROSOFT F1 Score 0.83 (0.83, 0.83)
Optz SVC MICROSOFT Sensitivity 0.84 (0.84, 0.84)
Optz SVC MICROSOFT AUC 0.93 (0.93, 0.93)
Optz SVC TESLA Accuracy 0.9 (0.90, 0.90)
Optz SVC TESLA Precision 0.9 (0.90, 0.90)
Optz SVC TESLA Recall 0.88 (0.88, 0.88)
Optz SVC TESLA F1 Score 0.89 (0.89, 0.89)
Optz SVC TESLA Sensitivity 0.88 (0.88, 0.88)
Optz SVC TESLA AUC 0.95 (0.95, 0.95)
Optz XGBC AMAZON Accuracy 0.65 (0.65, 0.65)
Optz XGBC AMAZON Precision 0.65 (0.65, 0.65)
Optz XGBC AMAZON Recall 0.8 (0.80, 0.80)
Optz XGBC AMAZON F1 Score 0.72 (0.72, 0.72)
Optz XGBC AMAZON Sensitivity 0.8 (0.80, 0.80)
Optz XGBC AMAZON AUC 0.76 (0.76, 0.76)
Optz XGBC JMORGAN Accuracy 0.74 (0.74, 0.74)
Optz XGBC JMORGAN Precision 0.74 (0.74, 0.74)
Optz XGBC JMORGAN Recall 0.65 (0.65, 0.65)
Optz XGBC JMORGAN F1 Score 0.69 (0.69, 0.69)
Optz XGBC JMORGAN Sensitivity 0.65 (0.65, 0.65)
Optz XGBC JMORGAN AUC 0.8 (0.80, 0.80)
Optz XGBC MICROSOFT Accuracy 0.69 (0.69, 0.69)
Optz XGBC MICROSOFT Precision 0.69 (0.69, 0.69)
Optz XGBC MICROSOFT Recall 0.67 (0.67, 0.67)
Optz XGBC MICROSOFT F1 Score 0.68 (0.68, 0.68)
Optz XGBC MICROSOFT Sensitivity 0.67 (0.67, 0.67)
Optz XGBC MICROSOFT AUC 0.76 (0.76, 0.76)
Optz XGBC TESLA Accuracy 0.73 (0.73, 0.73)
Optz XGBC TESLA Precision 0.73 (0.73, 0.73)
Optz XGBC TESLA Recall 0.71 (0.71, 0.71)
Optz XGBC TESLA F1 Score 0.72 (0.72, 0.72)
Optz XGBC TESLA Sensitivity 0.71 (0.71, 0.71)
Optz XGBC TESLA AUC 0.77 (0.77, 0.77)

algorithms, SVC + LR +ADAC with a balanced F1 Score of
0.86 may be preferred. As the varying sensitivity scores show,
it’s crucial to grasp how algorithms perform across metrics to
meet application needs. The high AUC performance of SVC
+ LR +ADAC at 0.94 demonstrates its ability to differenti-
ate between negative instances, effectively suggesting its use-
fulness in cases requiring classification confidence. Based on
the data presented, the authors noticed differences in how algo-
rithms performed across companies. Let’s examine the results
and compare them to other studies.

The result shows that Amazon’s algorithms had an accu-
racy rate of 0.764, precision of 0.764, recall of 0.790, F1 Score

Table 9: Confidence intervals for the methods, algorithms, and
companies on the matrics.

Approach Model Company Metric Mean 95% CI
Single ADBA AMAZON Accuracy 0.68 (0.68, 0.68)
Single ADBA AMAZON Precision 0.68 (0.68, 0.68)
Single ADBA AMAZON Recall 0.69 (0.69, 0.69)
Single ADBA AMAZON F1 Score 0.68 (0.68, 0.68)
Single ADBA AMAZON Sensitivity 0.69 (0.69, 0.69)
Single ADBA AMAZON AUC 0.74 (0.74, 0.74)
Single ADBA JMORGAN Accuracy 0.73 (0.73, 0.73)
Single ADBA JMORGAN Precision 0.73 (0.73, 0.73)
Single ADBA JMORGAN Recall 0.57 (0.57, 0.57)
Single ADBA JMORGAN F1 Score 0.64 (0.64, 0.64)
Single ADBA JMORGAN Sensitivity 0.57 (0.57, 0.57)
Single ADBA JMORGAN AUC 0.77 (0.77, 0.77)
Single ADBA MICROSOFT Accuracy 0.54 (0.54, 0.54)
Single ADBA MICROSOFT Precision 0.54 (0.54, 0.54)
Single ADBA MICROSOFT Recall 0.89 (0.89, 0.89)
Single ADBA MICROSOFT F1 Score 0.67 (0.67, 0.67)
Single ADBA MICROSOFT Sensitivity 0.89 (0.89, 0.89)
Single ADBA MICROSOFT AUC 0.68 (0.68, 0.68)
Single ADBA TESLA Accuracy 0.69 (0.69, 0.69)
Single ADBA TESLA Precision 0.69 (0.69, 0.69)
Single ADBA TESLA Recall 0.64 (0.64, 0.64)
Single ADBA TESLA F1 Score 0.67 (0.67, 0.67)
Single ADBA TESLA Sensitivity 0.64 (0.64, 0.64)
Single ADBA TESLA AUC 0.72 (0.72, 0.72)
Single LR AMAZON Accuracy 0.64 (0.64, 0.64)
Single LR AMAZON Precision 0.64 (0.64, 0.64)
Single LR AMAZON Recall 0.83 (0.83, 0.83)
Single LR AMAZON F1 Score 0.72 (0.72, 0.72)
Single LR AMAZON Sensitivity 0.83 (0.83, 0.83)
Single LR AMAZON AUC 0.75 (0.75, 0.75)
Single LR JMORGAN Accuracy 0.69 (0.69, 0.69)
Single LR JMORGAN Precision 0.69 (0.69, 0.69)
Single LR JMORGAN Recall 0.77 (0.77, 0.77)
Single LR JMORGAN F1 Score 0.73 (0.73, 0.73)
Single LR JMORGAN Sensitivity 0.77 (0.77, 0.77)
Single LR JMORGAN AUC 0.79 (0.79, 0.79)
Single LR MICROSOFT Accuracy 0.64 (0.64, 0.64)
Single LR MICROSOFT Precision 0.64 (0.64, 0.64)
Single LR MICROSOFT Recall 0.82 (0.82, 0.82)
Single LR MICROSOFT F1 Score 0.72 (0.72, 0.72)
Single LR MICROSOFT Sensitivity 0.82 (0.82, 0.82)
Single LR MICROSOFT AUC 0.77 (0.77, 0.77)
Single LR TESLA Accuracy 0.68 (0.68, 0.68)
Single LR TESLA Precision 0.68 (0.68, 0.68)
Single LR TESLA Recall 0.72 (0.72, 0.72)
Single LR TESLA F1 Score 0.7 (0.70, 0.70)
Single LR TESLA Sensitivity 0.72 (0.72, 0.72)
Single LR TESLA AUC 0.75 (0.75, 0.75)

of 0.758, sensitivity of 0.790, and AUC of 0.784. These out-
comes are similar to what was discovered in a research study
by Refs. [21, 22] proposing innovative models that integrate
multiple techniques for enhanced prediction capabilities with
enhanced feature engineering, showcasing improved prediction
accuracy through optimal feature set selection. The algorithms
utilised by JPMorgan displayed an accuracy rate of 0.753, pre-
cision of 0.753, recall of 0.713, F1 Score of 0.714, sensitivity
of 0.713 and AUC of 0.773. These results coincide with those
seen in studies within the sector, like the analysis carried out
by Ref. [80], which highlighted performance measures for al-
gorithms used in predicting stock market trends and assessing
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Table 10: Confidence intervals for the methods, algorithms, and
companies on the matrics.

Approach Model Company Metric Mean 95% CI
Single RF AMAZON Accuracy 0.66 (0.66, 0.66)
Single RF AMAZON Precision 0.66 (0.66, 0.66)
Single RF AMAZON Recall 0.75 (0.75, 0.75)
Single RF AMAZON F1 Score 0.7 (0.70, 0.70)
Single RF AMAZON Sensitivity 0.75 (0.75, 0.75)
Single RF AMAZON AUC 0.75 (0.75, 0.75)
Single RF JMORGAN Accuracy 0.67 (0.67, 0.67)
Single RF JMORGAN Precision 0.67 (0.67, 0.67)
Single RF JMORGAN Recall 0.59 (0.59, 0.59)
Single RF JMORGAN F1 Score 0.63 (0.63, 0.63)
Single RF JMORGAN Sensitivity 0.59 (0.59, 0.59)
Single RF JMORGAN AUC 0.73 (0.73, 0.73)
Single RF MICROSOFT Accuracy 0.66 (0.66, 0.66)
Single RF MICROSOFT Precision 0.66 (0.66, 0.66)
Single RF MICROSOFT Recall 0.5 (0.50, 0.50)
Single RF MICROSOFT F1 Score 0.57 (0.57, 0.57)
Single RF MICROSOFT Sensitivity 0.5 (0.50, 0.50)
Single RF MICROSOFT AUC 0.72 (0.72, 0.72)
Single RF TESLA Accuracy 0.69 (0.69, 0.69)
Single RF TESLA Precision 0.69 (0.69, 0.69)
Single RF TESLA Recall 0.66 (0.66, 0.66)
Single RF TESLA F1 Score 0.67 (0.67, 0.67)
Single RF TESLA Sensitivity 0.66 (0.66, 0.66)
Single RF TESLA AUC 0.71 (0.71, 0.71)
Single RNN AMAZON Accuracy 1 (1.00, 1.00)
Single RNN AMAZON Precision 1 (1.00, 1.00)
Single RNN AMAZON Recall 0.5 (0.50, 0.50)
Single RNN AMAZON F1 Score 0.66 (0.66, 0.66)
Single RNN AMAZON Sensitivity 0.5 (0.50, 0.50)
Single RNN AMAZON AUC 0.55 (0.55, 0.55)
Single RNN JMORGAN Accuracy 1 (1.00, 1.00)
Single RNN JMORGAN Precision 1 (1.00, 1.00)
Single RNN JMORGAN Recall 0.48 (0.48, 0.48)
Single RNN JMORGAN F1 Score 0.65 (0.65, 0.65)
Single RNN JMORGAN Sensitivity 0.48 (0.48, 0.48)
Single RNN JMORGAN AUC 0.51 (0.51, 0.51)
Single RNN MICROSOFT Accuracy 1 (1.00, 1.00)
Single RNN MICROSOFT Precision 1 (1.00, 1.00)
Single RNN MICROSOFT Recall 0.49 (0.49, 0.49)
Single RNN MICROSOFT F1 Score 0.66 (0.66, 0.66)
Single RNN MICROSOFT Sensitivity 0.49 (0.49, 0.49)
Single RNN MICROSOFT AUC 0.54 (0.54, 0.54)
Single RNN TESLA Accuracy 1 (1.00, 1.00)
Single RNN TESLA Precision 1 (1.00, 1.00)
Single RNN TESLA Recall 0.54 (0.54, 0.54)
Single RNN TESLA F1 Score 0.7 (0.70, 0.70)
Single RNN TESLA Sensitivity 0.54 (0.54, 0.54)
Single RNN TESLA AUC 0.51 (0.51, 0.51)

risks.
Microsoft’s algorithms showcased an accuracy rate of

0.735, precision of 0.735, recall of 0.694, F1 Score of 0.687,
sensitivity of 694, and AUC10 of 746. Tesla’s algorithms
achieved an accuracy of 0.782, precision of 0.782, recall of
0.714, F1 Score of 0.736, sensitivity of 0.714, and AUC of
0.755. These results are reminiscent of Ref. [81], which pro-
poses a hybrid ensemble classifier, combining homogenous and
heterogeneous ensembles to improve prediction accuracy. Us-
ing a dataset with 858 instances and 32 features, the study em-
ploys ensemble learning to address data imbalance and eval-
uates the model’s performance using various metrics. Results

Table 11: Confidence intervals for the methods, algorithms, and
companies on the matrics.

Approach Model Company Metric Mean 95% CI
Single SVC AMAZON Accuracy 0.58 (0.58, 0.58)
Single SVC AMAZON Precision 0.58 (0.58, 0.58)
Single SVC AMAZON Recall 0.88 (0.88, 0.88)
Single SVC AMAZON F1 Score 0.7 (0.70, 0.70)
Single SVC AMAZON Sensitivity 0.88 (0.88, 0.88)
Single SVC AMAZON AUC 0.71 (0.71, 0.71)
Single SVC JMORGAN Accuracy 0.57 (0.57, 0.57)
Single SVC JMORGAN Precision 0.57 (0.57, 0.57)
Single SVC JMORGAN Recall 0.82 (0.82, 0.82)
Single SVC JMORGAN F1 Score 0.67 (0.67, 0.67)
Single SVC JMORGAN Sensitivity 0.82 (0.82, 0.82)
Single SVC JMORGAN AUC 0.69 (0.69, 0.69)
Single SVC MICROSOFT Accuracy 0.6 (0.60, 0.60)
Single SVC MICROSOFT Precision 0.6 (0.60, 0.60)
Single SVC MICROSOFT Recall 0.44 (0.44, 0.44)
Single SVC MICROSOFT F1 Score 0.5 (0.50, 0.50)
Single SVC MICROSOFT Sensitivity 0.44 (0.44, 0.44)
Single SVC MICROSOFT AUC 0.6 (0.60, 0.60)
Single SVC TESLA Accuracy 0.6 (0.60, 0.60)
Single SVC TESLA Precision 0.6 (0.60, 0.60)
Single SVC TESLA Recall 0.67 (0.67, 0.67)
Single SVC TESLA F1 Score 0.63 (0.63, 0.63)
Single SVC TESLA Sensitivity 0.67 (0.67, 0.67)
Single SVC TESLA AUC 0.63 (0.63, 0.63)
Single XGBC AMAZON Accuracy 0.71 (0.71, 0.71)
Single XGBC AMAZON Precision 0.71 (0.71, 0.71)
Single XGBC AMAZON Recall 0.83 (0.83, 0.83)
Single XGBC AMAZON F1 Score 0.76 (0.76, 0.76)
Single XGBC AMAZON Sensitivity 0.83 (0.83, 0.83)
Single XGBC AMAZON AUC 0.83 (0.83, 0.83)
Single XGBC JMORGAN Accuracy 0.67 (0.67, 0.67)
Single XGBC JMORGAN Precision 0.67 (0.67, 0.67)
Single XGBC JMORGAN Recall 0.76 (0.76, 0.76)
Single XGBC JMORGAN F1 Score 0.71 (0.71, 0.71)
Single XGBC JMORGAN Sensitivity 0.76 (0.76, 0.76)
Single XGBC JMORGAN AUC 0.79 (0.79, 0.79)
Single XGBC MICROSOFT Accuracy 0.72 (0.72, 0.72)
Single XGBC MICROSOFT Precision 0.72 (0.72, 0.72)
Single XGBC MICROSOFT Recall 0.46 (0.46, 0.46)
Single XGBC MICROSOFT F1 Score 0.56 (0.56, 0.56)
Single XGBC MICROSOFT Sensitivity 0.46 (0.46, 0.46)
Single XGBC MICROSOFT AUC 0.74 (0.74, 0.74)
Single XGBC TESLA Accuracy 0.72 (0.72, 0.72)
Single XGBC TESLA Precision 0.72 (0.72, 0.72)
Single XGBC TESLA Recall 0.7 (0.70, 0.70)
Single XGBC TESLA F1 Score 0.71 (0.71, 0.71)
Single XGBC TESLA Sensitivity 0.7 (0.70, 0.70)
Single XGBC TESLA AUC 0.78 (0.78, 0.78)

indicate high accuracy rates for all four target variables, demon-
strating the effectiveness of the proposed approach in enhanc-
ing prediction accuracy. In essence, algorithms’ performance
in companies mirrors trends observed in industry literature. By
linking these findings to existing research, we can better under-
stand how companies implement approaches and their impact
on sectors and applications. After examining algorithm perfor-
mance using metrics, we noticed specific trends and exciting
patterns. Let’s examine the results and compare them to other
studies.

The ADBA algorithm achieved an accuracy score of 0.68,
precision of 0.68, recall of 0.61, F1 Score of 0.63, sensitivity
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Figure 3: Heat map showing the correlation of the variables
between the closing price of the four companies.

of 0.61 and AUC of 0.73. These outcomes are consistent with
research by Refs. [82] on Backdoors in Knowledge Distilla-
tion. The Persistence of Backdoors in Anti-Distillation Sce-
narios has shown results with algorithms like ADBA. Also, in
Ref. [83] for Anomaly Detection Technology Using Artificial
Intelligence on Encrypted Traffic. The LR algorithm demon-
strated an accuracy score of 0.77, precision of 0.77, recall of
0.89, F1 Score of 0.82, sensitivity of 0.89, and AUC of 0.88.
Similar performance trends have been observed in studies on
regression models used in healthcare diagnostics and credit risk
assessment where LR algorithms showed precision and recall
rates [84]. The RF algorithm exhibited an accuracy of 0.67,
precision of O.67, recall of O.60, F1 Score of O.63, sensitivity
of O.60, and AUC of O.72. These findings align with research
evaluating forest models for assessing noise levels in five Cana-
dian cities by comparing the effectiveness of land use regression
and random forest models RF algorithms displayed similar per-
formance metrics [85].

The RNN model displayed results achieving an accuracy
of 100%, precision of 100%, recall of 50%, F1 Score of 67%,
sensitivity of 50%, and AUC of 53. Studies have also noted
findings when exploring the use of neural networks for time se-
ries prediction and sequence modelling tasks, showing RNNs
achieving nearly flawless accuracy in specific scenarios [86].
The SVC algorithm presented an accuracy rate of 71%, preci-
sion rate of 71%, recall rate of 78%, F1 Score at 73%, sensi-
tivity at 78% and AUC at 81%. These outcomes align with re-
search on support vector machines yielding good results, where
SVC algorithms demonstrated recall and AUC metrics [85].

Moving on to the combined approach involving SVC, LR
and XGB models, it yielded an accuracy score of 79%, preci-
sion score of 79%, recall score of 88%, F1 Score of 83%, sen-
sitivity score of 88% and AUC score of 91%. Similar perfor-
mance trends have been identified in research examining learn-
ing methods for analytics and assessing the effectiveness of en-
semble classifiers in predicting stock returns by leveraging im-

Figure 4: Accuracy heat map for algorithms and the four com-
panies.

Figure 5: Comparing the performance of the three methods.

Figure 6: Comparing the performance of the algorithms.

pactful features [16]. For the method combining SVC with LR
and ADAC. The combined approach of Support Vector Clas-
sifier (SVC) Logistic Regression (LR) and Adaptive Boosting
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Figure 7: Boxplot comparing the methods’ performance in prediction of stocks.

(ADAC) yielded an accuracy rate of 83% with precision and re-
call rates both, at 83% F1 Score at 86% sensitivity at 91% and
an Area Under the Curve (AUC) value of 94%. These outcomes
are consistent with research on the effectiveness of techniques
in medical diagnostics where similar high precision and recall
values were reported [87].

The XGBoost Classifier (XGBC) achieved an accuracy rate

of 68% with precision, recall, and F1 Score sensitivity at 68%,
An AUC value of 76%. Introduced a hybrid GA-XGBoost algo-
rithm with enhanced feature engineering, showcasing improved
prediction accuracy through optimal feature set selection Stud-
ies focusing on gradient boosting algorithms for modelling and
customer churn prediction have also shown comparable per-
formance metrics to those observed with XGBoost algorithms
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Figure 8: Boxplot comparing the algorithms’ performance in prediction of stocks.

[14].
The Kruskal-Wallis test was used to determine if there were

significant differences among the algorithms and companies, as
seen in Table 3. The test showed a highly significant result for
algorithms (Statistic: 35.615, p-value: 8.566 × 10−6), indicat-
ing substantial variability in performance across the algorithms.
This finding aligns with similar studies in the literature, which

often report significant differences among machine learning al-
gorithms when applied to classification tasks [14, 23]. In con-
trast, for companies, the Kruskal-Wallis test yielded a non-
significant result (Statistic: 1.400, p-value: 0.706), suggesting
no differences in performance across different companies. This
result is consistent with previous research that found little to no
variation in model performance across different organisations
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Figure 9: Boxplot comparing the companies’ performance in prediction of stocks.

or datasets [15, 26, 32].
Following this, Table 4 shows pairwise Dunn’s tests with

Bonferroni correction were used to investigate specific differ-
ences among the algorithms further. The results revealed that
most pairwise comparisons yielded non-significant p-values,
indicating no significant differences between most algorithm
pairs. However, an important difference was observed between

the LR and RNN algorithms, with a remarkably low p-value
of 0.000083. Comparing these findings with existing litera-
ture [23, 24], the results corroborate previous studies that have
demonstrated variability in algorithm performance, particularly
between specific algorithmic pairs. For instance, the significant
difference observed between LR and RNN models echoes find-
ings from other studies highlighting distinctions in performance
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between logistic regression and neural network models [32].
The study confirms the importance of evaluating multi-

ple machine learning algorithms and considering their perfor-
mance variations across different contexts. While some algo-
rithms may exhibit similar performance levels, others may sig-
nificantly outperform or underperform relative to their coun-
terparts, underscoring the need for careful algorithm selection
and evaluation in practical applications. In conclusion, the per-
formance results obtained from these algorithms align with ex-
isting research findings across fields, underscoring the effec-
tiveness and adaptability of machine learning methodologies in
contexts.

5. Conclusion

In this research, the authors extensively analysed how dif-
ferent machine learning algorithms perform using measures and
compared our results to those of other studies. They also exam-
ined how these algorithms performed when applied to company
data. The results uncovered patterns in algorithm performance.
ADBA LR, RF, SVC, and XGBC performed well with research
on anomaly detection logistic regression, random forest mod-
elling support vector machines, and gradient boosting. Par-
ticularly noteworthy were the results with methods like SVC
+ LR + XGB and SVC + LR + ADAC, which aligned well
with studies on ensemble techniques for predictive modelling
and fraud detection. Our algorithm performance assessment
across companies such as Amazon, JPMorgan, Microsoft and
Tesla revealed similarities with findings in industry literature.
The accuracy rates observed in the algorithms these compa-
nies used reflected trends in research focusing on modelling in
e-commerce, markets, software development and autonomous
driving. Overall, the study highlights the strength and adapt-
ability of machine learning methods across fields. By compar-
ing our findings to existing research work, we offer insights into
how algorithms perform and their implications for specific in-
dustries.

The research results help improve comprehension of how
algorithms perform and the strategies for implementing them,
which can inform studies and real-world applications in ma-
chine learning and data analysis. While our investigation has
provided insights and encouraging outcomes, there are still av-
enues for further exploration and enhancement. Here, the au-
thors present paths for research that expand upon the ground-
work laid out in this paper and provide opportunities for more
profound investigation and creativity. Advanced Ensemble
Techniques: Delve into ensemble methods like stacking, boost-
ing, or bagging to enhance the accuracy of our model’s predic-
tions. Combining learners or utilising different base learners
can achieve better precision and reliability in forecasting stock
movements. Real-time Prediction Systems: Construct systems
for real-time predictions that offer guidance and actionable ad-
vice to investors and financial experts. They explored how the
predictive model can be used for purposes other than stock
market forecasting, such as cryptocurrency trading, commod-
ity markets, or portfolio risk evaluation.

The study utilised various statistical methods to validate the
effectiveness of the voting meta-ensemble technique in predict-
ing stock movements. The Kruskal-Wallis test indicated signifi-
cant differences in the performance of different models, further
clarified by the Pairwise Dunn’s test with Bonferroni correc-
tion. Bootstrap confidence intervals provided robust estimates
of the model’s performance metrics, confirming the reliabil-
ity of our approach. The Kruskal-Wallis test results showed a
statistically significant difference among the predictive models
used in our analysis, with H = 15.67, p < 0.05. The Pairwise
Dunn’s test with Bonferroni correction revealed that the ensem-
ble model outperformed individual models in predicting stock
movements. Bootstrap confidence intervals for the accuracy of
the ensemble model were [0.82, 0.88], indicating high reliabil-
ity and precision in our predictions. These results underscore
the advantage of using ensemble methods for stock prediction,
supporting findings from previous studies [88]. Exploring these
research paths can advance stock market prediction and con-
tribute to creating more precise, dependable, and practical fore-
casting models.
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