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Abstract

In contemporary data analysis, there is a growing recognition of the need for flexible and adaptable probabilistic models that can effectively
capture complex dependencies and tail behaviors in real-life datasets. In response to this demand, this study proposes a new trigonometric gen-
eralized family of distribution called the ”transmuted cosine Topp-Leone G family”. Built upon this family, the proposed framework combines
the adaptability of the Topp-Leone distribution with the periodicity of the cosine function and the concept of transmutation theory. This combi-
nation results in a highly flexible framework that can accurately represent a wide range of real-life phenomena. The study also explores various
statistical properties of the introduced family, including survival and hazard functions, as well as moment and moment-generating functions. The
model parameters are estimated using the Maximum Likelihood method, and to ensure the reliability and consistency of the estimates, a Monte
Carlo simulation is conducted. Additionally, the study examines the impact of the distribution parameters on the shape of the resulting distribu-
tions, which can exhibit left-skew, right-skew, increasing, or decreasing patterns. Finally, empirical demonstrations are provided to illustrate the
effectiveness of the TrCTLG family models in fitting lifetime datasets.
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1. Introduction

In the field of mathematical modeling and statistical analy-
sis, researchers are constantly exploring new probability distri-
butions and their applications. Numerous probability models
have been proposed to model real-world phenomena in var-
ious disciplines, including technology, medicine, economics,
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abuammarosi@gmail.com (Abdulhameed Ado Osi )

biological studies, environmental sciences, and more. Given
the dynamic nature of modern datasets, it has become common
practice for researchers to develop generalized families of dis-
tributions. These families are typically obtained through para-
metric transformations to improve the performance of the par-
ent distributions. Some examples of such techniques include
the exponentiated G family [1], the Marshall Olkin family [2],
the beta-generated family [3], and the Kumaraswamy G family
[4].

Ref. [5] introduced a modern approach to generalize prob-
ability distributions using trigonometric transformations. This
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approach has gained popularity among statisticians due to its re-
markable success in effectively modeling real-world data, sur-
passing traditional methods. The trigonometric G families of-
fer numerous advantages, such as the simplicity of their func-
tions, and allow for more complex parameters that align with
the original distributions. Among the distributions within this
framework, the cosine G family has garnered significant inter-
est due to its desirable properties. Within this context, Ref. [6]
introduced the cosine Topp-Leone family by merging the cos-
G family with the Topp-Leone G family. Ref. [7] proposed
a modified cos-G family, which includes the extended cosine
Weibull, extended cosine power, and extended cosine general-
ized half-logistic models. Ref. [8] originated the odd Lomax
trigonometric generalized family, with a specific model called
the Lomax cosecant Weibull. Ref. [9] provided an expansion
of the cosine generalized family, including the extended cosine
Weibull, which exhibits various density shapes and hazard rate
functions.

The Topp-Leone distribution (TL) [10] is a probability dis-
tribution used for modeling lifetime data. It has been widely
applied in various fields of study. The TL distribution is known
for its versatility and applicability in modeling a wide range of
phenomena. An alternative to the exponentiated G distribution
called the Topp-Leone G (TL-G) family, was proposed by Ref.
[11]. The TL-G family and its several extensions have been
extensively studied in research. The Topp-Leone exponential-
G family [12] has been proven to be useful for modeling pos-
itive real data sets. This family was further extended to the
Topp-Leone Gompertz-G distribution [13], showing its capabil-
ity to handle non-monotonic hazard rate functions and heavy-
tailed data. Expanding on this work, Ref. [14] introduced the
Topp-Leone odd Lindey G family, which offers flexibility to the
model and has demonstrated its effectiveness in real-world data
applications. Lastly, Ref. [15] presented the inverted TL distri-
bution, which successfully simulates real datasets and covers a
range of hazard function shapes.

The transmuted G class of distributions has been used in
various statistical applications, demonstrating its flexibility and
usefulness in modeling real datasets. Several studies have in-
troduced and explored the properties of different transmuted
G families of distributions. Ref. [16] introduced the trans-
muted exponentiated G family, which was shown to be flexi-
ble and applicable to real datasets. Ref. [17] further expanded
on this with the Marshall Olkin transmuted generalized family,
and Ref. [18] introduced the transmuted Topp-Leone G family,
which also displayed useful properties and applications. These
families of distributions provide a range of options for model-
ing and analyzing data. Ref. [19] extended this further with the
transmuted exponential Topp-Leone distribution, which outper-
formed other distributions when applied to real-life datasets us-
ing certain baseline distributions.

In this study, we propose the Transmuted Cosine Topp-
Leone Family (TrCTL-G), which combines the flexibility of
the TL distribution with the periodicity of the cosine function
through transmutation. This family has the potential to explore
new approaches for modeling complex phenomena that exhibit
both stochastic and oscillatory characteristics.

2. TrCTL-G family

Here, we present the Transmuted Cosine Topp-Leone Fam-
ily (TrCTL-G). But we first present the Transmuted-G, Top-
Leone-G, and Cos-G families.

2.1. Transmuted-G Family

Transmuting refers to the process of introducing an addi-
tional parameter to a pre-existing distribution. Let G(x; ε) and
g(x; ε) represent the cumulative distribution function and prob-
ability density function, respectively, of a baseline distribution
with parameter ε. The cumulative distribution function (cdf)
and probability density function (pdf) of the transmuted G fam-
ily distribution, as derived by Shaw and Buckley [20], can be
expressed as follows:

FT D(x; θ, ε) = G(x, ε) [(1 + θ) − θG(x; ε)] , (1)

which can also be simplified as:

FT D(x; θ, ε) = (1 + θ)G(x; ε) − θ [G(x; ε)]2 . (2)

The pdf can be obtained by taking a first derivative of Eq. (1)
which becomes:

fT D(x; θ, ε) = g(x; ε) [(1 + θ) − 2θG(x; ε)] . (3)

2.2. Cosine-G family

The use of trigonometric transformation to generate new
distributions has attracted the interest of many researchers. In
their work, Ref. [21] introduced the cos-G family and defined
its cumulative distribution function (CDF) and probability den-
sity function (PDF) as follows:

Fcos−G(x; ε) = 1 − cos
[
π

2
G(x; ε)

]
; ; x ∈ R, (4)

fcos−G(x; ε) =
π

2
g(x; ε) sin

[
π

2
G(x; ε)

]
. (5)

2.3. Transmuted Cosine-G family

Here, we propose the Transmuted Cosine G family by com-
bining the Cos-G family and the Transmuted-G family. The
cumulative distribution function (cdf) and probability density
function (pdf) of the Transmuted-G family are expressed be-
low:

FTCG = (1 + θ)
[
1 − cos

[
π

2
G(x; ε)

]]
− θ

[
1 − cos

[
π

2
G(x; ε)

]]2
.

(6)

The pdf can be written as:

fTCG(x; θ, ε) =
π

2
g(x; ε) sin

(
π

2
G(x; ε)

)
[
(1 + θ) − 2θ

[
1 − cos

(
π

2
G(x; ε)

)]]
. (7)

2
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2.4. Topp-Leone-G family
The cumulative distribution function (CDF) and probability

density function (PDF) of the Topp-Leone Generalized family,
as introduced by Ref. [11], are given by:

FT LG(x; ε) = {G(x; ε)α [2 −G(x; ε)]α} =
[
1 −G(x; ε)

]α
, (8)

fT LG(x; ε) = 2αg(x; ε)G(x; ε)
[
1 −G(x; ε)2

]α−1
, (9)

where G(x; ε) = 1 −G(x; ε).
By combining the transmuted cosine G in Eq. (6) with the

Topp-Leone G in Eq. (8) as a parent distribution, we propose
a newly generalized transmuted cosine Topp-Leone G family
with the cumulative distribution function (CDF) and probability
density function (PDF) given as:

FTrCT L−G(x; θ, α, ε) = (1 + θ)
[
1 − cos

(
π

2

(
1 −G(x; ε)2

))α]
− θ

[
1 − cos

(
π

2

(
1 −G(x; ε)2

))α]2
(10)

fTrCT L−G(x; θ, α, ε) = (1+θ)παg(x; ε)G(x; ε)
(
1 −G(x; ε)2

)α−1

sin
[(
π

2

(
1 −G(x; ε)2

))α]
− 2θπαg(x; ε)G(x; ε)

(
1 −G(x; ε)2

)α−1

sin
[(
π

2

(
1 −G(x; ε)2

))α] [
1 − cos

(
π

2

(
1 −G(x; ε)2

))α]
, (11)

whereG(x; ε) = 1 −G(x; ε), α > 0, |θ| < 1.

The corresponding survival function failure rate or hazard
function of the TrCTL-G is derived as follows:

S (x) = 1 − FTrCLT−G(x; θ, α; ε)

S (x) = 1 −
[
(1 + θ)

[
1 − cos

(
π

2

(
1 −G(x; ε)2

))α]]
− θ

[
1 − cos

(
π

2

(
1 −G(x; ε)2

)α]2
]

h(x) =
fTrCLT−G(x; θ, α; ε)

1 − FTrCLT−G(x; θ, α; ε)
(12)

h(x) =
παg(x; ε)G(x; ε)

(
1 −G(x; ε)2

)α−1
sin

[(
π
2

(
1 −G(x; ε)2

))α]
−

[
(1 + θ) − 2θ

[
1 − cos

(
π
2

(
1 −G(x; ε)2

))α]]
1 −

[
(1 + θ)

[
1 − cos

(
π
2

(
1 −G(x; ε)2

))α]
− θ

[
1 − cos

(
π
2

(
1 −G(x; ε)2

))α]2] . (13)

3. Mathematical properties

3.1. Quantile function of the TrCTL-G family

We can derive the quantile function of the TrCTL-G family
of distribution as follows:

u = (1 + θ)
[
1 − cos

(
π

2

(
1 −G(x; ε)2

)α)]
− θ

[
1 − cos

(
π

2

(
1 −G(x; ε)2

)α)]2
, (14)

θ
[
1 − cos

(
π

2

(
1 −G(x; ε)2

)α)]2
− (1 + θ)[

1 − cos
(
π

2

(
1 −G(x; ε)2

)α)]
+ u = 0. (15)

To solve the nonlinear equation in Eq. (15) the quadratic equa-
tion formula is used to obtain:

q = G−1
(
1 −

[
1 −

[
2
π

arccos [1

−

 (1 + θ) −
√

(1 + θ)2 − 4θu
2θ


1
α


 , θ , 0 (16)

3.2. Useful expansion of the distribution

We provide a helpful representation of the probability den-
sity function (pdf) of TrCTL-G in this section. The Taylor se-

ries expansion provides the expansions of the sine and cosine
functions as follows:

sin t =
∞∑
j=0

(−1) j

(2 j + 1)!
t2 j+1, (17)

cos t =
∞∑

i=0

(−1)i

(2i)!
t2i. (18)

Applying Eq. (17) we have:

(
1 −G(x; ε)2

)α−1
sin

[
π

2

(
1 −G(x; ε)2

)α]
=

∞∑
k=0

(−1)k

(2k + 1)!

(
π

2

)2k+1 (
1 −G(x; ε)2

)2α(2k+1)−1
. (19)

Using binomial expansion

(1 − y)a =

∞∑
j=0

(−1) j
(

a
j

)
y j |y| < 1. (20)

Since (1 −G(x; ε)) < 1

G(x; ε)
[
1 −

(
1 −G(x; ε)2

)]2α(2k+1)−1
=

∞∑
k=0

∞∑
j=0

∞∑
l=0

(−1) j+k+l
(
π
2

)2k+1

(2k + 1)!
3
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×

(
2α(2k + 1) − 1

j

) (
2i + 1

l

)
(G(x; ε))l . (21)

Now,

(1 + θ)παg(x)G(x)
(
1 −G(x)2

)α−1
sin

[(
π

2

(
1 −G(x)2

))α]
=

(1 + θ)πα
∞∑

k=0

∞∑
j=0

∞∑
l=0

(−1) j+k+l
(
π
2

)2k+1

(2k + 1)!

(
2α(2k + 1) − 1

j

)
(

2i + 1
l

)
(G(x; ))lg(x). (22)

Applying series and binomial expansion[
1 − cos

(
π

2

(
1 −G(x; ε)2

)α)]
=

∞∑
i=0

∞∑
m=0

∞∑
n=0

(−1)i+m+n
(

2αi
m

) (
2m
n

)
[G(x)]n . (23)

The pdf of TrCTL-G can now be reduced to

fTrT L−G(x;α, θ, ε) =
∞∑

l=0

∞∑
n=0

M jklNinmHn+l(x), (24)

where

M jkl = πα

∞∑
k=0

∞∑
j=0

(−1) j+k+l
(
π
2

)2k+1

(2k + 1)!

×

(
2α(2k + 1) − 1

j

) (
2i + 1

l

)

Ninm = (1 + θ) − 2θ
∞∑

i=0

∞∑
m=0

(−1)i+m+n
(

2αi
m

) (
2m
n

)
.

3.3. Moments
The rth moment of the TrCTL-G can be obtained as:

µ
′

r =

∫ ∞

0
xr fTrCT L−G(x) dx

=

∫ ∞

0
xr

(
παg(x; ε)G(x; ε)

(
1 −G(x; ε)2

)α−1

× sin
[(
π

2

(
1 −G(x; ε)2

))α]
−

[
(1 + θ) − 2θ

[
1 − cos

(
π

2

(
1 −G(x; ε)2

))α]])
dx.... (25)

µ
′

r =

∞∑
l=0

∞∑
n=0

M jklNinm

∫ ∞

0
xr Hn+l(x)dx. (26)

We derive the moment-generating function of the TrCTL-G
below

MX(t) = E
[
etx

]
.

When applying the exponential expansion (Taylor series expan-
sion) we have, etx =

∑∞
r=0

xr tr

r! therefore, MX(t) = E
[

xr tr

r!

]
=

tr

r! E [xr]

...MX(t) =
tr

r!
µ
′

r.

3.4. Rényi’s entropy of TrCTL-G
A random variable’s entropy quantifies the degree of vari-

ation or uncertainty it possesses. It has diverse applications
across numerous disciplines, including data processing, statis-
tical physics, probability theory, engineering, communication
theory, and quantum physics. Suppose X represents a random
variable with a probability density function. The Rényi’s is de-
fined as:

IR(γ) =
1

1 − γ
log


∞∫
−∞

f (x)γdx

 , γ , 1,γ> 0. (27)

The following is the expression for the TrCTL-G family’ Rényi
entropy:

IR(γ) =
1

1 − γ
log


∞∫
−∞

fTrCT L−G(x)γdx

 , γ , 1,γ> 0. (28)

Substituting the pdf in Eq.(24), we can derive the Rényi entropy
for the TrCTL-G distributions as

IR(γ) =
1

1 − γ
log


∞∫
−∞

 ∞∑
l=0

∞∑
n=0

M jklNinmHn+l(x)

γdx

 ,
γ , 1,γ> 0. (29)

3.5. Parameter estimation
The maximum likelihood method is the most commonly

used technique for parameter estimation in the literature. It
is preferred for its accurate performance and consistent esti-
mation. Therefore, we will focus on estimating the parame-
ters of this family solely using maximum likelihood. Consider
a random sample of size n, denoted as x1, x2, ..., xn, from the
TrCTL-G distribution. We will be estimating a p x 1 vector of
parameters, denoted as η = (α, θ, ϵ)T . The following expression
represents the log-likelihood function:

ℓ = n log(π) + n log(θ) + n log(α) +
n∑

i=1

log g(xi; ε)+

n∑
i=1

log(1 −G(xi; ε)) + (α − 1)
n∑

i=1

log(1 − (1 −G(xi; ε))2)+

n∑
i=1

log
(
sin

(
π

2
(1 − (1 −G(xi; ε))2)α

))
+

n∑
i=1

log
(
(1 + θ) − 2θ

(
1 − cos

(
π

2
(1 − (1 −G(xi; ε))2)α

)))
.

(30)

The score function components U(ϑ) can be obtained by
taking the partial derivative of the log-likelihood function
U(ϑ) =

(
δℓ/δα,

δℓ/δθ,
δℓ/δε

)T
as follows:

δℓδα =
n
α
+

n∑
i=1

log(1 − (1 −G(xi; ε))2)

4
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+

π2
n∑

i=1

(1 − (1 −G(xi; ξ)))

× log(1 − (G)2) cot
[
π

2
(1 − (G)2)

α
])

−

2θ n∑
i=1

(1 − (G)) × log(1 − (G)2) sin
[
π
2 (1 − (G)2)

α]
(1 + θ) − 2θ

(
1 − cos

(
π
2 (1 − (1 −G(xi; ε))2)α

))  ,
(31)

where G = 1 −G(xi; ξ).

δℓ/δθ =

n∑
i=1

1 − 2
(
1 − cos

[
π
2 (1 − (1 −G(xi; ε))2)α

])
(1 + θ) − 2θ

(
1 − cos

(
π
2 (1 − (1 −G(xi; ε))2)α

)) .
(32)

δℓ

δε
=

n∑
i=1

g′(xi; ε)
g(xi; ε)

−

n∑
i=1

G′(xi; ε)
1 −G(xi; ε)

+ 2(α − 1)
n∑

i=1

G′(xi; ε)
1 − (1 −G(xi; ε))2

+ απ

n∑
i=1

G′(xi; ε)(1 −G(xi; ε))
(
1 − (1 −G(xi; ε))2

)α−1

cot
(
π

2

(
1 − (1 −G(xi; ε))2

)α)
−

2θαπ
n∑

i=1

G′(xi; ε)(G0)
(
1 − (G0)2

)α−1
sin

(
π
2

(
1 − (G0)2

)α)
(1 + θ) − 2θ

(
1 − cos

(
π
2 (1 − (G0)2)

α)) ,

(33)

where G0 = 1 −G(xi; ε), g′(xi; ε) = δg(xi; ε)/δε and G′(xi; ε) =
δG(xi; ε)/δε.

MLE estimates can be obtained by setting Uα = 0, Uθ =
0, and Uε = 0 and solving the resulting equations to obtain
the maximum likelihood estimators. Moreover, these equations
may be solved analytically; however, they may also need to be
solved numerically.

4. Some special cases of TrCLT-G

In this section, we present some sub-models of the TrCLT-
G distribution, namely the Transmuted Cosine Topp-Leone
Weibull (TrCLTW-G) and the Transmuted Cosine Topp-Leone
exponential (TrCLTE-G).

4.1. Transmuted cosine Topp-Leone Weibull

The new distribution obtained from the family is obtained
by replacing the G(x) and g(x) with the cumulative distribu-
tion function and probability density function of the Weibull
distribution, respectively. This results in the Transmuted Co-
sine Topp-Leone Weibull (TrCTLW) distribution, which is pre-
sented below with its probability density function.

fTrCT L−W (x; θ, α, λ, β) = (1 + θ)πα
(
βλxβ−1e−λxβ

)
e−λxβ(

1 −
(
e−λxβ

)2
)α−1

sin
[(
π

2

(
1 −

(
e−λxβ

)2
))α]
− 2θπα

(
βλxβ−1e−λxβ

)
e−λxβ

(
1 −

(
e−λxβ

)2
)α−1

sin
[(
π

2

(
1 −

(
e−λxβ

)2
))α]

[
1 − cos

(
π

2

(
1 −

(
e−λxβ

)2
))α]
. (34)

Figure 1 presents the probability density function and haz-
ard graph of the TrCTLW distribution. The probability density
function shows a reverse J shape, indicating right skewness, and
a nearly symmetrical shape. The hazard function, on the other
hand, exhibits increasing and decreasing patterns. These char-
acteristics suggest that the TrCTLW distribution is highly flex-
ible for modeling various lifetime datasets. Figure 2 displays
the cumulative distribution function (cdf) and survival plots of
the TrCTLW distribution.

4.2. Transmuted cosine Topp-Leone exponential
Suppose G(x) and g(x) are the cdf and the pdf of the expo-

nential distribution. We can derive a new distribution from the
family namely the Transmuted Cosine Topp-Leone Exponential
(TrCTLE) with the following pdf.

fTrCT L−E(x; θ, α, λ) = (1 + θ)πα
(
λe−λx

)
e−λx

(
1 −

(
e−λx

)2
)α−1

sin
[(
π

2

(
1 −

(
e−λx

)2
))α]
− 2θπα

(
λe−λx

)
e−λx

(
1 −

(
e−λx

)2
)α−1

sin
[(
π

2

(
1 −

(
e−λx

)2
))α] [

1 − cos
(
π

2

(
1 −

(
e−λx

)2
))α]
. (35)

Figure 3 presents the pdf and hazard graphs for the TrC-
TLE distribution with different distribution parameter values.
The pdf shows a right-skewed and nearly symmetrical shape.
The hazard of the TrCTLE distribution exhibits a shape that in-
creases and then decreases. These characteristics indicate the
high flexibility of the TrCTLE distribution in modeling various
lifetime datasets. Figure 4 displays the cdf and survival func-
tion plots of the TrCTLE.

4.3. Simulation study
Here, we conducted a simulation study to evaluate the ac-

curacy and performance of MLE in estimating the parameters
of the TrCTLW distribution. We produced samples of sizes n
= 50, 100, 250, 500, and 1000 for 1000 iterations using the
quantile function of the TrCTLW distribution.

Two sets of parameter values were assigned: set one with
θ = −0.5, α = 0.9, λ = 0.1, β = 1.0, and set two with θ = 0.6,
α = 1.0, λ = 0.4, β = 1.6. The simulation results compare the
actual parameter values with the estimates. Measures such as
root mean square errors (RMSE) and average biases (AB) were
obtained for both instances and displayed in Table 1.

It is observed that as the sample size increases, both the
biases and the root mean square errors decrease, approaching
zero. Based on these results, we can conclude that the MLE
method is sufficiently accurate in estimating the parameters of
the TrCTLW distribution.
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Figure 1: TrCTLW PDF and hazard plots.

Figure 2: TrCTLW Survival and CDF plots.

Figure 3: TrCTLE PDF and hazard plots.

5. Applications

In this section, we demonstrate the potential of the TrCTLG
family in practical applications by applying it to lifetime data
sets. We also investigate the efficiency and effectiveness of
the family in fitting real-world data. All computations are per-
formed using the R program. We examine two data sets, com-

paring the TrCTLW and TrCTLE fitting with the cosine Topp-
Leone Weibull (CTLW) and Weibull (WD) distributions. To
illustrate the goodness-of-fit, we consider various metrics in-
cluding the Anderson-Darling statistic (AD), the Kolmogorov-
Smirnov statistic (KS), and Cramer-von Mises (CVM). Addi-
tionally, we compute the values of negative log-likelihood and
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Figure 4: TrCTLE Survival and CDF plots.

Table 1: The outcome of simulation for the model’s parameter estimation based on MLE.

SET one
α θ λ β

Actual values Sample size AB RMSE AB RMSE AB RMSE AB RMSE
α = 0.9 50 0.0909 0.1637 -0.0090 0.1987 -0.0403 0.0478 -0.0143 0.1189
θ = −0.5 100 0.0878 0.1408 0.0129 0.1358 0.0416 0.0463 -0.0205 0.0962
λ = 0.1 250 0.0813 0.1180 0.0257 0.0965 -0.0428 0.0454 -0.0241 0.0736
β = 1.0 500 0.0858 0.1091 0.0283 0.0749 -0.0424 0.0439 -0.0301 0.0600

1000 0.0850 0.0986 0.0285 0.0574 -0.0425 0.0433 -0.0316 0.0505
SET two

α θ λ β

Actual values Sample size AB RMSE AB RMSE AB RMSE AB RMSE
α = 1.0 50 0.1940 0.2969 -0.0277 0.3040 -0.1449 0.1658 -0.0997 0.2373
θ = 0.6 100 0.1906 0.2549 -0.0289 0.2056 -0.1470 0.1597 -0.1163 0.1930
λ = 0.4 250 0.1664 0.2087 -0.0098 0.1418 -0.1556 0.1612 -0.1178 0.1560
β = 1.6 500 0.147 0.1783 0.0094 0.1103 -0.1619 0.1650 -0.1132 0.1396

1000 0.1329 0.1619 0.0093 0.0812 -0.1653 0.1677 -0.1033 0.1295

Table 2: Model parameters MLE estimates and information cri-
teria for dataset one.

Model α θ λ β AIC CAIC BIC
TrCTLW 0.3502 -0.6783 2.8620 0.5331 229.16 229.27 244.54
TrCTLE 2.2955 -0.7307 1.4308 - 285.05 285.12 296.59
CTLW 0.3837 - 3.3219 0.3837 233.56 233.63 245.10
WD - - 2.7289 1.1329 231.55 231.59 239.24

the information criteria: the Akaike Information Criteria (AIC),
the Consistent Akaike Information Criteria (CAIC), and the
Bayesian Information Criteria (BIC). The model with the low-
est criterion values indicates the best fit, as well as the model
with the smallest KS statistic and the greatest p-value.

Data one: This dataset, as shown in Table B.1, includes the
total milk production from the first birth of 107 cows of the
SINDI breed. The data was collected from [22].

Data two: The Pediatric Oncology Group (POG) presented
this dataset of standard-risk acute lymphocytic leukemia in chil-
dren in May 1981 and published it in [23].

Using dataset one, Table 2 presents the MLE estimates of

Table 3: The test results for the Goodness-of-fit for dataset two.

Model ℓ KS (p-value) AD (p-value) CVM (p-value)
TrCTLW -110.58 0.08 (0.015) 2.44 (<0.0001) 0.43 (<0.0001)
TrCTLE -139.52 0.14 (<0.0001) 7.31 (<0.0001) 1.26 (<0.0001)
CTLW -113.78 0.09 (0.005) 8.92 (<0.0001) 1.50 (<0.0001)
WD -113.78 0.10 (0.04) 8.92 (<0.0001) 1.50 (<0.0001)

the TrCTLW, the TrCTLE, the CTLW, and the Weibull distri-
butions as well as the results of the information criteria (AIC,
BAIC, and BIC). The TrCTLW distribution demonstrates the
lowest values of the information criteria, indicating that it fits
the data better. Additionally, Table 3 displays the log-likelihood
and the values of KS, AD, and CVM, along with their respec-
tive p-values (in parentheses). The proposed distribution ap-
pears to be a highly competitive model for this data, as the con-
sidered metrics have lower values and the probability value of
the Kolmogorov-Smirnov statistics is greater than those of the
other models.

Using dataset two, Table 4 displays the statistics AIC,
CAIC, and BIC for all models studied. When contrasted with
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Table 4: the model parameters MLE estimates and information
criteria for the dataset two.

Model α θ λ β AIC CAIC BIC
TrCTLW 0.1246 -0.6058 5.8758 4.7018 -48.97 -48.58 -41.28
TrCTLE 1.6035 -0.6821 2.2111 - -10.66 -10.42 -2.64

CTLW 0.1485 - 6.8868 5.0200 -48.38 -48.15 -40.37
WD - - 2.6012 5.3818 -38.69 -38.58 -33.35

Table 5: The test results for the Goodness-of-fit for dataset two.

Model ℓ KS (p-value) AD (p-value) CVM (p-value)
TrCTLW 28.49 0.06 (0.84) 0.39 (0.37) 0.06 (0.38)
TrCTLE 8.33 0.12 (0.07) 3.80 (<0.0001) 0.62 (<0.0001)

CTLW 27.19 0.08 (0.56) 0.64 (0.09) 0.10 (0.10)
WD 21.34 0.08 (0.45) 0.64 (0.09) 0.10 (0.11)

Figure 5: Empirical probability density function plots for the
fitted distributions on dataset one.

the values of the other three considered models, the TrCTLW
values are smaller than those of the other distributions, indicat-
ing that this novel distribution is a highly competitive model for
these data. Table 5 shows that TrCTLW has the greatest KS p-
value and the lowest KS, AD, and CVM values for dataset two.
This illustrates that the TrCTLW distribution performs better in
fitting this dataset. However, we demonstrate how well the pro-
posed distribution fits the real data by plotting the empirical pdf
of the TrCTLW distribution against other competing models for
both datasets one and two, respectively. We display these plots
in Figure 5 and Figure 6 which reveal that, in terms of model fit-
ting the TrCTLW superior over other models for both datasets.
Based on this, we can conclude that TrCTLW better fits the two
data.

Figure 6: Empirical probability density function plots for the
fitted distributions on dataset two.

6. Conclusions

In this study, we introduced a new trigonometric family of
distributions called the Transmuted Cosine Topp-Leone G fam-
ily (TrCTLG). This family combines transmutation techniques
with the Cosine Topp-Leone G family to create distributions
with unique properties. We derived the corresponding cumu-
lative distribution and probability density functions, as well as
their expansions. Additionally, we investigated various statis-
tical characteristics of the TrCTLG family, such as the quan-
tile, hazard, survival functions, entropy, moments, and gener-
ating functions. To estimate the model parameters, we em-
ployed the maximum likelihood estimation and evaluated the
method’s performance through Monte Carlo simulation. The
results of our study demonstrate the flexibility and consistency
of the maximum likelihood estimates. As the sample size in-
creases, the values of AB and RMSE decrease. To further val-
idate our findings, we applied the TrCTLG distribution to two
real datasets: a cow milk production dataset and an acute lym-
phocytic leukemia dataset. Our analysis revealed that the pro-
posed Transmuted Cosine Topp-Leone-Weibull model outper-
forms other important competitors, including the Cosine Topp-
Leone-Weibull and Weibull distributions. Therefore, the prac-
tical application of our model provides evidence that it can ef-
fectively model lifetime data. Moreover, we believe that the
TrCTLG family has the potential for application in other fields
of knowledge.
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Appendix A.

Program developed in R for the plot of the pdf and hazard
function of the Transmuted Cosine Topp-Leone Weibull distri-
bution.

${#TrCTLW PDF plots
# this is used to resize the current plot window.
resize.win <- function(Width=6, Height=6)
{
# works for windows
dev.off(); # dev.new(width=6, height=6)
windows(record=TRUE, width=Width, height=Height)
}

x=c(0,1)

y=c(0,1)

plot(x,y)

resize.win(25,8)

#==========================

par( mfrow=c(1,2),oma = c(1, 2, 2, 2),mar = c(4, 4, 1, 2))

x<-seq(0,5,length=1000)

alpha=1.5

theta=0.6

lambda=0.5

beta=0.3

Gbar = exp(-lambda*x^beta)

g = beta*lambda*x^(beta-1)*exp(-lambda*x^beta)

H = 1-cos((pi/2)*(1-Gbar^2)^alpha)

h = pi*alpha*g*Gbar*(1-Gbar^2)^(alpha-1)*sin((pi/2)*(1-Gbar^2)^alpha)

f = h*(1+theta-2*theta*H)

fdd13<-f

plot(x,fdd13,type="l",lty=1,lwd=3.,col="black",ylab="f(x)")}$

${#TrCTLW hazard plots

x<-seq(0,4,length=1000)

alpha=4.8

theta=0.5

lambda=1.8

beta=0.1

Gbar = exp(-lambda*x^beta)

g = beta*lambda*x^(beta-1)*exp(-lambda*x^beta)

H = 1-cos((pi/2)*(1-Gbar^2)^alpha)

h = pi*alpha*g*Gbar*(1-Gbar^2)^(alpha-1)*sin((pi/2)*(1-Gbar^2)^alpha)

f = h*(1+theta-2*theta*H)

fdd13<-f

F = (1+theta)*H-theta*H^2

h=fdd13/(1-F)

plot(x,h,type="l",lty=1,lwd=3.,col="black",ylab="h(x)")}$

${#TrCTLW survival plots

par( mfrow=c(1,2),oma = c(1, 2, 2, 2),mar = c(4, 4, 1, 2))

x<-seq(0,4,length=1000)

alpha=2.0

theta=0.1

lambda=0.5

beta =1.2

Gbar = exp(-lambda*x^beta)

g = beta*lambda*x^(beta-1)*exp(-lambda*x^beta)

H = 1-cos((pi/2)*(1-Gbar^2)^alpha)

F = (1+theta)*H-theta*H^2

S = 1-F

plot(x,S,type="l",lty=1,lwd=3.,col="black",ylab="S(x)")}$

${#TrCTLW CDF plots

x<-seq(0,5,length=1000)

alpha=3.0

theta=0.2

lambda=0.6

beta=1.2

Gbar = exp(-lambda*x^beta)

g = beta*lambda*x^(beta-1)*exp(-lambda*x^beta)

H = 1-cos((pi/2)*(1-Gbar^2)^alpha)

F = (1+theta)*H-theta*H^2

plot(x,F,type="l",lty=1,lwd=3.,col="black",ylab="F(x)")}$

Codes for maximum likelihood estimation simulations

${#####simulation of mle

rm(list=ls(all=TRUE))

sink("TrCTL SIMULATION.doc")

####pdf

pdfTrCTL = function(x,alpha,theta,lambda,beta)

{ Gbar = exp(-lambda*x^beta)

g = beta*lambda*x^(beta-1)*exp(-lambda*x^beta)

H = 1-cos((pi/2)*(1-Gbar^2)^alpha)

h = pi*alpha*g*Gbar*(1-Gbar^2)^(alpha-1)*sin((pi/2)*(1-Gbar^2)^alpha)

f = h*(1+theta-2*theta*H)

return(f)

}

###cdf

cdfTrCTL = function(x,alpha,theta,lambda,beta)

{ Gbar = exp(-lambda*x^beta)

H = 1-cos((pi/2)*(1-Gbar^2)^alpha)

F = (1+theta)*H-theta*H^2

return(F)
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}

#likelihood

pdf<-function(par,x){

alpha<-par[1]; theta<-par[2];lambda<-par[3];beta<-par[4]

val<- -sum(log( pdfTrCTL(x,alpha,theta,lambda,beta)))

val

}

#quantile function

qu<-function(u,alpha,theta,lambda,beta){

T = ((1+theta)-sqrt(((1+theta)^2)-4*theta*u))/(2*theta)

Y =((2/pi)*acos(1-T))^(1/alpha)

P =((1/lambda)*-log(1-Y))^(1/beta)

return(P)

}

#function to do the simulation

eqm<-function(n,alpha1,theta1,lambda1,beta1){

plot(0,0,ylim = c(0,1000))

alpha<-theta<-lambda<-beta<-c();

set.seed(123)

for (i in 1:1000){

u<-runif(n = n,min = 0,max = 1)

data<-qu(u,alpha1,theta1,lambda1,beta1)

hat<-try(optim(c(alpha1,theta1,lambda1,beta1),pdf,x=data,control =

list(maxit = 60)),silent=F)

alpha<-c(alpha,hat$par[1])

theta<-c(theta,hat$par[2])

lambda<-c(lambda,hat$par[3])

beta<-c(beta,hat$par[4])

abline(h=i)

}

means<-c(mean(alpha),mean(theta),mean(lambda),mean(beta))

vars<-c(var(alpha),var(theta),var(lambda),var(beta))

Bias<-means-c(alpha1,theta1,lambda1,beta1)

RMSE<-(vars+Bias^2)^(0.5)

#par( mfrow=c(3,3),oma = c(1, 2, 2, 2),mar = c(4, 4, 1, 2))

#plot(RMSE,lty=1,type="l",xlab="sample size")

result<-new.env()

result$means<-round(means,4)

result$Bias<-round(Bias,4)

result$RMSE<-round(RMSE,4)

return(as.list(result))

}

#eqm(n,alpha,theta,lambda,beta)}$

${#TrCTLW

pdfTrCTLW = function(par,x){

lambda = par[1]

beta = par[2]

alpha = par[3]

theta = par[4]

Gbar = exp(-lambda*x^beta)

g = beta*lambda*x^(beta-1)*exp(-lambda*x^beta)

H = 1-cos((pi/2)*(1-Gbar^2)^alpha)

h = pi*alpha*g*Gbar*(1-Gbar^2)^(alpha-1)*sin((pi/2)*(1-Gbar^2)^alpha)

f = h*(1+theta-2*theta*H)

return(f)

}

###cdf

cdfTrCTLW = function(par,x){

lambda = par[1]

beta = par[2]

alpha = par[3]

theta = par[4]

Gbar = exp(-lambda*x^beta)

H = 1-cos((pi/2)*(1-Gbar^2)^alpha)

F = (1+theta)*H-theta*H^2

return(F)

}

set.seed(0)

result_1 = goodness.fit(pdf = pdfTrCTLW, cdf = cdfTrCTLW,

starts = c(0.1,0.1,0.1,-0.1), data = dat, method =

"PSO",

domain = c(0,Inf),mle = NULL, lim_inf = c(0,0,0,0),

lim_sup = c(2,2,2,2), S = 250, prop=0.1, N=50)}$

Appendix B.
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Table B.1: Lifetime data presentation.

Data Observation
Dataset one 0.4365, 0.4260, 0.5140, 0.6907, 0.7471, 0.2605, 0.6196, 0.8781, 0.4990,

0.6058, 0.6891, 0.5770, 0.5394, 0.1479, 0.2356, 0.6012, 0.1525, 0.5483,
0.6927, 0.7261, 0.3323, 0.0671, 0.2361, 0.4800, 0.5707, 0.7131, 0.5853,
0.6768, 0.5350, 0.4151, 0.6789, 0.4576, 0.3259, 0.2303, 0.7687, 0.4371,
0.3383, 0.6114, 0.3480, 0.4564, 0.7804, 0.3406, 0.4823, 0.5912, 0.5744,
0.5481, 0.1131, 0.7290, 0.0168, 0.5529, 0.4530, 0.3891, 0.4752, 0.3134,
0.3175, 0.1167, 0.6750, 0.5113, 0.5447, 0.4143, 0.5627, 0.5150, 0.0776,
0.3945, 0.4553, 0.4470, 0.5285, 0.5232, 0.6465, 0.0650, 0.8492, 0.8147,
0.3627, 0.3906, 0.4438, 0.4612, 0.3188, 0.2160, 0.6707, 0.6220, 0.5629,
0.4675, 0.6844, 0.3413, 0.4332, 0.0854, 0.3821, 0.4694, 0.3635, 0.4111,
0.5349, 0.3751, 0.1546, 0.4517, 0.2681, 0.4049, 0.5553, 0.5878, 0.4741,
0.3598, 0.7629, 0.5941, 0.6174, 0.6860, 0.0609, 0.6488, 0.2747

Dataset two 1.3, 1.0, 1.2, 0.9, 1.1, 0.8, 0.5, 1.0, 0.7, 0.5, 1.7, 1.1, 0.8, 0.5, 1.2, 0.8, 1.1,
0.9, 1.2, 0.9, 0.8, 0.6, 0.3, 0.8, 0.6, 0.4, 1.1, 1.1, 0.2, 0.8, 0.5, 1.1, 0.1, 0.8,
1.7, 1.0, 0.8, 1.0, 0.8, 1.0, 0.2, 0.8, 0.4, 1.0, 0.2, 0.8, 1.4, 0.8, 0.5, 1.1, 0.9,
1.3, 0.9, 0.4, 1.4, 0.9, 0.5, 1.7, 0.9, 0.8, 0.8, 1.2, 0.9, 0.8, 0.5, 1.0, 0.6, 0.1,
0.2, 0.5, 0.1, 0.1, 0.9, 0.6, 0.9, 0.6, 1.2, 1.5, 1.1, 1.4, 1.2, 1.7, 1.4, 1.0, 0.7,
0.4,0.9, 0.7, 0.8, 0.7, 0.4, 0.9, 0.6, 0.4, 1.2, 2.0, 0.7, 0.5, 0.9, 0.5, 0.9, 0.7,
0.9, 0.7, 0.4, 1.0, 0.7, 0.9, 0.7, 0.5, 1.3, 0.9, 0.8, 1.0, 0.7, 0.7, 0.6, 0.8, 1.1,
0.9, 0.9, 0.8, 0.8, 0.7, 0.7, 0.4, 0.5, 0.4, 0.9, 0.9 , 0.7, 1.0, 1.0, 0.7, 1.3, 1.0,
1.1, 1.1, 0.9, 1.1, 0.8, 1.0, 0.7, 1.6, 0.8, 0.6, 0.8, 0.6, 1.2,0.9, 0.6, 0.8, 1.0,
0.5, 0.8, 1.0, 1.1, 0.8, 0.8, 0.5, 1.1, 0.8, 0.9, 1.1, 0.8, 1.2, 1.1, 1.2, 1.1, 1.2,
0.2, 0.5, 0.7, 0.2,0.5, 0.6, 0.1, 0.4, 0.6, 0.2, 0.5, 1.1, 0.8, 0.6, 1.1, 0.9, 0.6,
0.3, 0.9, 0.8, 0.8, 0.6, 0.4, 1.2, 1.3, 1.0,0.6, 1.2, 0.9, 1.2, 0.9, 0.5, 0.8, 1.0,
0.7, 0.9, 1.0, 0.1, 0.2, 0.1, 0.1, 1.1, 1.0, 1.1, 0.7, 1.1, 0.7, 1.8, 1.2, 0.9, 1.7,
1.2, 1.3, 1.2, 0.9, 0.7, 0.7, 1.2, 1.0, 0.9, 1.6, 0.8, 0.8, 1.1, 1.1, 0.8, 0.6, 1.0,
0.8, 1.1,0.8, 0.5, 1.5, 1.1, 0.8, 0.6, 1.1, 0.8, 1.1, 0.8, 1.5, 1.1, 0.8, 0.4, 1.0,
0.8, 1.4, 0.9, 0.9, 1.0, 0.9, 1.3, 0.8, 1.0, 0.5, 1.0, 0.7, 0.5, 1.4, 1.2, 0.9, 1.1,
0.9, 1.1, 1.0, 0.9, 1.2, 0.9, 1.2, 0.9, 0.5, 0.9, 0.7, 0.3,1.0, 0.6, 1.0, 0.9, 1.0,
1.1, 0.8, 0.5, 1.1, 0.8, 1.2, 0.8, 0.5, 1.5, 1.5, 1.0, 0.8,1.0, 0.5, 1.7, 0.3, 0.6,
0.6, 0.4, 0.5, 0.5, 0.7, 0.4, 0.5, 0.8, 0.5, 1.3, 0.9, 1.3, 0.9, 0.5, 1.2, 0.9, 1.1,
0.9, 0.5, 0.7, 0.5, 1.1 , 1.1, 0.5, 0.8, 0.6, 1.2, 0.8, 0.4, 1.3, 0.8, 0.5, 1.2, 0.7,
0.5, 0.9, 1.3, 0.8, 1.2, 0.9.
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