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Abstract

This study introduces a novel cluster of hybrid polynomial kernel families, designed to achieve significantly lower asymptotic mean integrated
squared error compared to traditional kernels. These hybrid kernels are developed by heuristically combining classical polynomial kernels using
probability axioms. An in-depth analysis of error propagation within these kernels is conducted, utilizing both simulation experiments and
real-life datasets, including the Life Span of Batteries and COVID-19 datasets. The findings consistently demonstrate that the proposed hybrid
kernels outperform their classical counterparts in various density estimation tasks across different distribution types and sample sizes. This
research highlights the potential of hybrid polynomial kernels to enhance accuracy in density estimation, advocating for their adoption in statistical
modelling and analysis.
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1. Introduction

Kernel density estimation (KDE) serves as a fundamental
non-parametric technique for estimating the probability density
function of a random variable based on a sample of data points.
This subject area has been a cornerstone in mathematical statis-
tics for the past seven decades, gaining prominence through the
pioneering, albeit unpublished, works of Refs. [1, 2], as well
as the published contributions of Fix & Hodges [3] and Akaike
[4]. Since its inception, this field has seen remarkable progress.
Notably, Silverman’s monograph [5], as reported by Jiang &
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Provost [6], has garnered references from over two thousand
researchers, underscoring its pivotal role in advancing the do-
main.

Distinguished scholars such as those in Refs. [6–14], and
[15] have made substantial and influential contributions, partic-
ularly in the field of bandwidth selection methods. Their collab-
orative endeavours have greatly enhanced the practical utility of
KDE techniques.

A crucial aspect of KDE is the selection of the kernel func-
tion, which dictates the shape and smoothness of the resulting
density estimate. The studies by Refs. [16, 17], as well as
the references therein, have made noteworthy strides in the de-
velopment of kernel functions. In these works, the developed
kernel functions have demonstrated superior performance com-
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pared to the classical kernels found in the literature.
In KDE, classical kernel techniques such as Epanechnikov,

biweight, triweight, and quadriweight are highly regarded due
to their adaptability and efficiency in a range of applications
[5]. In order to address dimensionality issues, recent advance-
ments in KDE have brought in a hybrid nonparametric mul-
tivariate density estimator that combines kernel and exponen-
tial series approaches. Promising applications in financial risk
management are demonstrated by this strategy, which improves
computing feasibility and estimation accuracy [18]. Recent re-
search [19, 20], which investigates hybrid polynomial kernels
that combine the advantages of conventional (classical) kernel
functions, reflects this growing interest. These hybrid methods
provide an adaptable and flexible framework for better density
estimation in a range of application scenarios.

This paper aims to expand upon the groundwork laid in
Refs. [19, 20] by introducing a cluster of novel families of
hybrid polynomial kernels within the realm of univariate ker-
nel density estimation. The objective is to augment the toolkit
available for practitioners in this field and offer a fresh perspec-
tive on the relationship between kernel functions and estima-
tion accuracy in nonparametric density estimation. These fami-
lies of hybrid kernels will provide practitioners with a versatile
range of options for KDE. The selection of a specific family
and its corresponding kernel function will have varying effects
on smoothing and estimation accuracy, depending on the char-
acteristics of the dataset under analysis.

The exploration of hybrid polynomial kernels is motivated
by their potential to adapt to diverse data distributions and ef-
fectively capture intricate patterns. By conducting an in-depth
examination of their mathematical formulations and theoretical
properties, the study aims to provide insights into their applica-
bility across different domains and highlight their comparative
advantages over conventional kernel functions.

Empirical assessments are conducted to evaluate the per-
formance of these hybrid polynomial kernels in both simula-
tions and real-world scenarios. Comparative experiments and
case studies demonstrate their effectiveness in handling vari-
ous types of data, including unimodal and multimodal distribu-
tions, as well as skewed and heavy-tailed datasets. To further
illustrate their relevance in nonparametric kernel density esti-
mation (NKDE), these kernels are applied to real-world cases
such as the lifespan of car batteries and the analysis of COVID-
19 data. This contribution aims to enrich ongoing discussions
and advancements in this fundamental statistical methodology,
offering valuable insights and adding depth to the discourse.

The structure of the remaining article is organised as fol-
lows: Section 2 outlines the methodology. In Section 3, the
proposed cluster of kernel families is introduced. Section 4 in-
cludes the simulation studies and real-life examples. Finally,
Section 5 offers a discussion of the results and concludes with
the findings.

2. Kernel density estimator

Given a random sample X1, X2, ..., Xn of size n drawn in-
dependently and identically from a continuous distribution de-

scribed by the probability density function f (x), the univariate
KDE is formulated as follows:

f̂h(x) =
1

nh

n∑
i=1

K
( x − Xi

h

)
. (1)

In Equation (1), x signifies the range of observations, while
h > 0 stands for the smoothing parameter, known by different
names like bandwidth, bin width, or window width, as outlined
by various authors, including [17]. Moreover, K(·) is denoted
as the kernel function, which typically adheres to properties of
symmetry and unimodality and abides by the following princi-
ples:

i.
∫

K(t)dt = 1

ii.
∫

tK(t)dt = 0

iii.
∫

t2K(t)dt = K2 < ∞.


(2)

Equation (2) reveals that every kernel function must satisfy the
properties of a probability density function, implying that it
must integrate to one (1). Additionally, its first moment about
zero (mean) should integrate to zero (0), while its second mo-
ment about zero (variance) should integrate to a constant that is
not equal to zero, [21].

As discussed earlier, Equation (1) was introduced to the
mathematical statistics community through the works of Rosen-
blatt [3] and Parzen [4]. As a result, the estimator is often re-
ferred to as the Rosenblatt-Parzen estimator. Several error cri-
teria are employed to evaluate the performance of KDE. These
criteria can be categorised as pointwise error, global error, and
asymptotic (approximate) error. Examples of pointwise error
include mean squared error, root mean squared error, mean ab-
solute error, etc. An example of a global error is the mean in-
tegrated squared error (MISE). The exact MISE is determined
through convolution [22], while the asymptotic (approximate)
MISE is derived using a Taylor series expansion, termed the
asymptotic mean integrated squared error (AMISE).

Now, the expression for the mean integrated squared error
of the estimator f̂h(x), denoted as (MISE f̂h(x)), is given by:

MISE f̂h(x) = E
(∫ (

f̂h(x) − f (x)
)2

dx
)
, (3)

using necessary algebraic rules, Equation (3) becomes:

MISE f̂h(x) =
∫

Bias2 f̂h(x)dx +
∫

Var f̂h(x)dx, (4)

where

Bias f̂h(x) = E f̂h(x) − f (x). (5)

and

Var f̂h(x) = E f̂ 2
h (x) − E2 f̂h(x). (6)
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Supposing the underlying density is suitably smooth and the
second moment of the kernel is non-zero, the procedure in-
volves substituting Equation (1) into Equations (5) and (6), fol-
lowed by the utilisation of the univariate Taylor series expan-
sion. This resulted in the transformation of Equations (5) and
(6) into the following expressions, respectively:

Bias f̂h(x) =
h2

2
K2 f ′′(x) + o(h2), (7)

and

Var f̂h(x) =
1
nh
∥K∥22 f (x) + o(nh)−1. (8)

where ∥K∥22 =
∫

K2(t)dt represents the L2-norm of the kernel
function, which characterises the kernel function’s degree of
roughness. Additionally, K2 =

∫
t2K(t)dt in Equation (7) de-

notes the second moment of the kernel function, signifying the
variance of the kernel function. For more details, refer to Ref.
[5, 10]. By substituting Equations (7) and (8) into Equation
(4) while neglecting higher-order terms, the expression for the
AMISE can be derived as follows:

AMISE f̂h(x) =
h2

2
K2

∥∥∥ f ′′(x)
∥∥∥2

2 +
1
nh
∥K∥22 f (x), (9)

where ∥ f ′′(x)∥22 =
∫

( f ′′(x))2 dx represents the L2-norm of the
unknown probability density function, it quantifies the degree
of roughness in the function. This term essentially measures
how rough the unknown probability density function is. The
value of h in Equation (9) generally controls the balance be-
tween the two components of the AMISE. When the bias is
large, the variance is reduced, and vice versa, illustrating the
well-known ”trade-off” between bias and variance. The opti-
mal bandwidth is the smoothing parameter that minimises the
AMISE. By differentiating Equation (9) with respect to h, the
following result is obtained:

δAMISE f̂h(x)
δh

= (K2)2h3
∥∥∥ f ′′(x)

∥∥∥2
2 −
∥K∥22
nh2 = 0. (10)

Solving the differential Equation (10) for h gives the optimal
bandwidth as:

hAMISE =

 ∥K∥22
(K2)2 ∥ f ′′(x)∥22

1/5

n−
1/5 . (11)

Substituting Equation (11) into Equation (9) gives:

AMISE f̂h(x) = 5 · 4−
4
5 ·

(
∥K∥22

) 4
5
×((K2

2

)2 ∥∥∥ f ′′(x)
∥∥∥) 1

5

· n−
4
5 .

(12)

Refer to Ref. [5, 10]. Utilising Equations (11) and (12), it can
be deduced that the optimal bandwidth and the AMISE possess
a convergence order of o(n−

1/5) and o(n−
4/5), respectively. How-

ever, in the context of the d-dimensional KDE, the convergence
order of the optimal bandwidth and AMISE becomes o(n−

1/d+4)
and o(n−

4/d+4), respectively, [20].

Furthermore, assuming the additional axioms as specified
in Equation (2), if

∫
t2mK(t)dt = K2m > 0, Equations (11) and

(12) respectively transform into:

h2m
AMISE =

 ((2m)!)2 ∥K∥22
(4m) (K2m)2

∥∥∥ f (2m)(x)
∥∥∥2

2


1

4m+1

× n−
1

4m+1 , m ∈ N.

(13)

and

AMIS E2m f̂h(x) = (4m + 1)×

(4m)−
4m

4m+1 ∥K∥
4m

4m+1
2 ×( K2m

(2m)!

)2 ∥∥∥ f (2m)(x)
∥∥∥

1
4m+1

× n−
4m

4m+1 , m ∈ N.

(14)

In Equations (13) and (14), n, K2m, and
∥∥∥ f (2m)(x)

∥∥∥ represent
the sample size, the 2mth moment of any symmetric kernel
function, and the L2m-norm of the unknown probability den-
sity function, respectively. It is worth noting that the optimal
bandwidth and the AMISE exhibit the order of convergence
o(n−

1
4m+1 ) and o(n−

4m
4m+1 ), respectively.

3. Cluster of families of hybrid polynomial kernels

A cluster is characterised as a collection of similar entities
arranged closely together. In Ref. [23], the concept of a cluster
is further elucidated, describing it as ”a group of items in which
each item is ’close’ to another item within the same group,
while the members of distinct groups are ’distant’ from each
other.” Therefore, this section elaborates on the establishment
of the proposed cluster of kernel families. The foundational
element employed here is the family of classical polynomial
kernels, defined as follows:

Kc(t) = {22p+1B(p + 1, p + 1)}
−1

(1 − t2)
p
. (15)

Here, p is referred to as the polynomial power, and B(·, ·) repre-
sents the beta density function. The kernel Kc(t) has a support
within the interval [-1, 1]. In Equation (15), distinct values of p
result in different kernel functions. To illustrate, when p = 0, a
uniform kernel is generated; when p = 1 and p = 2, a biweight
kernel and a triweight kernel are produced, respectively. Re-
markably, as the value of p approaches infinity (p → ∞), Kc(t)
transforms into a Gaussian kernel.

Table 1. Classical polynomial kernels.
Value of p Name of kernels Function of kernels

p = 0 Uniform 1
2

p = 1 Epanechnikov 3
4 (1 − t2)

p = 2 Biweight 15
16 (1 − t2)2

p = 3 Triweight 35
32 (1 − t2)3

p = 4 Quadriweight 315
256 (1 − t2)4

3
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Figure 1. Plot of shapes of classical polynomial kernels for different values of
p presented in Table 1.

Table 1 shows the kernel functions corresponding to various
values of p. These kernels play a crucial role in smoothing data
in kernel density estimation. The choice of kernel and its asso-
ciated parameter (p) affect the smoothness and sensitivity of the
estimated density curve. Hence, it’s worth noting that as p in-
creases, the kernel becomes more peaked at the centre and has
heavier tails, which can lead to a smoother density estimate but
may also result in over-smoothing if not chosen appropriately
for the specific dataset.

Supplementing the information in Table 1, Figure 1 pro-
vides a clear visual representation of how the different values of
p influence the shape and characteristics of the classical poly-
nomial kernels. It visually demonstrates how the selection of
p influences the weighting of data points in kernel density esti-
mation, indicating that higher p values lead to more pronounced
peaks at the centre and heavier tails. This visual representation
is valuable for practitioners in selecting an appropriate kernel
for their specific data and analysis needs. It allows them to
make informed decisions about which kernel shape aligns best
with the underlying distribution of their data.

As earlier said, this paper will extend the earlier papers [19]
and [20]. Consider the simple formula:

KH(t) = ρ1K[p−1](t) + ρ2K[p](t) ;
0 < ρ1 < 1 , ρ1 + ρ2 = 1.

(16)

where K[p−1](t) and K[p](t) represent the families of classical
polynomial kernels of order p−1 and p, respectively, as defined
in Equation (15). By substituting ρ1 = (i/10) into Equation (16)
and replacing it with the corresponding values from Equation
(15), along with the application of essential algebraic princi-
ples, the proposed cluster of hybrid polynomial kernel families

is established as follows:

KCL(t) =
2−p−2

5Γ(p + 1)
[
2ip(2p − 1)!!

p−1∑
r=0

(−1)r
(
p − 1

r

)
+ (10 − i)(2p + 1)!!

p∑
r=0

(−1)r
(
p
r

) t2r.

(17)

The kernel functions corresponding to individual families are
displayed in Table 2, and it is evident that these kernel func-
tions adhere to the properties of symmetric kernel functions as
outlined in Equation (2).

Table 2 presents a cluster of hybrid classical polynomial
kernels organised into distinct families indexed by i. These fam-
ilies encompass various kernels characterised by expressions
rooted in the Epanechnikov, biweight, triweight, and quadri-
weight structures. Arranged in a matrix format, families are
represented as rows and individual kernels as columns.

Crafted by blending traditional polynomial kernels with
specific weights and coefficients, these hybrids exhibit a ver-
satile nature, potentially designed for specific applications or
tailored to capture diverse aspects of the underlying data distri-
bution. Selection depends on the inherent characteristics of the
data and the specific objectives of the analysis.

Hybrid classical polynomial kernels, featured in this table,
showcase versatility by blending classical polynomial forms
with additional parameters. This amalgamation allows them to
effectively simulate intricate patterns in data and model com-
plex data structures. The selection of a specific hybrid kernel is
guided by nuanced analysis requirements, offering practitioners
flexibility in addressing diverse dataset challenges. The table
provides a comprehensive range of options for kernel density
estimation, allowing researchers and practitioners to choose the
most suitable hybrid kernel based on the characteristics of each
family. In essence, it serves as a valuable reference for statisti-
cians and data analysts seeking adaptable tools for their analyt-
ical needs.

Analytical validation will demonstrate that the kernels in-
cluded in Equation (17), individually described in Table 2, in-
deed adhere to the properties outlined in Equation (2). Fo-
cussing initially on the first family (F1), the outcomes for each
kernel in the cluster of kernel families are presented, as illus-
trated in Table 3.

For Epanchnikov kernel:
(i) ∫

K(t) dt =
∫ 1

−1

1
10

(29 − 27t2) dt

=
1

40

(
29t −

27t3

3

)∣∣∣∣∣∣1
−1

=
1

40
(40) = 1.

(ii) ∫
tK(t) dt =

∫ 1

−1

1
10

t(29 − 27t2) dt

4
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Table 2. A cluster of families of hybrid classical polynomial kernels
Kernels

Family (i) Epanechnikov Biweight Triweight Quadriweight
F1 1

40 (29 − 27t2) 3
160 (49 − 94t2 + 45t4) 3

64 (1 − t2)2(23 − 21t2) 7
512 (1 − t2)3(89 − 81t2)

F2 1
10 (7 − 6t2) 3

20 (6 − 11t2 + 5t4) 1
16 (1 − t2)2(17 − 14t2) 7

64 (1 − t2)3(11 − 9t2)
F3 3

40 (9 − 7t2) 3
160 (47 − 82t2 + 35t4) 1

64 (1 − t2)2(67 − 49t2) 21
512 (1 − t2)3(29 − 21t2)

F4 1
20 (13 − 9t2) 3

80 (23 − 38t2 + 15t4) 3
32 (1 − t2)2(11 − 7t2) 7

256 (1 − t2)3(43 − 27t2)
F5 1

8 (5 − 3t2) 3
32 (9 − 14t2 + 5t4) 5

64 (1 − t2)2(13 − 7t2) 35
512 (1 − t2)3(17 − 9t2)

F6 1
40 (23 − 9t2) 3

160 (43 − 58t2 + 15t4) 21
64 (1 − t2)2(3 − t2) 7

512 (1 − t2)3(83 − 27t2)
F7 1

40 (23 − 9t2) 3
40 (11 − 16t2 + 5t4) 1

16 (1 − t2)2(16 − 7t2) 21
128 (1 − t2)3(7 − 3t2)

F8 1
20 (11 − 3t2) 3

80 (21 − 26t2 + 5t4) 1
32 (1 − t2)2(31 − 7t2) 7

256 (1 − t2)3(41 − 9t2)
F9 3

40 (7 − t2) 3
160 (41 − 46t2 + 5t4) 1

64 (1 − t2)2(61 − 7t2) 63
512 (1 − t2)3(9 − t2)

=
1

40

(
29t2

2
−

27t4

4

)∣∣∣∣∣∣1
−1

=
1

40
(0) = 0.

(iii) ∫
t2K(t) dt =

∫ 1

−1

1
10

t2(29 − 27t2) dt

=
1

40

(
29t3

3
−

27t5

5

)∣∣∣∣∣∣1
−1

=
16
75
, 0.

Hence, F1-Epanechnikov is a symmetric kernel.

For biweight kernel

(i) ∫
K(t) dt =

∫ 1

−1

3
160

(1 − t2)(49 − 45t2) dt

=
3

160

(
49t −

94t3

3
+

45t5

5

)∣∣∣∣∣∣1
−1

=
3

160

(
160

3

)
= 1.

(ii) ∫
tK(t) dt =

∫ 1

−1

3
160

t(1 − t2)(49 − 45t2) dt

=
3

160

(
49t2

2
−

94t4

4
+

45t6

6

)∣∣∣∣∣∣1
−1

=
3

160
(0) = 0.

(iii) ∫
t2K(t) dt =

∫ 1

−1

3
160

t2(1 − t2)(49 − 45t2) dt

=
3

160

(
49t3

3
−

94t5

5
+

45t7

7

)∣∣∣∣∣∣1
−1

=
53

280
, 0.

Hence, F1-Biweight is a symmetric kernel.

For triweight kernel

(i) ∫
K(t) dt =

∫ 1

−1

3
64

(1 − t2)2(23 − 21t2) dt

=
3

64

(
23t −

67t3

3
+

65t5

5
−

21t7

7

)∣∣∣∣∣∣1
−1

= 1.

(ii) ∫
tK(t) dt =

∫ 1

−1

3
64

t(1 − t2)2(23 − 21t2) dt

=
3

64

(
23t2

2
−

67t4

4
+

65t6

6
−

21t8

8

)∣∣∣∣∣∣1
−1

= 0.

(iii) ∫
t2K(t) dt =

∫ 1

−1

3
64

t2(1 − t2)2(23 − 21t2) dt

=
3

64

(
23t3

3
−

67t5

5
+

65t7

7
−

21t9

9

)∣∣∣∣∣∣1
−1

=
4

35
, 0.

Hence, F1-Triweight is a symmetric kernel.

For quadriweight kernel

(i) ∫
K(t) dt =

∫ 1

−1

7
512

(1 − t2)3(89 − 81t2) dt

=
7

512
×

512
7

= 1.

5
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(ii) ∫
tK(t) dt =

∫ 1

−1

7
512

t(1 − t2)3(89 − 81t2) dt

=
7

512
(0)

= 0.

(iii) ∫
t2K(t) dt =

∫ 1

−1

7
512

t2(1 − t2)3(89 − 81t2) dt

=
7

512
×

23552
10395

=
46
495
.

Therefore, F1-Quadriweight is categorised as a symmetric
kernel, affirming that the kernels within the F1 family adhere to
the properties outlined in Equation (2).

Table 3 provides a summary of key properties for a range
of families of hybrid classical polynomial kernels. Each row
corresponds to a specific family labelled from F1 to F9, and
each column pertains to a particular property or moment of the
respective kernel. The first property holds true as the kernel
function integrates to unity, signifying consistent total proba-
bility coverage across all families. Furthermore, the first mo-
ment, yielding a value of zero, implies the distribution is cen-
tred around t = 0. Lastly, the second moment (variance), an
indicator of skewness, exhibits finite values that differ among
families, showcasing variations in kernel asymmetry. This ful-
fils the previously mentioned properties outlined in Equation
(2), and thus, consequently, the kernels presented in Table 2
can be classified as symmetric kernels.

4. Data visualisations and numerical experiments

In this section, the discussion will be anchored in the visu-
alisation of data and the examination of numerical results, with
the aim of assessing the performance of the proposed kernel
functions. This evaluation will be conducted using a combina-
tion of simulated datasets through a Monte Carlo experiment
and real-life datasets.

4.1. Monte carlo experiments
Monte Carlo experiments were conducted to investigate

four different mixture densities, each representing distinct dis-
tributional characteristics. The sample sizes used in the exper-
iments were n = 10, n = 25, n = 300, and n = 1500. The
mixture densities studied are as follows:

1. Unimodal Distribution (X1):

X1 =
3
5

X11 +
2
5

X12.

where X11 follows a normal distribution with mean 0 and
variance 1 (X11 ∼ N(0, 1)), and X12 follows a normal dis-
tribution with mean 2 and variance 1 (X12 ∼ N(2, 1)).

2. Multimodal Distribution (X2):

X2 =
1
3

X21 +
1
3

X22 +
1
3

X23.

where X21 follows a normal distribution with mean -2 and
variance 1 (X21 ∼ N(−2, 1)), X22 follows a normal distri-
bution with mean 0 and variance 1 (X22 ∼ N(0, 1)), and
X23 follows a normal distribution with mean 2 and vari-
ance 1 (X23 ∼ N(2, 1)).

3. Skewed Distribution (X3):

X3 =
3

10
X31 +

7
10

X32.

where X31 follows a normal distribution with mean -1 and
variance 1 (X31 ∼ N(−1, 1)), and X32 follows a normal
distribution with mean 2 and variance 1 (X32 ∼ N(2, 1)).

4. Heavy-Tailed Distribution (X4):

X4 =
4
5

X41 +
1
5

X42.

where X41 follows a normal distribution with mean 0 and
variance 1 (X41 ∼ N(0, 1)), and X42 follows a Cauchy dis-
tribution with location parameter 0 and scale parameter 1
(X42 ∼ Cauchy(0, 1)).

The examination of various distributions in Table 4 re-
veals unique traits that are essential to comprehending their be-
haviours. High variance and excessive kurtosis characterise a
heavy-tailed distribution, suggesting the existence of notable
outliers and prominent tails. The Cauchy component has a
significant impact on this distribution, which adds to its wide
dispersion and high skewness. These characteristics point to a
distribution with significant tail effects and wide standard devi-
ations.

The multimodal distribution, on the other hand, shows
nearly normal kurtosis values and a low variance. Its skew-
ness is relatively negligible, indicating a multi-peak, symmet-
rical distribution. This is consistent with the hypothesis that a
distribution with many unique modes would result from mixing
multiple normal distributions with various means.

In contrast, the skewed distribution has a closely aligned
mean and median, suggesting a slight skewness. This distri-
bution exhibits a somewhat asymmetric shape with a modest
variance and kurtosis close to normal values. The moderate
variance points to a distribution that is less extreme than the
heavy-tailed one, while the balanced mean and median show
that the skewness is not too great.

The kurtosis and skewness values of the unimodal distribu-
tion are modest and resemble those of a normal distribution.
An example of a typical unimodal form is seen in the moderate
variance and almost similar mean and median. The properties
of this distribution confirm that it is single-peaked, as it closely
resembles a normal distribution.

Within each of the analysed density models, univariate ran-
dom variables (X) are generated, and subsequently, the standard
deviation parameters are estimated based on these generated
values. Following this step, the AMISE expression denoted
by Equation (14) is employed. A comprehensive simulation

6
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Table 3. Highlight of the properties of cluster of families of hybrid classical polynomial kernels in Equation (17).
Kernels

Family
(i)

Epanechnikov Biweight Triweight Quadriweight∫
K(t)dt

∫
tK(t)dt

∫
t2K(t)dt

∫
K(t)dt

∫
tK(t)dt

∫
t2K(t)dt

∫
K(t)dt

∫
tK(t)dt

∫
t2K(t)dt

∫
K(t)dt

∫
tK(t)dt

∫
t2K(t)dt

F1 1 0 16
75 1 0 26

175 1 0 4
35 1 0 46

495
F2 1 0 17

75 1 0 27
175 1 0 37

315 1 0 47
495

F3 1 0 6
25 1 0 4

25 1 0 38
315 1 0 16

165
F4 1 0 19

75 1 0 29
175 1 0 13

105 1 0 49
495

F5 1 0 4
15 1 0 6

35 1 0 8
63 1 0 10

99
F6 1 0 7

25 1 0 31
175 1 0 41

315 1 0 17
165

F7 1 0 22
75 1 0 32

175 1 0 2
15 1 0 52

495
F8 1 0 23

75 1 0 33
175 1 0 43

315 1 0 53
495

F9 1 0 8
25 1 0 34

175 1 0 44
315 1 0 6

55

Table 4. Exploratory data analysis
Distribution Mean Median Variance Skewness Kurtosis
Heavy-Tailed 0.209 0.0168 120.0 35.3 1768.0
Multimodal 0.000920 0.00358 0.333 -0.0323 2.95
Skewed 1.10 1.10 0.575 -0.0368 3.10
Unimodal 0.795 0.792 0.522 0.0169 2.93

is conducted encompassing r = 1000 runs, ultimately yielding
the average AMISE denoted as AMISE∗.

AMISE∗ =
1
r

r∑
j=1

AMISE2m
j , m ∈ N. (18)

Equation (18) was computed for hybrid Epanechnikov, bi-
weight, triweight, and quadriweight kernels for all the univari-
ate densities as presented in Tables 5, 6, 7, and 8 for four sample
sizes of unimodal, multimodal, skewed, and heavy-tailed distri-
butions, respectively.

Table 5 provides a comparison between the average global
errors of the hybrid kernel family and the classical kernel fam-
ily for four different sample sizes of a unimodal distribution.
A lower average global error is regularly observed for hybrid
kernels than for classical kernels with a sample size of n = 10.
Hybrid kernels continue to have a decreased error rate, and this
trend continues through the sample size of n = 25. Both clas-
sical and hybrid kernels attain very low average global errors
when sample sizes approach n = 300 and n = 1500. However,
hybrid kernels persistently outperform classical ones, confirm-
ing their efficacy in lowering error across a range of sample
sizes.

The average global errors for a multimodal distribution for
four sample sizes comparing hybrid and classical kernels are
shown in Table 6. Hybrid kernels regularly show lower aver-
age global errors than classical kernels, with an advantage that
becomes more substantial at smaller sample numbers, as seen
in Table 5. Overall mistakes reduce as sample size grows, but
hybrid kernels still show a small accuracy advantage, with the
F9 kernel consistently exhibiting the highest performance.

The average global errors of the classical and hybrid kernels
with a skewed distribution are compared for four sample sizes

(10, 25, 300, and 1500) in Table 7. Classical kernels at n = 10
vary from 0.00277444 to 0.00398071, but hybrid kernels with
F9 at 0.00237631 have smaller errors. Errors reduce for all ker-
nels as the sample size grows. F9 achieves the lowest error at
0.00001433, while classical kernels range from 0.00001663 to
0.00002364 by n = 1500. With hybrid kernels continuously
outperforming classical ones, F9 in particular, which exhibits
the highest performance across all sample sizes, the error re-
duction becomes more noticeable in larger sample sizes.

For a heavy-tailed distribution, Table 8 presents a compari-
son between classical and hybrid kernels for four sample sizes
(10, 25, 300, and 1500). As sample sizes increase, errors re-
duce, and hybrid kernels routinely outperform classical ones.
Hybrid F9 scores 0.00296317 at n = 10, while classical er-
rors range from 0.00345962 to 0.00496379. Classical errors de-
crease to 0.00000265 – 0.00000377 by n = 1500; F9 achieves
the lowest error reduction at 0.00000229, indicating the greater
error reduction of hybrid kernels as sample sizes rise.

4.2. Real-life experiments

In this section, we delve into evaluating the performance of
kernels integrated within our proposed cluster of kernel fam-
ilies, employing two real-life datasets. The first dataset com-
prises unimodal data, consisting of forty (40) observations de-
tailing the lifespan of car batteries in years [24]. On the other
hand, the second dataset contains bimodal data, consisting of a
sample size of two hundred and fourteen (214) generated from
the density derived from the COVID-19 data, as extracted from
Osatohanmwen et al [25]. The kernel density estimations illus-
trating the classical kernels of these two datasets, as well as the
superimposed kernel density estimates for all the families for
each kernel function, are visually presented in Figures 2 (a, b,

7
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Table 5. Comparison of average global error of kernels in the cluster of families of hybrid kernels with the kernels in the family of classical kernels for four sample
sizes of unimodal distribution.

AMISE∗

n Family i) Epanechnikov Biweight Triweight Quadriweight
10 Classical 0.00215145 0.00250927 0.00281777 0.00308686

F1 0.00210128 0.00247561 0.00279221 0.00306615
F2 0.00204767 0.00243530 0.00276010 0.00303921
F3 0.00199888 0.00239494 0.00272712 0.00301114
F4 0.00195606 0.00235550 0.00269418 0.00298277
F5 0.00191970 0.00231737 0.00266163 0.00295445
F6 0.00189004 0.00228076 0.00262965 0.00292635
F7 0.00186726 0.00224579 0.00259836 0.00289857
F8 0.00185146 0.00221255 0.00256784 0.00287118
F9 0.00184272 0.00218109 0.00253812 0.00284424

25 Classical 0.00138092 0.00160964 0.00180682 0.00197877
F1 0.00134887 0.00158815 0.00179050 0.00196555
F2 0.00131462 0.00156240 0.00176999 0.00194834
F3 0.00128343 0.00153660 0.00174892 0.00193041
F4 0.00125607 0.00151139 0.00172787 0.00191229
F5 0.00123284 0.00148702 0.00170706 0.00189419
F6 0.00121390 0.00146361 0.00168662 0.00187623
F7 0.00119937 0.00144124 0.00166661 0.00185847
F8 0.00118931 0.00141999 0.00164710 0.00184097
F9 0.00118379 0.00139987 0.00162810 0.00182374

300 Classical 0.00010932 0.00012718 0.00014257 0.00015598
F1 0.00010683 0.00012551 0.00014130 0.00015496
F2 0.00010416 0.00012350 0.00013970 0.00015361
F3 0.00010172 0.00012149 0.00013806 0.00015222
F4 0.00009959 0.00011952 0.00013642 0.00015080
F5 0.00009778 0.00011762 0.00013479 0.00014939
F6 0.00009631 0.00011579 0.00013320 0.00014800
F7 0.00009518 0.00011404 0.00013163 0.00014660
F8 0.00009441 0.00011238 0.00013011 0.00014524
F9 0.00009399 0.00011080 0.00012862 0.00014389

1500 Classical 0.00002053 0.00002384 0.00002670 0.00002918
F1 0.00002007 0.00002353 0.00002646 0.00002899
F2 0.00001957 0.00002316 0.00002617 0.00002875
F3 0.00001912 0.00002279 0.00002586 0.00002849
F4 0.00001872 0.00002242 0.00002556 0.00002822
F5 0.00001839 0.00002207 0.00002526 0.00002796
F6 0.00001812 0.00002173 0.00002496 0.00002770
F7 0.00001791 0.00002140 0.00002467 0.00002745
F8 0.00001777 0.00002110 0.00002439 0.00002719
F9 0.00001769 0.00002080 0.00002411 0.00002694

c, d) and 3 (a, b, c, d), respectively, for the lifespan data and
COVID-19 data. It is noteworthy that all aspects of data visual-
isation, analysis, and graphical representation were conducted
using Mathematica 11.3 and R Studio software. The outcomes
of these analyses are meticulously compiled within Tables 5
through 10.

The figure (Figure 2) comprises four subplots, each depict-
ing the density estimation performance of different types of ker-
nels across various families, including classical kernels, using
the lifespan of car batteries in years as the data source. In

the top-left panel, the plot showcases the classical Epanech-
nikov kernel, while subplots F1 to F9 display density estima-
tions for various families within the Epanechnikov hybrid ker-
nel. Typically, the Epanechnikov kernel generates density esti-
mates characterised by a triangular shape with a flattened peak,
facilitated by a high bandwidth value of 163.85, resulting in
smooth density curves.

Moving to the top-right panel, the plots depict the hybrid
biweight kernel for all the families within the cluster of ker-
nel families, alongside the classical biweight kernel. Renowned

8
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Table 6. Comparison of average global error of kernels in the cluster of families of hybrid kernels with the kernels in the family of classical kernels for four samples
sizes of multimodal distribution.

AMISE∗

n Family Epanechnikov Biweight Triweight Quadriweight
10 Classical 0.00171855 0.00200437 0.00225080 0.00246575

F1 0.00167848 0.00197748 0.00223038 0.00244920
F2 0.00163565 0.00194528 0.00220473 0.00242768
F3 0.00159668 0.00191304 0.00217839 0.00240525
F4 0.00156247 0.00188154 0.00215208 0.00238260
F5 0.00153343 0.00185108 0.00212607 0.00235998
F6 0.00150974 0.00182184 0.00210053 0.00233753
F7 0.00149154 0.00179391 0.00207554 0.00231534
F8 0.00147892 0.00176735 0.00205115 0.00229346
F9 0.00147194 0.00174222 0.00202742 0.00227194

25 Classical 0.00076253 0.00088883 0.00099771 0.00109266
F1 0.00074484 0.00087696 0.00098870 0.00108536
F2 0.00072592 0.00086274 0.00097737 0.00107586
F3 0.00070870 0.00084850 0.00096574 0.00106596
F4 0.00069359 0.00083458 0.00095411 0.00105595
F5 0.00068076 0.00082112 0.00094262 0.00104596
F6 0.00067031 0.00080819 0.00093134 0.00103604
F7 0.00066228 0.00079584 0.00092029 0.00102623
F8 0.00065673 0.00078410 0.00090951 0.00101657
F9 0.00065368 0.00077300 0.00089902 0.00100705

300 Classical 0.00006721 0.00007819 0.00008765 0.00009590
F1 0.00006568 0.00007716 0.00008687 0.00009527
F2 0.00006404 0.00007593 0.00008589 0.00009444
F3 0.00006254 0.00007469 0.00008488 0.00009358
F4 0.00006123 0.00007348 0.00008387 0.00009271
F5 0.00006011 0.00007231 0.00008287 0.00009185
F6 0.00005921 0.00007119 0.00008189 0.00009098
F7 0.00005852 0.00007011 0.00008093 0.00009013
F8 0.00005804 0.00006909 0.00007999 0.00008929
F9 0.00005779 0.00006812 0.00007908 0.00008847

1500 Classical 0.00001499 0.00001741 0.00001949 0.00002131
F1 0.00001465 0.00001718 0.00001932 0.00002117
F2 0.00001429 0.00001691 0.00001910 0.00002099
F3 0.00001396 0.00001664 0.00001888 0.00002080
F4 0.00001367 0.00001637 0.00001866 0.00002061
F5 0.00001343 0.00001611 0.00001844 0.00002042
F6 0.00001323 0.00001586 0.00001822 0.00002023
F7 0.00001308 0.00001563 0.00001801 0.00002004
F8 0.00001297 0.00001540 0.00001780 0.00001985
F9 0.00001292 0.00001519 0.00001760 0.00001967

for its robustness to outliers, the biweight kernel yields density
estimates reflecting this robustness, with smooth and robustly
estimated density curves.

In the left-bottom panel, the plots showcase the hybrid tri-
weight kernels for all the families, juxtaposed with the classical
triweight kernel plot. Similar to biweight kernels, the triweight
kernel offers robust density estimates, generating smoother
curves compared to the Epanechnikov kernel, often featuring
a flatter peak.

Finally, in the right-bottom panel, the plots display the hy-

brid quadriweight kernels for all the families considered, in-
cluding the classical quadriweight kernel plot. The quadri-
weight kernel assigns even more weight to central data points,
resulting in exceptionally smooth density estimates. Conse-
quently, the density curves may appear extremely smooth, po-
tentially overlooking finer details in the data.

Like Figure 2, Figure 3 presents plots of kernel density es-
timations for different families of kernels, including classical
kernels, using the COVID-19 dataset. Each subfigure focusses
on a specific kernel family: Epanechnikov, biweight, triweight,

9
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Table 7. Comparison of average global error of kernels in the cluster of families of hybrid kernels with the kernels in the family of classical kernels for four sample
sizes of skewed distribution.

AMISE∗

n Family (i) Epanechnikov Biweight Triweight Quadriweight
10 Classical 0.00277444 0.00323586 0.00363370 0.00398071

F1 0.00270974 0.00319246 0.00360074 0.003954
F2 0.00264061 0.00314048 0.00355932 0.00391925
F3 0.00257768 0.00308843 0.00351680 0.00388306
F4 0.00252247 0.00303757 0.00347432 0.00384648
F5 0.00247557 0.00298840 0.00343234 0.00380996
F6 0.00243734 0.00294119 0.00339111 0.00377372
F7 0.00240796 0.00289609 0.00335076 0.00373790
F8 0.00238758 0.00285322 0.00331139 0.00370258
F9 0.00237631 0.00281265 0.00327308 0.00366783

25 Classical 0.00088508 0.00103168 0.00115806 0.00126827
F1 0.00086455 0.00101791 0.00114760 0.00125980
F2 0.00084259 0.00100140 0.00113445 0.00124877
F3 0.00082260 0.00098487 0.00112095 0.00123728
F4 0.00080506 0.00096871 0.00110746 0.00122566
F5 0.00079017 0.00095309 0.00109412 0.00121406
F6 0.00077804 0.00093808 0.00108102 0.00120255
F7 0.00076872 0.00092375 0.00106820 0.00119117
F8 0.00076228 0.00091012 0.00105569 0.00117995
F9 0.00075873 0.00089723 0.00104351 0.00116891

300 Classical 0.00008166 0.00009500 0.00010649 0.00011651
F1 0.00007980 0.00009375 0.00010555 0.00011575
F2 0.00007780 0.00009225 0.00010435 0.00011474
F3 0.00007598 0.00009075 0.00010313 0.00011370
F4 0.00007439 0.00008928 0.00010190 0.00011265
F5 0.00007304 0.00008785 0.00010069 0.00011159
F6 0.00007194 0.00008649 0.00009949 0.00011054
F7 0.00007110 0.00008518 0.00009833 0.00010951
F8 0.00007052 0.00008394 0.00009719 0.00010849
F9 0.00007021 0.00008277 0.00009608 0.00010748

1500 Classical 0.00001663 0.00001931 0.00002162 0.00002364
F1 0.00001625 0.00001906 0.00002143 0.00002348
F2 0.00001585 0.00001876 0.00002119 0.00002328
F3 0.00001549 0.00001846 0.00002095 0.00002307
F4 0.00001516 0.00001816 0.00002070 0.00002286
F5 0.00001489 0.00001787 0.00002045 0.00002265
F6 0.00001467 0.00001760 0.00002021 0.00002244
F7 0.00001450 0.00001734 0.00001998 0.00002223
F8 0.00001439 0.00001709 0.00001975 0.00002202
F9 0.00001433 0.00001685 0.00001953 0.00002182

and quadriweight.
In the top-left panel, the Epanechnikov kernel density es-

timations for all families, including the classical Epanechnikov
kernel, are displayed. The Epanechnikov kernel is known for its
triangular shape with a flattened peak, resulting in smooth den-
sity curves. The plots show variations among different families,
indicating the impact of hybridisation on the density estimation
process.

The top-right panel presents the biweight kernel density es-
timations for all families, including the classical biweight ker-

nel. The biweight kernel is recognised for its robustness to out-
liers, reflected in the smooth and robust density curves across
different families. Again, variations among families are ob-
served, showcasing the influence of hybridisation on density
estimation.

Also, in the left-bottom panel, the triweight kernel density
estimations for all families, including the classical triweight
kernel, are depicted. Similar to the biweight kernel, the tri-
weight kernel offers robust density estimates with smoother
curves compared to the Epanechnikov kernel. Variations among
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Table 8. Comparison of average global error of kernels in the cluster of families of hybrid kernels with the kernels in the family of classical kernels for four sample
sizes of heavy-tailed distribution.

AMISE∗

n Family (i) Epanechnikov Biweight Triweight Quadriweight
10 Classical 0.00345962 0.00403499 0.00453108 0.00496379

F1 0.00337894 0.00398087 0.00448998 0.00493048
F2 0.00329273 0.00391605 0.00443834 0.00488715
F3 0.00321427 0.00385115 0.00438531 0.00484202
F4 0.00314542 0.00378773 0.00433234 0.00479641
F5 0.00308694 0.00372642 0.00428000 0.00475087
F6 0.00303926 0.00366755 0.00422858 0.00470568
F7 0.00300263 0.00361131 0.00417826 0.00466101
F8 0.00297722 0.00355786 0.00412917 0.00461697
F9 0.00296317 0.00350727 0.00408140 0.00457364

25 Classical 0.00117845 0.00137364 0.00154191 0.00168865
F1 0.00115111 0.00135530 0.00152799 0.00167737
F2 0.00112187 0.00133333 0.00151048 0.00166268
F3 0.00109526 0.00131131 0.00149250 0.00164738
F4 0.00107191 0.00128980 0.00147453 0.00163192
F5 0.00105208 0.00126899 0.00145678 0.00161647
F6 0.00103592 0.00124902 0.00143933 0.00160114
F7 0.00102352 0.00122993 0.00142226 0.00158599
F8 0.00101494 0.00121179 0.00140560 0.00157105
F9 0.00101022 0.00119462 0.00138939 0.00155635

300 Classical 0.00002810 0.00003269 0.00003665 0.00004010
F1 0.00002746 0.00003226 0.00003632 0.00003983
F2 0.00002677 0.00003175 0.00003591 0.00003949
F3 0.00002615 0.00003123 0.00003549 0.00003913
F4 0.00002560 0.00003072 0.00003507 0.00003877
F5 0.00002514 0.00003023 0.00003465 0.00003840
F6 0.00002476 0.00002976 0.00003424 0.00003804
F7 0.00002447 0.00002932 0.00003384 0.00003769
F8 0.00002427 0.00002889 0.00003345 0.00003734
F9 0.00002416 0.00002848 0.00003306 0.00003699

1500 Classical 0.00000265 0.00000308 0.00000345 0.00000377
F1 0.00000259 0.00000304 0.00000342 0.00000375
F2 0.00000253 0.00000299 0.00000338 0.00000372
F3 0.00000247 0.00000294 0.00000334 0.00000368
F4 0.00000242 0.00000290 0.00000330 0.00000365
F5 0.00000238 0.00000285 0.00000326 0.00000361
F6 0.00000234 0.00000281 0.00000323 0.00000358
F7 0.00000231 0.00000277 0.00000319 0.00000355
F8 0.00000230 0.00000273 0.00000315 0.00000351
F9 0.00000229 0.00000269 0.00000312 0.00000348

families are evident, illustrating the impact of hybridisation on
density estimation.

Lastly, the right-bottom panel shows the quadriweight ker-
nel density estimations for all families, including the classical
quadriweight kernel. The quadriweight kernel assigns more
weight to central data points, resulting in exceptionally smooth
density estimates. Variations among families highlight the in-
fluence of hybridisation on the density estimation process.

Overall, the figure provides a comprehensive visualisation
of the density estimation performance of different kernel fam-

ilies, demonstrating the impact of hybridisation on enhancing
density estimation accuracy.

In Table 9, the average global error of hybrid kernels ver-
sus classical kernels is compared for the Life Span of Batteries
dataset with n = 40. Hybrid kernels consistently demonstrate
lower error values across all families and kernel types. As the
index i increases, indicating different hybrid kernel configura-
tions, there is a slight decrease in the average global error, in-
dicating improved accuracy. These results highlight the poten-
tial of hybrid kernels for enhancing density estimation tasks in
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Figure 2. Plots of (a) Epanechnikov kernel for all the families including the classical Epanechnikov kernel, (b) biweight kernel for all the families including the
classical biweight kernel, (c) triweight kernel for all the families including the classical triweight kernel, and (d) quadriweight kernel for all the families including
the classical quadriweight kernel using the lifespan of car batteries in years [24].

Table 9. Comparison of average global error of kernels in the cluster of families of hybrid kernels with the kernels in the family of classical kernels for Life Span of
Batteries dataset n = 40.

Family (i) Epanechnikov Biweight Triweight Quadriweight
Classical 0.0014719 0.0017152 0.0019248 0.0021077
F1 0.0014378 0.0016923 0.0019075 0.0020936
F2 0.0014014 0.0016649 0.0018857 0.0020753
F3 0.0013683 0.0016375 0.0018633 0.0020562
F4 0.0013392 0.0016107 0.0018409 0.0020370
F5 0.0013145 0.0015848 0.0018189 0.0020177
F6 0.0012943 0.0015599 0.0017970 0.0019986
F7 0.0012789 0.0015361 0.0017757 0.0019798
F8 0.0012682 0.0015135 0.0017550 0.0019611
F9 0.0012624 0.0014921 0.0017348 0.0019428

datasets like the Life Span of Batteries dataset, outperforming
classical kernels.

Like Table 9, Table 10 shows the performance of each hy-
brid kernel family based on their average global error. Lower
error values denote better prediction accuracy. For example,
the Epanechnikov kernel shows that the classical family has the
highest error, followed by F1, F2, and so forth, indicating de-
creasing error values across families. This suggests that the
classical family performs the poorest, while F9 performs the
best. Additionally, within each family, we can compare the per-
formance of different kernel types. For instance, in the classical
family, the Epanechnikov kernel exhibits the lowest error, sug-
gesting relatively better performance compared to other kernels
in the same family.

5. Discussion of results

In the domain of statistics, particularly within KDE, the
accuracy of an estimator or kernel is a critical metric, often
assessed through its error, commonly quantified as AMISE.
The guiding principle is straightforward: a kernel with lower
AMISE values exhibits greater accuracy compared to those
with higher values. Our analysis, spanning Tables 5 through 10,
is rooted in this principle, providing a meticulous comparative
examination of various families of kernels within the cluster.

The detailed examination of kernel performance across var-
ious distributions and sample sizes via a Monte Carlo study, as
outlined in Tables 5 through 8, provides compelling evidence of
the superior accuracy of hybrid kernels over classical kernels.
This analysis encompasses unimodal, multimodal, skewed, and
heavy-tailed distributions, offering a comprehensive view of
kernel efficiency through AMISE.

Starting with unimodal distributions, Table 5 illustrates that
at smaller sample sizes, such as n = 10, classical kernels, in-
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Figure 3. Plots of (a) Epanechnikov kernel for all the families including the classical Epanechnikov kernel, (b) biweight kernel for all the families including the
classical biweight kernel, (c) triweight kernel for all the families including the classical triweight kernel, and (d) quadriweight kernel for all the families including
the classical quadriweight kernel using the COVID-19 dataset [25].

Table 10. Comparison of average global error of kernels in the cluster of families of hybrid kernels with the kernels in the family of classical kernels for COVID-19
dataset n = 214.

AMISE∗

Family (i) Epanechnikov Biweight Triweight Quadriweight
Classical 0.000000945384 0.000001100160 0.00000123352 0.00000134978
F1 0.000000923751 0.000001085650 0.00000122252 0.00000134087
F2 0.000000900594 0.000001068250 0.00000120866 0.00000132925
F3 0.000000879507 0.000001050800 0.00000119442 0.00000131713
F4 0.000000861009 0.000001033740 0.00000118019 0.00000130488
F5 0.000000845316 0.000001017240 0.00000116611 0.00000129265
F6 0.000000832546 0.000001001390 0.00000115228 0.00000128050
F7 0.000000822777 0.000000986248 0.00000113874 0.00000126849
F8 0.000000816062 0.000000971848 0.00000112552 0.00000125664
F9 0.000000812439 0.000000958220 0.00000111265 0.00000124498

cluding Epanechnikov, biweight, triweight, and quadriweight,
exhibit higher average global errors compared to hybrid kernels.
This trend persists as the sample size increases to n = 25, where
hybrid kernels consistently outperform their classical counter-
parts. Among the hybrid kernels, family F9 emerges as the
most effective, achieving the lowest average global error across
all kernel types. This suggests that hybrid kernels are partic-
ularly adept at reducing estimation error for unimodal distri-
butions across all sample scenarios. As the sample size grows
to n = 300, the average global error decreases for all kernels,
but hybrid kernels continue to show a notable advantage, albeit
with a reduced margin. At the largest sample size of n = 1500,
the average global error across all kernels becomes minimal,
with hybrid kernels still providing slightly better performance,
particularly for F9.

Moving to multimodal distributions, Table 6 reinforces the
trend observed with unimodal distributions. Hybrid kernels

demonstrate superior performance at sample sizes n = 10,
n = 25, n = 300, and n = 1500. At smaller sample sizes, hy-
brid kernels reduce the average global error compared to clas-
sical kernels, and this advantage continues as the sample size
increases. The efficacy of hybrid kernels in managing complex
multimodal distributions is evident, although the differences be-
tween classical and hybrid kernels become less pronounced as
the sample size reaches n = 1500.

Table 7 further emphasises the superiority of hybrid ker-
nels in the setting of skewed distributions. When compared to
classical kernels, hybrid kernels considerably lower the average
global error at small sample sizes, such as n = 10, demonstrat-
ing their efficacy in handling asymmetric data. As the sample
size increases to n = 25, this benefit continues, with F9 exhibit-
ing the smallest average global error. Hybrid kernels continue
to be superior even as the sample size approaches n = 300, es-
pecially those belonging to families F6 to F9. Even with the
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highest sample size of n = 1500, hybrid kernels still outper-
form classical kernels by a small margin, even when the average
global error for all kernels approaches zero.

Table 8 extends this analysis to heavy-tailed distributions,
where hybrid kernels once again prove superior. The improve-
ment in accuracy with more intricate hybrid kernel configura-
tions underscores their efficacy in heavy-tailed density estima-
tion tasks.

The examination of real-life datasets, such as the lifespan
of car batteries with n = 40 and COVID-19 data with n = 214,
corroborates the superior performance of hybrid kernels. For
the car battery lifespan dataset, as given in Table 7, hybrid ker-
nels consistently outperform classical kernels across all types,
with F9 achieving the lowest average global error. A similar
trend is observed with the COVID-19 dataset given in Table 8,
where hybrid kernels demonstrate lower average global errors
compared to classical kernels, with F9 again providing the best
performance.

In essence, the comparative results across various distribu-
tions and real-life datasets highlight the superior performance
of hybrid kernels. These kernels consistently achieve lower
average global errors, especially with increasing sample sizes,
emphasising their effectiveness in capturing complex underly-
ing distributions. The findings reinforce the advantages of hy-
brid kernels in improving estimation accuracy across different
scenarios, with their performance benefits becoming more pro-
nounced as sample sizes grow.

6. Conclusion

This study introduced a novel family of hybrid beta polyno-
mial kernels, which consistently outperformed traditional poly-
nomial kernels in density estimation tasks. Through a com-
prehensive analysis of both simulated and real-life data, these
hybrid kernels demonstrated superior accuracy, particularly in
reducing average global errors across unimodal, multimodal,
skewed, and heavy-tailed distributions. The findings highlight
the robustness and versatility of hybrid kernels, showing their
effectiveness in a wide range of scenarios, especially as sam-
ple sizes increase. Their ability to handle complex distributions
and outperform classical kernels makes them a promising ad-
vancement in density estimation methodologies. The study’s
key contribution lies in its systematic comparison of hybrid and
classical kernels, with a specific focus on heavy-tailed distribu-
tions. The results emphasise the superior performance of hybrid
kernels, encouraging their adoption in density estimation and
providing a solid foundation for future research in areas such as
high-dimensional data analysis and advanced estimation tech-
niques. Further studies could also investigate the potential of
combining these kernels with other advanced estimation tech-
niques to enhance their performance across even broader sce-
narios.
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