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Abstract

In recent years, the significance of machine learning in agriculture has surged, particularly in post-harvest monitoring for sustainable aquaculture.
Challenges like heterogeneity, irrelevant variables and multicollinearity hinder the implementation of smart monitoring systems. However, this
study focuses on investigating heterogeneity among drying parameters that determine the moisture content removal during seaweed drying due
to its limited attention, particularly within the field of agriculture. Additionally, a heterogeneity model within machine learning algorithms is
proposed to enhance accuracy in predicting seaweed moisture content removal, both before and after the removal of heterogeneity parameters and
also after the inclusion of single-eliminated heterogeneity parameters. The dataset consists of 1914 observations with 29 independent variables,
but this study narrows down to five: Temperature (T1, T4, T7), Humidity (H5), and Solar Radiation (PY). These variables are interacted up to
second-order interactions, resulting in 55 variables. Variance inflation factor and boxplots are employed to identify heterogeneity parameters. Two
predictive machine learning models, namely random forest and elastic net are then utilized to identify the 15 and 20 highest important parameters
for seaweed moisture content removal. Evaluation metrics (MSE, SSE, MAPE, and R-squared) are used to assess model performance. Results
demonstrate that the random forest model outperforms the elastic net model in terms of higher accuracy and lower error, both before and after
removing heterogeneity parameters, and even after reintroducing single-eliminated heterogeneity parameters. Notably, the random forest model
exhibits higher accuracy before excluding heterogeneity parameters.
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1. Introduction

Machine learning has gained increasing popularity in cur-
rent technology, being recognized as a branch of artificial in-
telligence (AI) where AI can comprehend and create systems

∗Corresponding Author Tel. No.: +6-014-954-3405;
Email address: majidkhanmajaharali@usm.my (Majid Khan Majahar

Ali)

exhibiting intelligent characteristics [1]. In fact, machine learn-
ing is often linked to the concept of big data. Recently, the
significance of machine learning has markedly increased in the
field of agriculture. Given its pivotal role in our daily lives and
the global economy, agriculture has embraced the integration
of smart farming practices. These practices heavily rely on ma-
chine learning algorithms, utilizing various components such
as sensors, drones and remote sensing to address challenges,
including the estimation of food production, contributing to the
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promotion of sustainable agricultural practices [2].
Machine learning has been applied by many authors in the

field of agriculture. For instance, Ibidoja et al. [3], used ma-
chine learning algorithms such as boosting, bagging, random
forest and support vector machine to determine the significant
of drying parameters of seaweed. Furthermore, Arjasakusuma
et al. [4], applied variable selection using machine learning
techniques in their study to estimate forest heights. Lim et al.
[5], utilized ridge regression to determine the drying parameters
of fish.

The consumption of seaweed is increasing due to its ben-
eficial nutritional properties and its potential uses in the food,
cosmetics and pharmaceutical industries [6]. Primarily culti-
vated for carrageenan, seaweed has diverse uses in food, pet
food production, and cosmetics [7]. The carrageenan-bearing
seaweed sector is based on a few processes, such as cultivation,
harvesting, post-harvesting (drying), and marketing. Research
by Lomartire et al. [8], highlighted the seaweed’s significant
nutritional value, rich in vitamins, minerals, dietary fibers, pro-
teins, essential amino acids, and polyphenols with antioxidant
and anti-inflammatory properties. The use of seaweed in agri-
culture is especially emphasized since it ensures chemical-free
soils and crops, which is beneficial to human health. Conse-
quently, studying seaweed is crucial to discover new bioactive
substances that will be beneficial to both human and animal
health.

Over the past few decades, the method of preserving food
products through drying has gained significant popularity. This
practice plays a crucial role as a post-processing technique,
serving as an essential means of preserving agricultural crops
and marine harvest [5]. Surprisingly, seaweed undergoes the
drying process without any negative impact on its quality before
it can be utilized for other purposes. The high-water content of
fresh seaweed, ranging from 75% to 85%, makes drying a piv-
otal step that hinders the growth of microorganisms, thereby
preventing spoilage and mold formation. Seaweed generally
exhibits hydrophilic properties and the presence of hydrophilic
surface groups like hydroxyl, carboxyl, and sulphate groups en-
ables effective interaction with water molecules [9]. The solar
drier stands out as the optimal method for seaweed drying, fa-
cilitating the rapid reduction of water content. Various types
of solar driers with exclusive technical performances have been
designed and developed worldwide. Among these, the appli-
cation of Internet of Things (IoT)-based solar drying system
employing the v-Groove Hybrid Solar Drier (v-GHSD), as pro-
posed by Ali et al. [7], demonstrated enhanced effectiveness in
monitoring the drying process [5].

Post-harvest monitoring systems play a vital role in ensur-
ing the sustainability of aquaculture production. Nevertheless,
challenges persist in implementing smart monitoring systems
for post-harvest management, with issues such as heterogene-
ity, irrelevant variables, and multicollinearity posing significant
obstacles. Heterogeneity emerges as a prominent issue within
the field of big data in agriculture. Heterogeneity denotes the
extent of variability present in a dataset, referring to the degree
to which a system differs from complete uniformity [10]. Var-
ious factors contribute to heterogeneity, including differences

in parameters and variations in units for temperature, relative
humidity, wind, and solar radiation, as well as variability in
variances. Examining this variability is essential to prevent in-
accuracies in findings and conclusions, as it can result in incon-
sistent estimations and distort the overall findings [11]. Nunes
et al. [10], have also discovered that if heterogeneity is not ac-
curately measured, then it is impossible to precisely determine
its impact.

In addition to heterogeneity, prediction models can become
problematic when incorporating an excessive number of vari-
ables, especially if irrelevant ones are included, hence nega-
tively impacting the overall model performance. Obstacles such
as multicollinearity also arise in the agricultural sector. Multi-
collinearity is a statistical phenomenon that occurs when there
is a strong linear correlation among two or more independent
variables within a dataset [12]. Addressing multicollinearity is
a crucial task that should be tackled before initiating the data
modelling process since it increases the standard error of coef-
ficients in the model, leading to unstable estimates of parame-
ters in the regression models and a decrease in their precision.
In order to tackle the issues of irrelevant variables and multi-
collinearity, variable selection will be performed using machine
learning algorithms. Variable selection is crucial in any statis-
tical research study, especially in the context of big data. As
described by Chan et al. [12], variable selection helps prevent
issues related to multicollinearity, aiming to obtain a more ac-
curate parameter estimate.

While numerous studies have investigated problems related
to irrelevant variables and multicollinearity within the field of
agriculture, there is a noticeable gap in the literature address-
ing the issue of heterogeneity, despite its evident presence in
real-life agricultural data. Note that limited attention has been
given to heterogeneity especially in the context of seaweed dry-
ing. For instance, Marenya et al. [13], conducted a study in
the field of agriculture that addressed the issue of heterogene-
ity, but the effects of heterogeneity before and after the removal
of heterogeneity variables were not thoroughly discussed. Fur-
thermore, no studies have explored the analysis of the inclusion
of all single-eliminated heterogeneity parameters back into the
model. It is essential to explore the application of big data in
agriculture, with a particular focus on addressing heterogene-
ity within agricultural datasets. Failure to resolve the hetero-
geneity issue may result in inaccurate findings and flawed sci-
entific conclusions [14]. A study by Wang et al. [15], dis-
cussed heterogeneous ensemble learning, which leverages the
diversity among various machine learning algorithms and has
gained growing interest in research on predicting building en-
ergy usage. This approach enhances the predictive accuracy of
machine learning by effectively combining several predictive
models.

Therefore, the primary focus of this study is to identify the
significant drying parameters of seaweed that exhibit hetero-
geneity and to evaluate the impacts of heterogeneity on the re-
moval of moisture content of seaweed. This evaluation is con-
ducted both before and after excluding heterogeneity parame-
ters, as well as once all the single-eliminated heterogeneity pa-
rameters are added back into the model. In this study, two ma-
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chine learning models, namely random forest and elastic net,
are proposed for identifying the significant parameters that de-
termine the moisture content removal of seaweed. Evaluation
metrics are then employed to assess the performance and accu-
racy of the machine learning models.

2. Methodology

2.1. Flowchart of study

Figure 1 provides a summary overview of the entire re-
search presented in this study. This project begins with the data
collection from the process of seaweed drying using a hybrid
solar drier in Semporna, Sabah. Note that computations are car-
ried out on all potential models, taking into account interactions
up to second order. The inclusion of interaction variables is cru-
cial for modelling heterogeneity in the relationships, capturing
and accounting for variations in these relationships within the
analysis [16].

Two proposed machine learning algorithms, random forest
and elastic net, will be applied in the R software as variable
selection techniques to identify the significant parameters that
determine the moisture content removal of the seaweed. Con-
sequently, both of the mentioned machine learning techniques
will independently select the 15 and 20 highest ranking vari-
ables, respectively. Moving on, VIF and boxplot analysis are
the techniques that will be utilized to identify the significant
parameters exhibiting heterogeneity. Ibidoja et al. [11], have
employed the methods of variance inflation factor (VIF) and
boxplot in their study to determine the heterogeneity parame-
ters. Hence, these methods will be considered in this study as
well.

Note that the VIF is computed by utilizing the vif function
from the car library in the R software. This computation in-
volves the original dataset and considers only the main effects
of the independent variable. Once the VIF values are obtained,
the R-squared values for the main drying parameters can be cal-
culated using equation (1).

R2 = 1 −
1

VIF
. (1)

After determining the lowest and highest R-squared values, the
study calculates the average R-squared value for the five main
drying parameters. This average R-squared value will be used
as a benchmark to identify heterogeneity parameters. If the R-
squared value of the main drying parameters falls below this
benchmark, it indicates the presence of heterogeneity. Eval-
uation metrics are then performed to assess the performance
and accuracy of the model. The evaluation metrics used in
this study are Mean Square Error (MSE), Sum of Square Er-
ror (SSE), Mean Average Percentage Error (MAPE) and R-
squared. Hence, the impacts of heterogeneity both before and
after removing heterogeneity parameters can be determined us-
ing the evaluation metrics calculated from the stated machine
learning techniques. The next step is to add back all the single-
eliminated parameters that exhibit heterogeneity to the model,
and the accuracy of this model will be determined using the

Figure 1. Methodology flowchart.

metric validations. Therefore, the optimal model is chosen
by comparing the impact of the two different variable selec-
tion techniques (random forest and elastic net) in three different
scenarios: the model before identifying heterogeneity param-
eters, the model after removing heterogeneity parameters, and
the model that includes the individually eliminated heterogene-
ity parameters.

2.2. Data description

The seaweed drying data in Semporna, Sabah, were gath-
ered from 8th April 2021 to 12th April 2021, between the time
frame of 8:00 a.m. to 5:00 p.m. Sabah is the preferred loca-
tion for seaweed cultivation due to its favourable environmental
and geographical conditions. The v-GHSD, which operates as
a forced convection indirect type, was used as the smart farm-
ing technology in the seaweed drying process. The placement
of the sensors is designed to capture data for the drying pa-
rameters, which are hourly solar radiation, temperature, humid-
ity, and moisture content. The data is stored in an IoT cloud
database, where it is continuously computed every second and
then converted into thirty-minute intervals for data analysis [5].

In order to collect the drying parameter data, a total of 29
sensors were strategically placed within the drier but this study
focuses on five crucial ones: Temperature (T1, T4, T7), Hu-
midity (H5), and Solar Radiation (PY). Table 1 provides more
information on the drying parameters. The selected drying pa-
rameters are crucial due to the large number of sensors.
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Table 1. Representation of Parameters.
Symbols Factors Definitions
Y Dependent Moisture Content
H5 Independent Relative Humidity Chamber
PY Independent Solar Radiation
T1 Independent Temperature (◦C) ambient
T4 Independent Temperature (◦C) before entering solar collector
T7 Independent Temperature (◦C) of solar collector

The data in this study consists of 1914 data points with five
independent variables and one dependent variable. The impact
of interaction variables, including their second-order interac-
tions, will be examined. For example, T1T4 represents the in-
teraction between T1 and T4, and T1T7 means the interaction
between T1 and T7. Next, the combination of the two second-
order interaction variables, such as T1T4*T1T7, will be stud-
ied. Hence, the data includes the main effects of five variables
and the interaction effects of 55 variables, resulting in 60 in-
dependent variable models influencing the moisture content re-
moval of seaweed. Appendix A provides details of all variables
used and their second-order interactions.

2.3. Multiple Linear Regression
Multiple linear regression is a commonly employed statis-

tical technique because of its inherent simplicity and easily un-
derstandable interpretation [17]. A multiple linear regression
model is a regression technique that suggests a linear relation-
ship between a dependent variable yi and a set of explanatory
variables xi =

(
xi1, xi2, · · · , xip

)
for p explanatory variables.

Consider a multiple regression model for n observations:

y = Xβ + ε, (2)

where y represents a n× 1 vector of dependent variables, X rep-
resents a design matrix of order n × p, β represents a p × 1 vec-
tor of unknown parameters and ε is a n × 1 vector of error term
that has a normal distribution with zero mean, homoscedastic
and that the errors are uncorrelated [18].

Ordinary least squares (OLS) is a method used in regression
analysis to estimate β that minimize the sum of squared differ-
ences between the observed and predicted dependent variable,
y. The ordinary least squares estimator of β, denoted β̂, is ob-
tained by minimizing εε

′

as follows:

εε
′

= (y − Xβ)
′

(y − Xβ) = y
′

y − 2β
′

X
′

y + β
′

X
′

Xβ

∂
(
εε
′
)
/(∂β) = −2X

′

y + 2X
′

β = 0,

X
′

Xβ = X
′

y,

β̂ =
(
X
′

X
)−1

X
′

y.

(3)

2.4. Heterogeneity Identification and Variance Inflation Factor
According to Ibidoja et al. [11], consider the following

multiple linear regression model:

Yi = β0 + β1Ti,1 + β2Ti,2 + · · · + α j + εi. (4)

Here, Yi for i = 1, 2, . . . n represents the response value for the
ithcase moisture content and estimates β′s represents the regres-
sion coefficients for the explanatory variables, specifically the
drying parameter (T ′s). Meanwhile, α j indicates the parame-
ters that exhibit heterogeneity for j = 1, 2, . . . f and ε is the
random error. Excluding an important variable during the cal-
culation of this regression equation leads to biased and inconsis-
tent estimate of β. Not only that, it is also possible that certain
variables are correlated with the error term, thereby violating
the assumption of regression.

The VIF serves as the most frequently used and straightfor-
ward measure to indicate the presence of multicollinearity [12].
The VIF is defined as:

VIF =
1

1 − R2 , (5)

hence,

R2 = 1 −
1

VIF
.

In this study, the average R2 will serve as the benchmark for
identifying the heterogeneity parameters. If the R2 of the main
drying parameters falls below this benchmark, it indicates the
presence of heterogeneity. Jiehong et al. [19], discovered that
as the strength of the linear relationship between variables in-
creases, the corresponding R-squared value increases, leading
to a gradual rise in VIF i. In other words, a higher VIF indi-
cates a more serious presence of multicollinearity among vari-
ables. A VIF value exceeding 10 signifies that multicollinearity
exists.

2.5. Machine Learning Algorithms

2.5.1. Random Forest
Random forest is a commonly used supervised machine

learning technique that solves both classification and regres-
sion problems. Random forest is an ensemble-based learning
algorithm that utilizes the concept of bootstrap aggregation. In
random forest, predictions are made by averaging the outputs
of multiple trees for regression tasks, while classification tasks
are based on computing the majority votes of predicted values
[20].

According to Louppe [21], the learning set, referred to as
L, consists of N pairs of input vectors and their corresponding
output values, denoted as (x1, y1) , . . . , (xN , yN) , where xi ∈ X
and yi ∈ Y. A collection of p-input vectors, xi (for i = 1, ..., N)
can be represented by a N × p matrix X. In this matrix X, the
rows i = 1, ..., N relate as input vectors xi, while the columns j =
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1, ..., p represent the input variables X j. Likewise, the response
can be expressed as a vector y = (y1, . . . , yN) .

Within this context, the task of supervised learning involves
learning a function φ: X→ Y from the learning set L = (X,
y). The goal is to discover a model that produces predictions
φ(x), denoted as Ŷ , as accurate as possible. In this case, Y must
be continuous thus the learning task is a regression problem.
Hence, the results of the models can be explained as follows.
The regressor can be defined as a function of φ: X→ Y where
Y ∈ R.

One advantage of random forest is that it is considered a
simple and straightforward machine learning method that is ro-
bust to the noise of the target data. Random forest also excels
at handling large datasets with both quantitative and qualitative
variables [20]. However, its speed can be reduced with a higher
number of trees, as increased accuracy requires more time for
computation [22].

2.5.2. Elastic Net
Elastic net, a frequently employed regularization algorithm,

is often associated with estimating supervised generalized lin-
ear models through penalized maximum likelihood. It is a com-
bination of Ridge regression and Lasso regularization, draw-
ing its appealing qualities from the integration of the ℓ1 and ℓ2
norms. This integration provides the technique with the ability
to select variables while taking into consideration their correla-
tions [23]. Moreover, it effectively handles the issue of multi-
collinearity among predictor variables [24]. The elastic net loss
function for any fixed nonnegative penalty parameters λ1 and
λ2 is defined as:

L (λ1, λ2,β)=(y−Xβ)T (y − Xβ) + λ1∥β∥1+λ2∥β∥
2, (6)

where ∥β∥1=
∑p

j=1

∣∣∣β j

∣∣∣ and ∥β∥2=
∑p

j=1 β
2
j . The estimator β̂ for

the elastic net minimized the equation:

β̂=argmin
β
{L (λ1, λ2, β)} . (7)

The technique employed in this case is the method of least
squares with penalties. Assume α = λ2/(λ1+λ2), then resolving
for β̂ is equivalent to resolving the optimization problem:

β̂ = arg min
β
∥y − Xβ∥2 ,

subject to,

(1 − α) ∥β∥1 + α∥β∥
2 ≤ t f or some t. (8)

The penalty of the elastic net is represented by the function
α∥β∥2+ (1 − α) ∥β∥1, which combines the penalties of Ridge and
Lasso regression. Ridge and Lasso regression can be expressed
using the parameter α. The values α = 0 and α = 1 correspond
to Ridge and Lasso regression, respectively [25]. A study by
Schreiber-Gregory et al. [26], mentioned that the benefits of
elastic nets are their ability to impose sparsity and their lack of a
restriction on the number of chosen variables. It also promotes
a grouping effect for strongly correlated variables. However,
the biggest drawback of this method is the potential for double
shrinkage in naive elastic nets; thus, caution must be exercised
while using it.

Table 2. Range of R-squared values.
Range of R-squared Values Description
85% ≤ R2 ≤ 100% Very Good
70% ≤ R2 < 85% Good
50% ≤ R2 < 70% Reasonably Good
30% ≤ R2 < 50% Reasonably Bad
15% ≤ R2 < 30% Bad
0% ≤ R2 < 15% Very Bad

2.6. Model evaluation

Evaluating the precision and performance of a model is a
crucial step in any regression analysis. MSE, SSE, MAPE and
R-squared are the model evaluation metrics used in this study
to evaluate the model’s reliability and accuracy. These metrics
help in comparing and identifying the best regression model
that best fits the data and achieves the desired prediction ac-
curacy. Generally, a higher level of prediction accuracy of a
model is indicated by lower values of MSE, SSE and MAPE.
However, a higher value of R-squared suggests a better fit of
the model to the data. As indicated by Moreno et al. [27], if
the MAPE value is below 10, the forecast is highly accurate;
however, exceeding 50 indicates an inaccurate forecast. Based
on the provided source from Arsad [28], this study will utilize
the following range of R-squared values, as shown in Table 2,
to evaluate the quality of regression models: The formulas of
the evaluation metrics used are displayed in Table 3, where the
variable yi represents the actual observations, ŷi represents the
predicted values, y denotes the mean of all the observations and
n represents the total number of observations.

3. Result and discussion

3.1. Identification of Heterogeneity parameters
The VIF and R-squared values for the main drying param-

eters T1, T4, T7, H5 and PY are presented in Table 4. Once
the lowest and highest R-squared values have been identified,
the average R-squared value of the five main drying parameters
can be calculated, and these results are tabulated in Table 5. In
this study, the average R-squared value of 0.4843 will be used
as the benchmark for identifying the heterogeneity parameters.
If the R-squared of the main drying parameters falls below this
benchmark, it indicates the presence of heterogeneity. Hence,
the parameters T7 and PY exhibit heterogeneity since the R-
squared values for both of these parameters, 0.0670 and 0.4298
respectively as shown in Table 4, are lower than the benchmark
value. In addition, the boxplot can also be used as support-
ing evidence to identify the existence of heterogeneity within
the drying parameters. This is because the boxplot is useful for
examining symmetry and variability as well as for identifying
potential outliers [30]. Therefore, the variability of the five sin-
gle seaweed drying parameters can be shown by the boxplot in
Figure 2. Based on the box plot in Figure 2, the variables T7,
H5 and PY exhibit heterogeneity. Note that the illustration from
the boxplot for variables T7 and PY coincides with the results of
the average R-squared obtained earlier, indicating that these two
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Table 3. Formulas for evaluation metrics.
Range of R-squared Values Description References
Mean Square Error (MSE) MS E = 1

n
∑n

i=1 (yi − ŷi)2. [29]
Sum of Square Error (SSE) S S E =

∑n
i=1 (yi − ŷi)2. [29]

Mean Average Percentage Error (MAPE) MAPE =
[

100
n

] ∑n
i=1

∣∣∣∣ (yi−ŷi)
yi

∣∣∣∣ . [27]
R-squared R2 = S S R

S S T =
S S T−S S E

S S T = 1 −
S S E
S S T = 1 −

∑n
i=1(yi−ŷi)2∑n
i=1(ŷi−y)2

[29]

Table 4. VIF and R-squared values for the main drying parameters.
Parameters VIF R2

T1 10.1707 0.9107
T4 9.1189 0.8903
T7 1.0718 0.0670
H5 2.3982 0.5830
PY 1.7539 0.4298

Figure 2. Boxplot for seaweed drying parameters.

variables exhibit heterogeneity. However, the R-squared value
of variable H5 does not indicate the presence of heterogeneity
based on the findings obtained earlier since the R-squared value
of H5, which is 0.5830, exceeds the benchmark value (0.4843).

Although data visualization increases the speed and quality
of decisions [31], it involves summarizing complex data into
visual representation, potentially resulting in a partial loss of
detail. Meanwhile, according to Almeida et al. [32], quantita-
tive results obtained from numerical operations and statistical
analysis have the potential to produce predictions that are con-
sidered more reliable and accurate. Therefore, in this case, the
average R-squared value will be considered to indicate the pres-
ence of heterogeneity among the drying parameters, suggesting
that parameters T7 and PY show heterogeneity.

On top of that, the presence of multicollinearity among
the main drying parameters was assessed using VIF values, as
shown in Table 4. The VIF values between 1 and 5 for the
parameters T7, H5 and PY indicate a moderate level of corre-
lation among these parameters. However, the VIF of parameter
T4 falls into the range between 5 and 10, suggesting a possi-

Figure 3. The 15 highest important variables for random forest.

ble presence of multicollinearity. Meanwhile, parameter T1 ex-
hibits a VIF of 10.1707, just slightly exceeding 10, raising con-
cerns about potential multicollinearity. Importantly, no serious
multicollinearity issues were identified among the main drying
parameters before variable selection. Given that the primary
focus of this study is on heterogeneity, an in-depth analysis of
multicollinearity after variable selection is not conducted.

3.2. Results of selected parameters before the removal of Het-
erogeneity parameters

Figures 3 and 4 display plots representing the 15 and 20
highest important variables ranked by the random forest algo-
rithm, while Figures 5 and 6 display the plots representing the
15 and 20 highest important variables ranked by the elastic net
algorithm using R software. The rankings are based on the im-
portance scores computed by the machine learning techniques.
Based on the findings in Figures 3, 4, 5 and 6, it is evident that

most of the important variables for the random forest and elas-
tic net model consist of interaction variables. Both regression
models represent the entire drying process of the seaweed as the
selected variables - temperature, humidity, and solar radiation,
collectively define the whole drying process.

3.3. Results of selected parameters after the removal of Het-
erogeneity parameters

As discussed in subsection 3.1, the parameters T7 and PY
exhibit heterogeneity. These two heterogeneity parameters,
including their second-order interaction, are then eliminated
from the model. As a result, there are only nine parameters

6



Kumar et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 2058 7

Table 5. Heterogeneity identification.
Lowest VIF Highest

VIF
Lowest
R2

Highest R2 Average
R2

Heterogeneity Pa-
rameters

1.0718 10.1707 0.0670 0.9017 0.4843 T7, PY

Figure 4. The 20 highest important variables for random forest.

Figure 5. The 15 highest important variables for elastic net.

left, which are T1, T4, H5, T1T4, T1H5, T4H5, T1T4*T1H5,
T1T4*T4H5 and T1H5*T4H5, to determine the moisture con-
tent removal of the seaweed. Therefore, variable selection is
no longer needed since there are only nine parameters, but the
proposed machine learning algorithms, random forest and elas-
tic net, will be applied for model evaluation purposes in order
to ascertain the impact before and after the removal of hetero-
geneity parameters.

3.4. Once all the Single-Eliminated parameters that exhibits
Heterogeneity are added back into the model

It is important to consider that when a model includes the in-
teraction of single variables, the main effects of those variables
themselves should be taken into account. This is because the

Figure 6. The 20 highest important variables for elastic net.

selection of interaction effects can only occur once the main ef-
fects have been chosen [33]. The inclusion of interaction terms
is vital in achieving the best possible final model and ensur-
ing unbiased results [5]. As a result, the parameters T7 and
PY, which were previously excluded due to their heterogeneous
nature, will be added back into the model. Consequently, the
current analysis will involve a total of 11 variables: T1, T4, T7,
H5, PY, T1T4, T1H5, T4H5, T1T4*T1H5, T1T4*T4H5 and
T1H5*T4H5.

4. Comparison of analysis before and after the removal
of heterogeneity parameters and after the inclusion of
all Single-Eliminated Heterogeneity parameters in the
model

Table 6 presents a summary of the comparison of analysis
in terms of evaluation metrics conducted before and after the
removal of heterogeneity parameters, as well as upon including
all single-eliminated heterogeneity parameters into the model
for both machine learning models. Notably, the random forest
model demonstrates superior performance over the elastic net
model for all three scenarios mentioned. This is supported by
the smaller values of MSE, SSE and MAPE, along with the re-
markably higher R-squared value achieved by the random forest
model.

The random forest model consistently outperforms the elas-
tic net model, as demonstrated by significantly lower MSE and
SSE values for the 15 and 20 highest important variables be-
fore the removal of heterogeneity parameters as compared to
the two other analyses. Additionally, the MAPE values of the

7



Kumar et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 2058 8

Table 6. Comparison of analysis before and after the removal of heterogeneity parameters and inclusion of Single-Eliminated Heterogeneity Parameters.
Machine Learning
Models

Random Forest Elastic Net

Metric Validation Highest
Ranking
Variables

MSE SSE MAPE R2 MSE SSE MAPE R2

Before Heterogeneity 15 33.9760 65029.95 4.7012 0.8758 89.8925 172054.3 13.4913 0.6714
20 33.7274 64554.18 4.5300 0.8767 81.8947 156746.5 12.6896 0.7006

After Heterogeneity 9 88.1500 168719.00 10.0844 0.6778 121.0011 231596.2 15.5954 0.5577
Inclusion of Single-
Eliminated Hetero-
geneity Parameters

11 39.5606 75718.91 5.6415 0.8554 117.8621 225588.1 15.2571 0.5692

random forest model before removing the heterogeneity pa-
rameters for the 15 highest important variables (4.7012) and
the 20 highest ranking variables (4.5300) are notably below
10, implying the model’s forecast is highly accurate. Despite
the MAPE value (5.6415) being below 10 for the random for-
est model with single-eliminated heterogeneity parameters, the
model performs even better when the heterogeneity parameters
are not excluded, indicating higher prediction accuracy for sea-
weed moisture content removal. Moreover, the R-squared value
for the random forest model before the removal of heterogene-
ity parameters is notably higher than the two other analyses, im-
plying that a large proportion of variability in determining the
moisture content removal of the seaweed can be explained by
the random forest model, particularly before removing the het-
erogeneity parameters, in comparison to the elastic net model.
Not only that, the quality of the random forest model for the
15 and 20 highest ranking variables before removing the het-
erogeneity parameters is very good since the R-squared value
is greater than 85%.

However, there is an unexpected reduction in the accuracy
of the regression model following the removal of heterogeneity
parameters, as reflected in the increased MSE, SSE and MAPE
values along with lower R-squared values. The elimination of
parameters from the model poses a risk of information loss, po-
tentially introducing specification bias as it may overlook cru-
cial factors that impact the investigated phenomenon. Conse-
quently, the performance of the model may be adversely af-
fected, leading to less accurate outcomes.

Notably, the inclusion of all single-eliminated heterogene-
ity parameters results in smaller MSE, SSE and MAPE values,
along with a higher R-squared value compared to the analysis
after the removal of heterogeneity parameters. These findings
indicate the superior performance of the random forest model
when incorporating these parameters. However, the model’s
overall peak performance is observed before the exclusion of
heterogeneity parameters, as evidenced by smaller MSE, SSE
and MAPE values, as well as a slightly higher R-squared value.
This suggests a better fit of the random forest model to the data
before the removal of heterogeneity parameters.

There is a possibility that the single-eliminated parameters
that exhibit heterogeneity might be influenced by confounding
factors that are not adequately accounted for in the analysis. A

confounding variable, distinct from the one being studied, is a
factor correlated with both the dependent variable and the inde-
pendent variable under investigation [34]. These confounding
variables can introduce bias into the study results, consequently
affecting the analysis and leading to poorer performance [35].
Furthermore, it is also possible that the data for the single-
eliminated parameters exhibiting heterogeneity contains more
errors compared to the other parameters.

Therefore, the performance of the random forest model in
terms of higher accuracy and lower error before removing the
heterogeneity parameters indicates its ability to produce more
accurate predictions, reduce errors, and explain a greater pro-
portion of the variance. This makes the random forest a bet-
ter predictive model for analysing the 15 and 20 highest-ranked
variables prior to the removal of heterogeneity parameters. This
outcome aligns with the well-known capability of random for-
est models to offer precise predictions and interpretability when
determining the ranks of important variables [36]. Not only
that, the findings presented by Callens et al. [37], also highlight
the advantage of tuning hyperparameters in the random forest
algorithm, allowing for the optimization of model performance.

5. Conclusions

This study aims to investigate the presence of heterogeneity
among drying parameters and proposes a heterogeneity model
within machine learning algorithms to enhance the accuracy of
predicting moisture content removal. Utilizing random forest
and elastic net for variable selection, the performance of these
prediction models is quantitatively assessed using metrics such
as MSE, SSE, MAPE and R-squared. It can be concluded that
the predictive performance of the random forest model is signif-
icantly stronger than the elastic net model, both before and after
removing the heterogeneity parameters as well as after the in-
clusion of the single-eliminated heterogeneity parameters. The
random forest model demonstrates higher accuracy, minimal er-
rors and exceptional performance in forecasting the moisture
content removal of seaweed, particularly before the removal of
heterogeneity parameters. These advantages make it a prefer-
able option over the elastic net model. This conclusion, empha-
sizing the superior performance of the random forest model,
aligns with the findings of several studies conducted by Sharma
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et al.[2], Ibidoja et al. [11], Ibidoja et al. [18], Mukhtar et al.
[38] and Yesilkanat [39].

This study is crucial to seaweed drying, and the outcomes
of this study will assist seaweed farmers in processing sea-
weed into high-quality products and reduce post-harvest losses.
For future studies, it is recommended to explore other machine
learning algorithms such as ridge, support vector machine, bag-
ging, boosting and LASSO for variable selection. These algo-
rithms can also be employed to investigate the impact of het-
erogeneity both before and after the removal of heterogeneity
parameters. Furthermore, as this study did not address the issue
of outliers, robust regression techniques, including M Huber, M
Hampel, M Bi Square, MM and S estimators, can be considered
to effectively handle this matter.
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