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Abstract

In several earlier studies, machine learning (ML) has been widely explored for fraud detection. However, fraud detection is still a challenging
problem. This is due to the imbalanced nature of fraud data, which leads to underperformance by most models in detecting a few fraud cases.
Undetected fraud cases also account for the loss of several millions of dollars annually. Thus, we propose an ensemble approach that stacks five
classifiers - Support Vector Machine, Decision Trees, Random Forests, Gaussian Naı̈ve Bayes, and k-Nearest Neighbour, and uses the Logistic
Regression meta-classifier to make predictions based on a stacking algorithm and novel pipeline. The effectiveness of the proposed model is
examined on three datasets. The first two datasets were trained and tested initially without resampling and then compared with the results
obtained using the Synthetic Minority Oversampling Technique (SMOTE) and RandomUnderSampler techniques. Only a balanced resampled
dataset was trained on the third dataset that clearly showed an imbalance. From the results obtained, it is observed that the proposed model is
highly competitive, with extant models producing ROC AUC of 99% and scoring above 98% in all other metrics. The approach is recommended
for detecting fraud cases in similar case studies.
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1. Introduction

The rise in financial crimes in recent times has tremen-
dously impacted world economies with attendant consequences
on economic prospects. Credit card fraud falls under financial
crimes, and the ubiquity of Internet technology has resulted
in the multiplicity of these crimes. Current financial transac-
tions over wired and wireless networks are initiated and fulfilled
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through credit cards. These cards are usually encoded with cus-
tomer confidential information and have become the target of
varying degrees of fraud amounting to billions of dollars. For
instance, Aitken et al. [1] asserted that fraudulent activities in
the United States have resulted in a loss of more than $12 billion
as of 2020. Credit card fraud usually occurs in two dimensions.
As opined by Itoo et al. [2], these two dimensions include inner
and external card fraud. Inner card fraud usually involves using
a false identity to commit fraud due to the mutual agreement be-
tween the cardholders and their respective banks. Conversely,
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external card fraud involves receiving cash from unsuspecting
victims using deceit. In the scenarios above, the effect of credit
card fraud has kept financial institutions such as banks on a per-
sistent search for a robust solution.

According to Huang et al. [3], the cumulative effect of
credit card fraud can lead to excess currency liquidity and bad
debts arising from credit card overdrafts that may create finan-
cial disruptions in nation-states. Furthermore, electronic bank-
ing paves the way for credit card fraud as more financial trans-
action gateways become vulnerable. With significantly vast
amounts of monitored accounts across all financial transaction
platforms and institutions, the big data generated from daily
credit card transactions makes it difficult for human experts to
detect the few instances of this fraud visibly. Most importantly,
the imbalance in data distribution between legitimate and fraud-
ulent transactions occasioned by using credit cards skews all
observations towards non-fraudulent cases [4]. Consequently,
most models cannot handle the class imbalance often found in
datasets, thus underperforming in detecting the few fraudulent
cases in the big data of credit card transactions. It’s crucial to
underscore that erroneous detections may trigger unwarranted
credit card blocks, resulting in customer complaints and repu-
tational damage to the institutions involved. Conversely, fail-
ure to block compromised cards can lead to substantial finan-
cial fraud. Generally, fraud detection is akin to binary classi-
fication challenges like spam filtering. Various methodologies,
including decision trees, support vector machines (SVM), k-
nearest neighbour (KNN), logistic regression, random forest,
XGBoost, and neural networks, can address this classification.
This paper proposes an ensemble model by stacking five models
using Logistic Regression as a meta-classifier. These models in-
clude SVM, KNN, Random Forest (RF), Gaussian Naive Bayes
(NB), and Decision Trees (DT). We use the stacking ensemble
to address the problem of poor generalization of each model
on the imbalanced dataset to improve detection accuracy. The
choice of models was guided by a desire to leverage diverse al-
gorithmic strengths. While Decision Trees and Random Forests
are related, they contribute differently to the ensemble. Deci-
sion Trees provide a simple and interpretable model, whereas
Random Forests offer robustness and reduce overfitting through
aggregation of multiple trees. Including both allows the logis-
tic regression model to weigh their predictions and potentially
capture nuances that might be lost if only one type were used.
The inclusion of SVM, Gaussian Naive Bayes, and the other
models ensures a blend of linear, non-linear, probabilistic, and
deterministic perspectives.

For the imbalanced dataset, we first used the baseline ap-
proach for the small and medium-sized datasets. We used
oversampling and undersampling to resample all the datasets
to a more balanced version to achieve an optimal ensemble
model that is not skewed towards most non-fraudulent transac-
tions. While SMOTE effectively addresses class imbalance by
generating synthetic minority class samples, it can sometimes
lead to over-representation of certain regions in the feature
space. By combining SMOTE with undersampling, we were
able to achieve a more balanced and representative dataset. This
hybrid approach helps in mitigating any bias that purely syn-

thetic oversampling might introduce, ensuring a more gener-
alised model.

The principal contributions of this study include the follow-
ing:

1. A comparative examination of outcomes across three
datasets of varying sizes employing several resampling
techniques was evaluated through five distinct metrics.

2. A stacking ensemble machine learning (ML) technique
consisting of five base classifiers and the logistic regres-
sion meta-classifier is used to simulate fraud detection
using practical datasets using Python libraries. This in-
volves comparing the individual performance of the al-
gorithms relative to the stacked model.

3. This is a novel pipeline for the ensemble approach, with
visualizations that help appreciate the models’ perfor-
mance using Python libraries and the Jupyter Notebook.

4. This paper compares results obtained on imbalanced
datasets with results obtained from the resampled copy
of the same datasets to describe the effect of resampling
on the model.

The remaining sections of the work are ordered as follows:
Section 2 contains related work bearing other research works
previously done in the subject area. Section 3 contains the ma-
terials and methods which houses the descriptions of the algo-
rithms and datasets used. Section 4 contains result and discus-
sion which houses the visualizations and tables obtained from
the code. Section 5 houses the conclusion and future work.

2. Related works

Machine Learning (ML) algorithms make predictions by
observing phenomena and constructing models, and are catego-
rized into supervised, unsupervised, and reinforcement learn-
ing. Supervised learning uses predefined labels for training,
typically involving regression and classification techniques,
while unsupervised learning uses unlabeled data to find pat-
terns and relationships, focusing on dimensionality reduction
and clustering. Yousefi et al. [5] classified credit card fraud into
types such as application, card imprint, mail non-receipt, lost or
stolen, counterfeit, and card-not-present. They identified super-
vised ML algorithms (LR, ANN, SVM, DT, RF, NB, KNN) and
unsupervised techniques (K-Means Clustering, SOM) for fraud
detection.

Rushin et al. [6] compared Logistic Regression (LR) with
deep learning and gradient boosting trees using a dataset of 80
million transactions with 69 attributes. LR performed the worst
due to difficulty in detecting obscure patterns, while deep learn-
ing was more efficient. Artificial Neural Networks (ANN) are
effective for complex data but require significant resources and
can overfit. Wang et al. [7] developed a privacy-preserving
Deep Neural Network (DNN) that outperformed non-private
approaches. Support Vector Machines (SVM) excel in high-
dimensional spaces with good generalization and low computa-
tional complexity. Decision Trees (DT) are easy to implement
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but sensitive to skewed distributions, and their performance is
affected by tree-splitting criteria. Bahnsen et al. [8] created a
cost-sensitive DT model that reduces false prediction losses and
results in a simpler tree. Random Forest (RF) minimizes over-
fitting and noise by generating independent trees and effectively
addresses concept drift and imbalanced datasets, outperforming
algorithms like SVM and LR. Naive Bayes (NB), a probabilis-
tic classifier based on Bayes’ Theorem, is effective with high-
dimensional data but assumes conditional independence among
features

Mohammed et al. [12] illustrated that the Naı̈ve Bayes al-
gorithm exhibits faster processing speed than Random Forest
and balanced bagging ensemble in fraud detection. However, it
may result in false alarms due to its lower precision. Mahmud
et al. [13] and Mahmoudi and Duman [14] proved that DT al-
gorithms and Fisher discriminant analysis give better accuracy
and performance, respectively, in classification than the NB. In
KNN, an instance is classified based on the nearest K neigh-
bours It has a low error rate relative to other methods like NB,
DT and LR. Seeja and Zareapoor [15] conducted studies with
the UCSD data mining contest 2009 dataset and developed a
pattern mining algorithm that outperforms the KNN. However,
their results show that KNN has a better false detection rate
than SVM and a more balanced classification rate than RF and
SVM.

Unsupervised learning algorithms are best suited for
anomaly detection and can perform better than supervised
learning algorithms in detecting new fraud patterns. Kumari
and Choubey [16] combine K-Means and Hidden Markov
Model (HMM) techniques in fraud detection. They first used
K-Means to cluster the historical data of customers using their
spending habits, while HMM was used to predict the proba-
bility of fraud. Behera and Panigrahi [17] used a KM-based
system to cluster transactions using the spending behaviours of
cardholders by classifying a transaction as abnormal if the prox-
imity to the centre of a cluster exceeds the threshold. In such
a case, they further applied a feed-forward NN to classify the
suspicious transaction, and they achieved an actual positive rate
of up to 93.9% on a simulated dataset.

Jiang et al. [18] adopted a KM-based approach to group
cardholders into three categories. They used a window-sliding
technique to compile the transactions into groups by utilising
the customers’ behavioural trends. With this, they achieved
results that were better than those of the RF and LR methods
using simulated datasets. SOM is an unsupervised NN mod-
elling algorithm that aids in visualising transaction patterns us-
ing a repetitive tuning of the neuron weights in the network.
Olszewski [19] implemented the SOM in visualising a multi-
dimensional dataset using threshold-based binary classification
techniques on a real dataset to develop a 2-dimensional image
that even laypeople can comprehend. Agaskar et al. [20] built
a fraud detection model that generates clusters using SOM and
then revalidates the clusters with association rules. They used
the amount and location information of older transactions by
the customers. Credit card datasets often comprise an excep-
tionally high number of validtransactions and a small propor-
tion of suspicious transactions, which makes them highly un-

balanced. Such imbalance could lead to a false classification
of transactions in the minority learning class. Vaishnavi and
Geetha [21] researched the use of ML algorithms to solve the
problem of concept drift in a real-world credit card dataset.
They applied a clustering algorithm to break the records into
groups based on low, medium and high transactions. They also
ran training for varying classifiers for each group using the ob-
tained patterns, extracted the dataset’s attributes, and conducted
SMOTE oversampling. They also considered the Matthew cor-
relation coefficient (MCC) and one-class classifiers in deal-
ing with the imbalance. After using different techniques, the
classifier with the highest rating score was chosen. Their re-
sults showed that logistic regression, decision trees, and ran-
dom forests performed better. One of the limitations of their
research is that the only metrics used were precision, accuracy,
and MCC, and the results were not compared with existing re-
sults for evaluation of improvement.

Zhu et al. [22] implemented the Weighted Extreme Learn-
ing Machine (WELM) to address imbalanced datasets in credit
card fraud detection using optimization techniques. They found
that WELM, combined with a dandelion algorithm, outper-
formed conventional methods like genetic algorithms. The dan-
delion algorithm is inspired by dandelion seed dispersal behav-
ior [23]. They used ELM to improve the training speed and
generalization of neural networks, optimizing WELM param-
eters with linear, binomial, and exponential probability mod-
els. They compared ten algorithms across fourteen datasets
by computing G-mean, AUC, and accuracy values using MAT-
LAB R2018a. Despite extensive graphical representations,
computations were limited to MATLAB functions. Differen-
tial evolution (DE) can enhance ELM performance [24], which
is applicable in medical diagnosis and face recognition [25].
Kernel ELM (KELM) has been proposed for various practi-
cal problems [26–31]. Ensemble techniques like EasyEnsem-
ble, UnderBagging, and SMOTEboost handle class imbalance
effectively[32]. SMOTEboost combines SMOTE and boosting;
EasyEnsemble uses undersampling with boosting, and Under-
Bagging employs bagging with undersampled datasets using
multiple learners.

Izotova and Valiullin [33] used Poisson processes with
HomoModel, LinearModel, and QuadraticModel to compute
fraud prediction probabilities, combining ensemble techniques
like LGBM, XGBoost, and CatBoost to improve performance.
Their dataset had 95,662 transactions from 3,633 clients, with
only 0.2% being fraudulent. However, all algorithms were gra-
dient boosting variants with similar performance. Arora et al.
[34] found that KNN, Ensemble Methods, and deep learning
techniques yield optimal fraud detection results, achieving 0.93
accuracy with deep learning and three feature selection tech-
niques. SVM had the highest accuracy, while Naı̈ve Bayes had
the least, but they only reported accuracy without other evalua-
tion metrics.

Burnaev et al. [35] studied the impact of resampling
techniques on binary classification accuracy for imbalanced
datasets, using decision trees, KNN, logistic regression, and
various datasets. They explored oversampling, undersampling,
and SMOTE, concluding that performance depends on the clas-
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sifier. Undersampling can reduce performance by eliminating
too many majority class samples, while oversampling can cause
overfitting. SMOTE introduces synthetic records but doesn’t
consider neighboring example labels, unlike ADASYN and
Borderline-SMOTE..

The precision-recall curve and the receiver operating char-
acteristic (ROC) curve are commonly utilised to evaluate the
performance of various models by analysing the confusion ma-
trices they generate. These evaluation metrics provide insights
into the effectiveness of the models in distinguishing between
classes and identifying true positive rates. The ROC curve plots
the recall against the false positive rate, making it robust against
class imbalances as its shape remains unaffected by skewed
dataset distributions. Conversely, the precision-recall curve, de-
picting precision against recall, is more sensitive to class im-
balances. This sensitivity can considerably reduce precision,
affecting the area under the precision-recall curve (AUPRC)
[36]. A high imbalance could widen the gap in the distribu-
tion between the training set and the test set, disproving the
hypothesis that the model learned from the training set can be
suitably applied to the test set without a false assumption. Such
distribution discrepancies could further reduce the performance
of the algorithms [37, 38]. Dataset shift and concept drift arise
from the changing tactics of fraudsters and dynamic cardholder
behaviours, which render some algorithms obsolete and ineffi-
cient in fraud detection [39]. One way to tackle dataset shifts
is to frequently update the models using new data in adaptation
towards the change. Gomes et al. [40] and Barddal and En-
embreck [41] introduced novel techniques based on the random
forest algorithm using a type of Hoeffding Adaptive Tree that
detects drift to check the tree error patterns and progressively
identify affected features and remodel the system. Feature en-
gineering techniques are also used to make the features more
significant for the algorithms or to generate more features to
improve the dataset. They can pre-process categorical features
into numerical equivalents to make them more suitable for ML
algorithms.

It was identified that most of the previous research works in
this area focused on a single dataset, especially the 2013 Euro-
pean credit card fraud dataset published by Kaggle [50]. This
may introduce some bias in adapting these models to novel at-
tack behaviours of fraudsters in other datasets. Hence, a model
tested on multiple datasets could be indispensable in drawing
valid conclusions since these datasets show an imbalance in the
binary classes. Secondly, most authors do not reveal many eval-
uation metrics that could help better judge their model’s perfor-
mance. This is sensitive because 99% accuracy with an im-
balanced dataset with only 0.172% fraudulent transactions may
not be enough evidence to prove that a model performs well.
This is because even if the model classifies all fraudulent cases
as legitimate, it will still evaluate to 99.82% accuracy. Lastly,
some authors obtained scores that needed further improvement,
making it suitable to build ensemble models with a high chance
of mitigating the weaknesses of individual algorithms and cre-
ating an innovative approach for classification. The summary
of related works is given in Table 1.

3. Materials and method

3.1. Methods

The research individually assessed the performance of five
base classification algorithms and then obtained the stacking
ensemble model combining the five base classifiers using Lo-
gistic Regression as the meta-classifier. This was developed
on a computer with 16GB RAM, an Intel Core-17 processor, a
Windows 11 Operating System, and Python 3.10.0 in a Jupyter
Notebook environment. Most of the classifiers were imported
from the Sklearn library. In addition, other requisite libraries
used include NumPy, pandas, matplotlib, Itertools, Seaborn,
and operator.

3.1.1. Machine learning algorithms ensembled
a) K-Nearest Neghbour (KNN): This is a non-parametric

supervised classification algorithm that computes the dis-
tance between the test object and each of the training
samples to discover the K nearest ones and then clas-
sifies the new object to belong to the class of the ma-
jority neighbours. The distance measures can be deter-
mined using Euclidean, Minkowski or Manhattan dis-
tance methods. Minkowski’s distance approach is more
suitable for categorical classification, while the other two
are better suited for continuous variables [45]. It is appli-
cable in both classification and regression.

By Euclidean Distance, the distance between two points
P1(x1,y1)and P2(x2,y2) can be expressed as:

d (P1, P2) =
√

(x2 − x1)2 + (y2 − y1)2 (1)

The functions give a concise representation of the dis-
tance:

Euclidean

√√ n∑
i=1

(xi − yi)2 (2)

Manhattan
n∑

i=1

|xi − yi| (3)

Minkowski (
n∑

i=1

(|xi − yi|)q)
1/q

(4)

The algorithm is given below:

b) Decision Tree: This tree-based supervised algorithm at-
tempts to partition data, assigning records to nodes us-
ing some optimality criteria to create the most miniature
possible tree. This works in a divide-and-conquer fash-
ion, dividing the data into subsets until all nodes contain-
ing data belonging to a single class or termination cri-
teria are achieved. The nodes are used to verify prop-
erties, while the edges branch is based on the values of
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Figure 1. Pipeline of the stacking approach.

the chosen attribute, and the leaves are used to label the
classes. The procedure encompasses tree-building and
knowledge-inferencing. Information gain is calculated
using criteria such as the Gini index and entropy, which
decision tree algorithms utilise to determine the best split
for a node

Gini = 1 −
n∑

i=1

p2 (ci) , (6)

Entropy =
n∑

i=1

−pcilog2 (p (ci)) , (7)

where p(ci) is the probability/percentage of class ci in a
node.

c) Naı̈ve Bayes: This supervised classification algorithm
operates based on the Bayes theorem and calculates the
posterior probabilities of records belonging to each class
and presumes that the class features are conditionally in-
dependent.

P (c | x) =
P (x | c) P(c)

P(x)
(8)

where P(c|x) = Posterior Probability, P(x|c) = Likelihood,
P(c) = Class Prior Probability, P(x) = Predictor Prior
Probability

P(c jX) = P(x1 jc)∗P(x2 jc)∗ . . .∗P(xn jc)∗P(c) (9)
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Table 1. Summary of related works in ensemble ML techniques.
Article Method and algo-

rithm used
Details and Strength Metrics used Remarks and Weaknesses

[42] Ensemble and
mixed learning
using clustering,
KNN, NB, Lo-
gistic Regression,
RF, Gradient-
Boosted Trees
and MLP.

Using mixed learning, they applied
clustering for pre-processing before
applying supervised classifiers and
ensembles, obtaining results for two
datasets. From their results, NN
models performed better than most
other models, while KNN achieved
the best individual result among the
supervised classifiers.

Accuracy, sensi-
tivity, specificity
and balanced
classification rate.

The ensembles achieved better
performance than the individual
classifiers. However, they did
not reveal some evaluation met-
rics, such as F1-score and ROC-
AUC, which would have pro-
vided more evidence about their
model’s performance on imbal-
anced datasets.

[43] Logistic Regres-
sion, SVM, NB,
RF, DT and KNN

They applied resampling techniques,
including under-sampling, SMOTE,
and ADASYN.
They conducted a comparative analy-
sis and found that RF with oversam-
pling achieved the best performance.

Precision accu-
racy, AUC, recall,
and F1-score

The resampled dataset’s classifi-
cation was better than that of the
imbalanced dataset. However,
they used only one dataset and
did not give extensive results on
their model’s performance when
tested with other datasets.

[44] NB, DT, KNN,
SVM, and
MLP, as well as
ensemble tech-
niques such as
EasyEnsemble,
are also used.

Seven resampling techniques
were applied, including SMOTE,
SMOTEENN, BorderlineSMOTE,
ADASYN, and others. The meta-
classifiers with resampling tech-
niques achieved an improved
performance after combining them
with the base models.

Accuracy, F1-
score, AUC

Their work did not reveal preci-
sion and recall, which are sensi-
tive to imbalanced datasets. All
their F1 scores were below 82%,
and all the AUCs were not above
97%, which can still be im-
proved.

[45] Logistic Regres-
sion, KNN, RF,
NB, MLP, Ad-
aBoost, pipelin-
ing and ensemble
techniques.

They applied the ADASYN resam-
pling techniques to correct the im-
balance in the dataset. The pipelin-
ing approach achieved the highest
accuracy, followed by the ensem-
ble method, while RF was the best-
performing individual algorithm.

Accuracy, preci-
sion, recall, F1
score, Matthews
Correlation Coef-
ficient (MCC) and
Balanced Classi-
fication rate

The precision, recall and F1-
score they obtained for the
fraudulent class was relatively
low and needed improvement.

[46] NB, DT, Logis-
tic Regression,
KNN, SVM, RF
and ensemble
algorithms such
as AdaBoost and
Bagging.

They performed under-sampling to
generate an equal amount of fraudu-
lent and everyday transactions. Lo-
gistic regression, RF, and ensemble
techniques such as AdaBoost and
Gradient Boosted Trees performed
the best.

Precision, Recall,
F1-score, accu-
racy and AUC.

The limitation of the research
is that most of the methodology
and evaluation was narrowed to-
wards the features in a particu-
lar European dataset [50], such
as Time and Amount

[47] Deep reinforce-
ment learning
(DRL), Ad-
aBoost, XG-
Boost, DNN,
KNN, RF and Lo-
gistic Regression.

They used SMOTE and ADASYN
oversampling techniques to achieve a
balanced dataset. Of all the tests they
conducted on the imbalanced dataset,
RF and XGBoost had the best accu-
racies.

Accuracy, pre-
cision, recall,
specificity, f1-
score, MCC and
ROC AUC.

DNN and RF performed the best
after oversampling, while LR
performed the least. Their DRL
achieved a very low accuracy of
34.8%, precision of 0.067% and
F1-score of 13.7%, which still
needed much improvement.

[33] Three ensemble
techniques: Light
Gradient Boost-
ing, XGBoost and
CatBoost

Three models of the Poisson pro-
cess model were used: HomoModel,
LinearModel, and QuadraticModel.
They obtained the best performance
with XGBoost, followed by Cat-
Boost, then LGBM.

ROC AUC The work omitted comprehen-
sive results from multiple eval-
uation metrics and showed only
the value for ROC-AUC.
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Figure 2. Box plots of the ROC AUC of the models using the imbalanced UCI Dataset.

Algorithm 1
Input: A is the set of training instances, the test instance, n is a
vector of the attributes, and B is the set of classes used as labels
for the cases.
Output: gnϵ H, the class of n

For each instance, i ϵ A do
| Compute k(n, i), the distance between n and i;

End
Select P⊆ A, the set (neighbourhood) of m closest
training instances for n;

cz = argmax
∑
y? N

I(v = class(cy)), (5)

where (.) is an indicator function that returns the value one if
its argument is valid and 0 otherwise.

d) Random Forest: This algorithm builds an ensemble of
separate DTs using a subset of the training records se-
lected by sampling with replacement from the entire
training set using Bootstrap. It decides the final classi-
fication by accepting the vote from the majority trees.
Increasing the number of trees in the forest helps it to
achieve improved outcomes and mitigate overfitting. It
applies to both classification and regression. Random
forests (RF) generate numerous individual decision trees
during training. These trees collectively contribute to the
final prediction by pooling their outputs, which typically
involves selecting the mode of classes for classification
tasks or averaging predictions for regression tasks. Due
to their utilisation of multiple results to arrive at a final
decision, they are classified as ensemble techniques

For each decision tree, Scikit-learn calculates the impor-
tance of a node using Gini Importance, assuming only
two child nodes (binary tree):

ni j = w jC j−−wle f t( j)Cle f t( j)−−wright( j)Cright( j),(10)

where ni sub(j)= the importance of node j, w sub(j) =
weighted number of samples reaching node j, C sub(j)=
the impurity value of node j, left(j) = child node from left
split on node j, right(j) = child node from right split on
node j.
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e) Support Vector Machines (SVM):This presents a super-
vised machine learning challenge, where the objective
is to identify a hyperplane that effectively separates two
classes. While Logistic Regression (LR) and Support
Vector Machines (SVM) aim to locate the optimal hy-
perplane, they differ fundamentally in their approaches.
LR operates on a probabilistic basis, whereas SVM relies
on statistical methods. SVM employs margin optimisa-
tion and kernel representation to function within a high-
dimensional feature space. Its objective is to determine
a hyperplane that segregates the binary classes. To ad-
dress the potential for an infinite number of hyperplanes
accurately classifying the two classes, SVM resolves this
by identifying the hyperplane with the maximum margin
– representing the most significant distance between the
two classes. This approach ensures robust classification
by maximizing the margin between data points of differ-
ent classes, leading to better generalization and improved
performance in classification tasks. The simplified equa-
tion or soft margin formulation for SVM encapsulates
this principle, providing a concise representation of the
algorithm’s objective

min
1
2

wT w +C
m∑

i=1

Ei (11)

s.t. yi
(
xT

i w + b
)
≥ 1 − ϵiϵi ≥ 0. (12)

f) Logistic Regression: This was used as the meta-classifier
in the stacking model. It calculates the probability of a
record belonging to a particular class using explanatory
variables. It is a multivariate statistical model that per-
forms non-linear logistic transformation to determine the
output variable by making interpretations as probability
ratios using the maximum likelihood approach. It uses a
set of feature values as an argument of the sigmoid func-
tion S(x). This mathematical expression resolves to a
characteristic “S” curve whose output is a number that
can be categorizedas 0 or 1. The mid-value 0.5 is often
used as the threshold for rounding up numbers to the bi-
nary classes.

S (x) =
1

1 + e−x =
ex

1 + ex = 1 − S (−x). (13)

In the ensemble model developed in this research, the level-
0 base classifiers were used for individual classifications, and
the level-1 meta classifier (Logistic Regression) was used to
combine the level-0 classifiers into the stacking classifier to at-
tempt an improved performance that was better than most indi-
vidual results.

3.2. The ensemble approach adopted
Our ensemble learning approach uses the stacking ap-

proach. This technique uses predictions from multiple mod-
els and finally passes the projections through a Meta clas-
sifier. Here, we ensemble predictions from Support Vector

Machine (SVM), Random Trees (RT), Random Forests (RF),
Naı̈ve Bayes (NB) and K Nearest Neighbour (KNN).

Unlike bagging, where multiple instances of the same
model are trained on different subsets of the data, stacking in-
volves using diverse models for the ensemble - the five de-
scribed above - and fit on the same dataset – we describe the
three datasets used in the section below. Also, unlike boosting,
in stacking, a single model is used to learn how to best combine
the predictions from the contributing models, not to correct the
predictions from the previous models.

The pipeline of our stacking model, depicted in Figure 1,
comprises five base models, denoted as level 0 models, and
a meta-model that amalgamates the predictions generated by
these base models, termed level 1 models. The level 0 models
are initially trained on the training data, and their predictions
are computed. Subsequently, the level 1 model, the logistic
regression model, learns the optimal approach to amalgamate
the predictions from the five base models. The meta-model is
subsequently trained using the projections generated by the five
base models on out-of-sample data, which refers to data that
was not used during the training of the base models. These pre-
dictions and the expected outputs form the input-output pairs
utilizedfor training the meta-models. This process enables the
meta-model to learn how to effectively combine the predictions
from the base models to produce accurate and reliable results.
We aim to combine these five different models: SVM, KNN,
Decision Tree, Random Forests, and Naive Bayes by stacking
them, using logistic regression as a meta-classifier. The primary
purpose of the combination is to improve performance. We also
test the individual models using performance metrics, including
Accuracy, Precision, Recall, F1, and ROC-AUC, using the three
datasets of varying sizes (small, medium and large) and test the
derived new model. The algorithm for our approach is given in
Algorithm 1.

3.3. Datasets used
Three different datasets were used for the experiment. The

first dataset comprises 30,000 records of customer payments in
Taiwan in 2005, including 6636 fraudulent and 23 364 genuine
transactions obtained from the UCI Machine Learning Reposi-
tory [48]. It contains 23 features with integer and actual values
and a binary class label, as shown in Table 2.

The second dataset was obtained from the gksj7 GitHub
repository [49]. It contains 3075 records comprising 448 fraud-
ulent and 2627 genuine transactions, with 10 features and a
binary class label. The features include MerchantId, Aver-
age amount/transaction/day, transaction amount, is declined,
total number of transactions/day, isForeignTransaction, isHigh-
Risk, daily chargeBack avg amt, 6mth chargeBack avg amt,
and 6mth chargeback frq.

In the third dataset obtained from Kaggle[50], there was a
high level of imbalance, comprising only 492 (0.172%) fraudu-
lent transactions and 284315 (99.828%) genuine transactions.
This dataset consists of actual transactions from credit card-
holders in Europe in September 2013 within two days. This
dataset comprises 30 features and the class label (1 for fraudu-
lent and 0 for genuine). The numeric features V1 to V28 were
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Table 2. Breakdown of the features in the first dataset.
Feature name Content
X1 Amount (NT Dollars)
X2 Gender (male and female)
X3 Education (graduate school, university, high school, and others)
X4 Marital Status (single, married, others)
X5 Age (year)
X6 – X11 History of past payments (April to September 2005)
X12 – X17 Amount of Bill Statement (April to September 2005)
X18 – X23 Amount of previous Statement (April to September 2005)

Algorithm 2 Stacking Algorithm using k-fold validation
Input: T= {xi,yi, xi∈Rn, y ∈{0,1}}
Dataset = {Ds1, Ds2, Ds3} Dataset ∈Dsi, i = 1..3
Base Classifiers mk = {KNN, RF, NB, SVM,DT }

Meta Classifier M
Output: Ensemble Classifier E
Using cross-validation, segment the dataset into k equal-sized
subsets
Step 1: Learn base-level classifiers – Level 0

For k = 1 to T do
Learn mk based on Dsi

End For
Step 2: Construct new dataset - Level 1

For i = 1 to n do
Dsm= {xi,yi} where xi ={m1(xi) . . . mT (xi)}

Train M with k-fold cross-validation
End For

Step 3: Learn a Meta Classifier
Learn M based on Dsm

Build E ∀mk→M
Evaluate M, E for accuracy

Return E

anonymised to preserve privacy and confidentiality using Prin-
cipal Component Analysis(PCA), except for Time and Amount.
Hence, to avert poor performance and long execution time from
the ML models, the dataset was balanced to include an equal
number of fraudulent and genuine transactions. This was ac-
complished by applying the Synthetic Minority Over-sampling
Technique (SMOTE) to augment the samples in the minority
class, followed by using RandomUnderSampler to remove in-
stances of the majority class, ensuring an equal amount of data
as the minority class. After the resampling, the dataset con-
tained 11372 fraudulent and 11372 genuine transactions, to-
talling 22744 transactions. SMOTE synthesizes new transac-
tions from the minority class by skewing the minority class
samples and making the decision boundary between classes less
specific. It has three major operations: randomizing instances
of the minority class, computing the k nearest neighbour of
minority class instances and generating synthetic instances for
the minority group. This can be done by linearly interpolat-
ing minority instances chosen randomly and their neighbours.
SMOTE is preferable because random oversampling by dupli-

cating minority class samples does not improve classification
performance [44]. Table 3 gives a summary of the datasets used
in this work.

3.4. Performance metrics

Accuracy is not usually an efficient measure for unbalanced
datasets since the minority class is limited, hence, it does not
determine a good classification performance. The AUC, which
measures the whole threshold range of accuracy, is a more effi-
cient metric for imbalanced classifiers. However, accuracy re-
mains useful when rebalancing is achieved through some re-
sampling techniques. Precision and recall, used to compute the
F1-score, are more valuable in skewed distributions of unbal-
anced datasets. Equations (14)–(17) describe the performance
metric used.

i Accuracy: This is the proportion of correct predictions in
the entire prediction.

ACC =
T P + T N

T P + T N + FP + FN
(14)

ii Precision: This is the proportion of optimistic predictions
in the whole set of positive classes predicted.

Precision =
T P

T P + FP
(15)

iii Recall: This is the proportion of positive predictions in
the entire positive class in the test data.

Recall =
T P

T P + FN
(16)

iv F1-score: This represents the harmonic mean of the recall
and precision. High values can be interpreted as high
classification performance.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(17)

v The AUC (Area under the curve) of ROC (Receiver op-
erating characteristic) is obtained by plotting the ratio of
true positives against the false positives rates.

9
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Table 3. Summary of datasets used.
Descriptions UCI Dataset Github Dataset Kaggle Dataset
Number of Features 23 10 30
Labels Class (0 or 1) Is Fraudulent (0 or 1) Class (0 or 1)
Number of Rows 30, 000 3, 075 284, 807
Percentage of Frauds vs. Non-fraud be-
fore resampling

22.12% vs. 77.88% 14.569% vs. 85.43% 0.172% vs. 99.828%

No of Frauds vs. Non-fraud before resam-
pling

6,636 vs. 2,6364 448 vs. 2627 492 vs. 284,315

No of Frauds vs. Non-fraud after resam-
pling

15,186 vs. 15,186 2,626 vs. 2,627 11,372 vs. 11,372

Resampling technique used SMOTE and Ran-
domUnderSampler

SMOTE only SMOTE and Rando-
mUnderSampler

4. Result and discussion

This section reports the performance of the base classifiers
and the stacking algorithm using the three datasets, as depicted
in Tables 4–8 and Figures 2– 5. In the experiment, UCI Dataset
and Github Dataset were first trained and tested without resam-
pling since their size is not too large for the stacking ensemble.
Hence, the initial proportion of fraudulent and legitimate trans-
actions in the imbalanced datasets was maintained. This had a
rigorous effect on the SVM model, which had minimal preci-
sion, recall and f1-score, as shown in Table 4.

Using the medium-sized dataset with 30,000 rows
(UCI Dataset), Gaussian NB had the least accuracy but
recorded the highest recall value. On this dataset, RF achieved
the same accuracy as the Stacking model and attained a higher
recall f1-score and recall than the Stacking model. However,
the Stacking model had the highest precision and ROC AUC
as depicted in Table 5 and the box plots of Figure 2. The al-
gorithms’ performance was the lowest in unbalanced dataset
1, which had the highest number of legitimate transactions (23
364 out of 30 000 rows). The skewed distribution of this dataset
affected all the models, as illustrated in Figure 3.

Using the small-sized imbalanced dataset with 3075 rows
(Github Dataset), the accuracies of all the models improved as
tabulated in Tables 7.

After implementing the models on the imbalanced datasets,
resampling techniques, including SMOTE and RandomUnder-
Sampler, were applied to train the model again. The results
obtained, as shown in Table 7, reveal a significant increase in
performance. The decision tree-based models, such as DT and
RF, had the best individual performance,which was very close
to the stacking model.

The performance of the decision tree model, which is based
on the Classification and Regression Trees (CART) algorithm,
improved drastically in all the metrics, competing with RF and
the stacked model. Even though the accuracy of the Gaussian
NB increased, the precision, recall, and f1-score dropped dras-
tically, almost approaching the minimal values similar to those
of the SVM. The stacking model achieved the best performance
concerning the accuracy, recall, precision, and f1-score even
though RF had the highest ROC AUC value for this dataset.
The decision regions of the models concerning the imbalanced

Figure 3. Plot of the decision regions using the precision of the models
in the imbalanced UCI Dataset.

Github Dataset are represented in Figure 4, while the box plots
of the models for the same dataset are given in Figure 5.

The third dataset from Kaggle solely applied the SMOTE
and RandomUnderSampler to create a medium-sized dataset
(22744 rows) with an equal number of fraudulent and legitimate
transactions. With this, the SVM’s precision, recall and f1-
score increased immensely even though the accuracy dropped.
This is shown in Table 8. The performance of KNN also im-
proved with this dataset, producing precision, recall, f1-score
and ROC AUC that were competitive with the best-performing
models. Overall, the performances of all the models were also
very good, with this dataset recording ROC AUC above 98%
in at least four models and f1-score above 98% in at least three
models, as shown in Table 8. Decision Tree and RF attained
very competitive performance relative to the stacking model,
attaining above 98% in all their metrics. RF, as an individual
model, recorded the best performance over the stacking model
in precision and attained the same perfect ROC AUC of 1.0
with the stacked model. RF could achieve such performance
because it is an ensemble of several decision trees. In general,
using this balanced dataset, the stacking model performed bet-
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Table 4. Results from UCI Dataset before resampling.
AlgorithmAccuracy Precision Recall F1-

score
ROC AUC

KNN 0.750 0.366 0.178 0.239 0.599
Decision
Tree
(DT)

0.725 0.384 0.410 0.402 0.613

SVM 0.779 0.000 0.000 0.000 0.659
Gaussian
NB

0.379 0.247 0.885 0.387 0.671

RF 0.818 0.658 0.369 0.473 0.767
Stacking 0.818 0.666 0.353 0.462 0.770

Table 5. Results from UCI Dataset after resampling.
Algorithm Accuracy Precision Recall F1-score ROC AUC
KNN 0.69600 0.65862 0.81397 0.72807 0.76565
Decision
Tree (DT)

0.71300 0.70853 0.72817 0.71772 0.71424

SVM 0.62000 0.60320 0.70095 0.64837 0.68083
Gaussian
NB

0.54500 0.52558 0.93196 0.67211 0.67604

RF 0.81100 0.83001 0.78177 0.80515 0.88772
Stacking 0.81900 0.81552 0.82847 0.81965 0.89699

Table 6. Results from Github Dataset before resampling.
Algorithm Accuracy Precision Recall F1-score ROC AUC
KNN 0.857 0.541 0.151 0.233 0.577
Decision
Tree (DT)

0.980 0.939 0.924 0.928 0.956

SVM 0.854 0.000 0.000 0.000 0.472
Gaussian
NB

0.855 0.200 0.004 0.009 0.777

RF 0.983 0.963 0.922 0.941 0.996
Stacking 0.984 0.964 0.931 0.945 0.988

Table 7. Results from Github Dataset after resampling.
Algorithm Accuracy Precision Recall F1-score ROC AUC
KNN 0.67047 0.66424 0.68937 0.67638 0.73251
Decision
Tree (DT)

1.00000 1.00000 1.00000 1.00000 1.00000

SVM 0.53620 0.57414 0.27774 0.37351 0.53169
Gaussian
NB

0.70004 0.77957 0.55800 0.64994 0.79843

RF 1.00000 1.00000 1.00000 1.00000 1.00000
Stacking 1.00000 1.00000 1.00000 1.00000 1.00000

ter than all the individual models, reaching equal accuracy and
an f1-score of 99.6%. Further discussions on how such models
are used for predicting instances of fraud with all the transac-
tion features can be found in [51]. This practice involves us-
ing the model’s fit() and predict() Python functions to classify
the transaction into the binary classes of legitimate or fraudu-
lent. The decision regions and box plots of the models using

the Kaggle Dataset are shown in Figures 5 and 6, respectively.

It is noteworthy to mention that the decimal places were in-
creased in the metrics obtained from the resampled small and
medium-sized dataset to improve the level of precision of the
results obtained. For research, the Python codes were devel-
oped, and the results were made available on a public repo
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Table 8. Results from Kaggle Dataset.
Algorithm Accuracy Precision Recall F1-score ROC AUC
KNN 0.841 0.825 0.865 0.845 0.915
Decision
Tree (DT)

0.984 0.981 0.987 0.984 0.984

SVM 0.551 0.543 0.637 0.586 0.574
Gaussian
NB

0.866 0.991 0.738 0.846 0.982

RF 0.995 0.998 0.993 0.995 1.000
Stacking 0.996 0.997 0.995 0.996 1.000

Table 9. Comparison of results with other authors.
Model Highest

Accuracy
Highest Pre-
cision

Highest Re-
call

Highest F1-
score

ROC AUC

Proposed approach on Kaggle Dataset 0.996 0.998 0.995 0.996 1.000
Proposed approach on Github Dataset 0.9999 1.000 1.000 0.9999 1.000
Proposed approach on UCI Dataset 0.81900 0.83001 0.93196 0.81965 0.89699
[47] 0.999 0.999 1.000 0.999 1.000
[48] 0.939 0.950 0.940 0.940 0.940
[49] 0.999 1.000 1.000 1.000 -
[50] 0.999 0.999 1.000 0.999 0.999
[51] 0.999 - - 0.8184 0.970
[52] 0.998 - 0.999 - -

Figure 4. A plot of the decision regions using the accuracies of the
models in the imbalanced Github Dataset.

sitory in GitHub [52]. We acknowledge that the complexity of
our approach is a significant consideration. Training multiple
models and performing K-fold validation increases computa-
tional demands. However, we mitigated this by parallelising the
training processes and using efficient data handling practices.
In our study, we assessed the computational costs and deemed
them acceptable given the predictive performance gains. De-
tailed complexity analysis and runtime performance data are
beyond the scope of this work.

In our experiments, the Random Forest (RF) algorithm per-

Figure 5. Box plot of F1-scores from the imbalanced Github Dataset.

formed exceptionally well. However, the stacked logistic re-
gression model still holds value. The stacking approach allows
us to integrate and weight the predictions from all base models,
potentially capturing complementary strengths that a single al-
gorithm might miss. The marginal performance improvement
in some cases may seem small, but it can be critical in high-
stakes applications where even slight accuracy gains are valu-
able. Although the high performance metrics may suggest over-
fitting, we took several steps to validate our findings, including
extensive cross-validation and testing on separate datasets as
seen in Section 4. We also examined learning curves to ensure
that performance gains were not merely artifacts of overfitting.

4.1. Comparison of results
The comparison of results with state-of-the-art models [42–

47] is given in Table9.
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Figure 6. A plot of the decision regions using the F1-scores of the mod-
els in the balanced Kaggle Dataset.

Figure 7. Box plot of ROC AUC from the balanced Kaggle Dataset.

This proposed stacking ensemble was benchmarked against
the works of [42–47]. From the results obtained in this work,
it is observed that the proposed model is highly competitive
with extant models that used the Kaggle dataset [51], produc-
ing ROC AUC of 100% and scoring above 99% in all other
metrics. The work of Dang et al. [47] also attained an equiv-
alent ROC AUC with high scores in different metrics. They
achieved this performance using SMOTE and ADASYN with
several ML and deep learning approaches, arriving at their
best performance with the RF model. The work inAhmed and
Shamsuddin [43] also attained a notable performance after they
used several ML algorithms with SMOTE and ADASYN. Af-
ter applying some oversampling techniques to the dataset, they
reached their best performance with the RF algorithm. InKer-
win and Bastian [44], a high accuracy score was obtained af-
ter using the Multilayer perceptron, GradientBoostingMachine
and AdaBoost using the SMOTE and SMOTEENN resampling
techniques. Bagga et al. [45] achieved high precision, recall
and f1-score by implementing pipelining and bagging ensem-
ble techniques with seven ML algorithms using RF as the base
classifier for the pipeline. Hence, it can be observed that the RF

algorithm and ensemble techniques are very good at credit card
fraud classification problems.

5. Conclusion and future work

Ensemble ML models can learn from massive datasets and
discover trends that individual ML algorithms may not observe
when used separately. In this research, we evaluated the perfor-
mance of a stacking ensemble of five classifiers, including K-
NN, SVM, RF, GuassianNB and DT, using Logistic Regression
as the meta-classifier. The objective was to develop a model
that can detect credit card fraud given a dataset with several
features. Employing K-Fold cross-validation with 10 splits and
three repeats, the models were aggregated through stacking, re-
vealing a consistent enhancement over individual models. This
enhancement arises from the complementary strengths of dif-
ferent algorithms compensating for each other’s weaknesses.
In this problem domain in the banking sector, the RF proves
to be better than most supervised ML classifiers since it op-
erates as an ensemble of decision trees. Using SMOTE and
RandomUnderSampler to reduce the effect of the imbalance
on large datasets, the algorithms displayed a drastic increase
in performance, reaching a peak accuracy and ROC-AUC that
is competitive with other novel research. This shows that a bal-
anced dataset without skewed distribution provides better train-
ing data for the algorithms to develop a better model.

Knowing that today, credit card transactions are among the
fastest means of payment, such that VISA cards can perform
about 2,000 transactions per second while the blockchain sys-
tem can only perform about seven transactions per second with
high energy bills and gas fees. It is expedient to validate ac-
curate and precise models to help financial institutions keep
watch over millions of transactions they process with credit
cards. The COVID-19 pandemic has also encouraged world-
wide use of credit card transactions, making it a new area for
fraudsters using social engineering methods to conduct recon-
naissance and defraud cardholders. The models developed in
this study have been structured to allow the use of posterior
methods established using historical datasets to predict future
parameters. Through the use of fit and predict functions, these
models enable the classification of new data based on previous
predictive parameters, facilitating informed decision-making in
practical contextsIn the future, we hope to explore novel tech-
niques in deep neural networks (DNN) to develop models that
train with sufficient neurons and layers. It is noteworthy that
only a few public datasets are available in this domain due to
data protection, privacy and confidentiality regulations. Hence,
we hope to seek more current datasets in our subsequent studies
to update our models. This is because there is concept drift and
dataset shift in the behaviour of attackers, leading to a need to
constantly update the models to meet the dynamic behaviour of
cardholders and fraudsters. With such upgrades, more relevant
models will be developed to make them easy to integrate into
the applications in the banking sector.

We hope also to consider adversarial ML techniques that
sometimes lead to data poisoning, which could cause models to
yield false predictions. Lastly, our studies will further extend
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to the application of such novel ensemble and resampling tech-
niques to other critical areas, such as the security and privacy
of healthcare data because attacks on some Internet of Medical
Things (IoMT) devices such as heart pacemakers, deep brain
implants, insulin pumps and defibrillators could lead to loss of
life.

References

[1] Aitken R. “U.S. card fraud losses could exceed 12B USD by 2020”,
Forbes 2016. [Online] http://www.forbes.com/sites/rogeraitken/2016/10/
26/us-card-fraud-losses-could-exceed-12bn-by-2020/.

[2] F. Itoo & S. Singh “Comparison and analysis of logistic regression, Naı̈ve
Bayes and KNN machine learning algorithms for credit card fraud detec-
tion”, International Journal of Information Technology 13 (2021) 1503.
[Online] https://link.springer.com/article/10.1007/s41870-020-00430-y.

[3] D. Huang, Y. Lin, Z. Weng & J. Xiong, “Decision Analysis and Prediction
Based on Credit Card Fraud Data”, The 2nd European Symposium on
Computer and Communications, New York, NY, USA, 20–26. https://doi.
org/10.1145/3478301.3478305.

[4] L. Moumeni, M. Saber, I. Slimani, I. Elfarissi & Z. Bougroun, “Ma-
chine learning for credit card fraud detection”, Lecture Notes in Elec-
trical Engineering WITS 2020, Springer Singapore, 2021, pp. 211–221.
http://dx.doi.org/10.1007/978-981-33-6893-4 20.

[5] N. Yousefi, M. Alaghband & I. Garibay, “A Comprehensive Survey on
Machine Learning Techniques and User Authentication Approaches for
Credit Card Fraud Detection”, International Journal of Computer and In-
formation Engineering 15 (2021) 599. https://publications.waset.org/pdf/
10012319.

[6] G. Rushin, C. Stancil, M. Sun, S. Adams & P. Beling “Horse race analy-
sis in credit card fraud detection using deep learning, logistic regression,
and gradient boosted tree”, IEEE Systems and Information Engineering
Design Symposium (SIEDS), Charlottesville, Virginia, USA, 2017, pp.
117–121. https://doi.org/10.1109/SIEDS.2017.7937700.

[7] Y. Wang, S. Adams, P. Beling, S. Greenspan, S. Rajagopalan, M. Velez-
Rojas, S. Mankovski, S. Boker & D. Brown, “Privacy-preserving dis-
tributed deep learning and its application in credit card fraud detection”,
IEEE International Conference On Trust, Security And Privacy In Com-
puting And Communications/12th IEEE International Conference On Big
Data Science And Engineering (TrustCom/BigDataSE), New York, NY,
USA, 2018, 1070–8. https://ieeexplore.ieee.org/document/8456019.

[8] A. Bahnsen, A. Stojanovic, D. Aouada & B. Ottersten, “Cost-sensitive
credit card fraud detection using Bayes minimum risk”, International
Conference on Machine Learning and Applications (ICMLA), Miami,
Florida, USA, 2013, pp. 333–8. https://ieeexplore.ieee.org/document/
6784638.

[9] A. Pozzolo, O. Caelen, Y. A Le Borgne, S. Waterschoot & G. Bon-
tempi, “Learned lessons in credit card fraud detection from a practi-
tioner perspective”, Expert systems with applications 41 (2014) 4915.
https://doi.org/10.1016/j.eswa.2014.02.026.

[10] A. Pozzolo, G. Boracchi, O. Caelen, C. Alippi & G. Bontempi, “Credit
card fraud detection and concept-drift adaptation with delayed supervised
information”, International Joint Conference Neural Networks (IJCNN),
Killarney, Ireland, 2015, PP. 1–8. https://ieeexplore.ieee.org/document/
7280527.

[11] V. Vlasselaer, C. Bravo, O. Caelen, T. Eliassi-Rad, L. Akoglu, Snoeck &
B. Baesens, “Apate: A novel approach for automated credit card trans-
action fraud detection using network-based extensions Decision Support
Systems”, Decis. Support Syst. 75 (2015) 38. http://dx.doi.org/10.1016/j.
dss.2015.04.013.

[12] R. Mohammed, K. Wong, M. Shiratuddin & X. Wang, “Scalable machine
learning techniques for highly imbalanced credit card fraud detection: A
comparative study”, Pacific Rim International Conference on Artificial
Intelligence, Nanjing, China, 2018, pp. 237-246. https://doi.org/10.1007/
978-3-319-97310-4 27.

[13] N. Mahmoudi & E. Duman “Detecting credit card fraud by modi-
fied fisher discriminant analysis”, Expert Systems with Applications 42
(2015) 2510. https://doi.org/10.1016/j.eswa.2014.10.037.

[14] M. Mahmud, S. Meesad, “An evaluation of computational intelligence in
credit card fraud detection”, International Computer Science and Engi-
neering Conference (ICSEC), Austin, Texas, USA, 2016 pp. 1–6. https:
//ieeexplore.ieee.org/document/7859947.

[15] K. R Seeja & M. Zareapoor, “Fraudminer: A novel credit card fraud de-
tection model based on frequent itemset mining”, The Scientific World
Journal 2014 (2014) 1. https://doi.org/10.1155/2014/252797.

[16] S. Kumari & A. Choubey, “Credit card fraud detection using
Hmm and k-means clustering algorithm”, International Journal
of Scientific Research Engineering and Technology (IJSRET)
6 (2017) 2278. [Online] https://www.semanticscholar.org/paper/
Credit-Card-Fraud-Detection-Using-HMM-and-K-Means-Kumari-Bhilai/
16146abaf34f53fa1380f4addb84527dd54e3fcf.

[17] T. Behera & S. Panigrahi, “redit card fraud detection: a hybrid approach
using fuzzy clustering & neural network”, International Conference of
Advances in Computing and Communication Engineering (ICACCE),
Dehradun, India, 2015, pp. 494-9. https://ieeexplore.ieee.org/document/
7306735.

[18] C. Jiang, J. Song, G. Liu, L. Zheng & W. Luan, “Credit card fraud detec-
tion: A novel approach using aggregation strategy and feedback mecha-
nism”, IEEE Internet of Things Journal 5 (2018) 3637. https://doi.org/10.
1109/JIOT.2018.2816007.

[19] D. Olszewski, “Fraud detection using self-organizing map visualizing the
user profiles”, Knowledge-Based Systems 70 (2014) 324. https://doi.org/
10.1016/j.knosys.2014.07.008.

[20] V. Agaskar, M. Babariya, S. Chandran & N. Giri, “Unsupervised learning
for credit card fraud detection”, International Research Journal of En-
gineering and Technology 4 (2017) 2343. [Online] https://www.irjet.net/
archives/V4/i3/IRJET-V4I3608.pdf.

[21] N. Vaishnavi & S. Geetha, “Credit Card Fraud Detection using Machine
Learning Algorithms”, International Conference on Recent Trends in Ad-
vanced Computing, Chennai, India, 2019, pp. 631-641. https://doi.org/10.
1016/j.procs.2020.01.057.

[22] H. Zhu, G. Liu, M. Zhou, Y. Xie, A. Abusorrah & Q. Kang, “Optimizing
Weighted Extreme Learning Machines for imbalanced classification and
application to credit card fraud detection”, Neurocomputing 407 (2020)
50. https://doi.org/10.1016/j.neucom.2020.04.078.

[23] X. Li, S. Han, L. Zhao, C. Gong & X. Liu, “New dandelion algorithm
optimizes extreme learning machine for biomedical classification prob-
lems”, Comput. Intell. Neurosci. 2017 (2017) 1. https://doi.org/10.1155/
2017/4523754.

[24] Y. Yu, S. Gao, Y. Wang & Y. Todo, “Global optimum-based search
differential evolution”, IEEE/CAA J. Autom. Sin. 6 (2019) 379. http:
//dx.doi.org/10.1109/JAS.2019.1911378.

[25] Z. Wang, G. Yu, Y. Kang, Y. Zhao & Q. Qu, “Breast tumor detection in
digital mammography based on extreme learning machine”, Neurocom-
puting 128 (2014) 17. https://doi.org/10.1016/j.neucom.2013.05.053.

[26] C. Chen, W. Li, H. Su & K. Liu, “Spectral-spatial classification of hyper-
spectral image based on kernel extreme learning machine”, Remote Sens
6 (2014) 5795. https://doi.org/10.3390/rs6065795.

[27] T. Liu, L. Hu, C. Ma, Z. Wang & H. Chen, “A fast approach for de-
tection of erythemato-squamous diseases based on extreme learning ma-
chine with maximum relevance minimum redundancy feature selection”,
Int. J. Syst. Sci. 46 (2015) 919. http://dx.doi.org/10.1080/00207721.2013.
801096.

[28] Q. Li, H. Chen, H. Huang, X. Zhao, Z. Cai, C. Tong & X. Tian, “An
enhanced grey wolf optimization based feature selection wrapped kernel
extreme learning machine for medical diagnosis”, Comput. Math. Meth-
ods Med. 2017 (2017) 1. https://doi.org/10.1155/2017/9512741

[29] D. Zhao, C. Huang, Y. Wei, F. Yu, M. Wang & H. Chen “An effec-
tive computational model for bankruptcy prediction using kernel ex-
treme learning machine approach”, Comput. Econ. 49 (2017) 325. https:
//doi.org/10.1007/s10614-016-9562-7.

[30] W. Deng, Q. Zheng & Z. Wang,“Cross-person activity recognition using
reduced kernel extreme learning machine”, Neural Netw. 53 (2014) 1.
https://doi.org/10.1016/j.neunet.2014.01.008.

[31] Y. Lucas & Jurgovsky, “Credit card fraud detection using machine
learning: A survey”. [Online]. https://www.researchgate.net/publication/
344639091 Credit card fraud detection using machine learning A
survey.

[32] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, & G. Bontempi,

14

http://www.forbes.com/sites/rogeraitken/2016/10/26/us-card-fraud-losses-could-exceed-12bn-by-2020/
http://www.forbes.com/sites/rogeraitken/2016/10/26/us-card-fraud-losses-could-exceed-12bn-by-2020/
https://link.springer.com/article/10.1007/s41870-020-00430-y
https://doi.org/10.1145/3478301.3478305
https://doi.org/10.1145/3478301.3478305
http://dx.doi.org/10.1007/978-981-33-6893-4_20
https://publications.waset.org/pdf/10012319
https://publications.waset.org/pdf/10012319
https://doi.org/10.1109/SIEDS.2017.7937700
https://ieeexplore.ieee.org/document/8456019
https://ieeexplore.ieee.org/document/6784638
https://ieeexplore.ieee.org/document/6784638
https://doi.org/10.1016/j.eswa.2014.02.026
https://ieeexplore.ieee.org/document/7280527
https://ieeexplore.ieee.org/document/7280527
http://dx.doi.org/10.1016/j.dss.2015.04.013
http://dx.doi.org/10.1016/j.dss.2015.04.013
https://doi.org/10.1007/978-3-319-97310-4_27
https://doi.org/10.1007/978-3-319-97310-4_27
https://doi.org/10.1016/j.eswa.2014.10.037
https://ieeexplore.ieee.org/document/7859947
https://ieeexplore.ieee.org/document/7859947
https://doi.org/10.1155/2014/252797
https://www.semanticscholar.org/paper/Credit-Card-Fraud-Detection-Using-HMM-and-K-Means-Kumari-Bhilai/16146abaf34f53fa1380f4addb84527dd54e3fcf
https://www.semanticscholar.org/paper/Credit-Card-Fraud-Detection-Using-HMM-and-K-Means-Kumari-Bhilai/16146abaf34f53fa1380f4addb84527dd54e3fcf
https://www.semanticscholar.org/paper/Credit-Card-Fraud-Detection-Using-HMM-and-K-Means-Kumari-Bhilai/16146abaf34f53fa1380f4addb84527dd54e3fcf
https://ieeexplore.ieee.org/document/7306735
https://ieeexplore.ieee.org/document/7306735
https://doi.org/10.1109/JIOT.2018.2816007
https://doi.org/10.1109/JIOT.2018.2816007
https://doi.org/10.1016/j.knosys.2014.07.008
https://doi.org/10.1016/j.knosys.2014.07.008
https://www.irjet.net/archives/V4/i3/IRJET-V4I3608.pdf
https://www.irjet.net/archives/V4/i3/IRJET-V4I3608.pdf
https://doi.org/10.1016/j.procs.2020.01.057
https://doi.org/10.1016/j.procs.2020.01.057
https://doi.org/10.1016/j.neucom.2020.04.078
https://doi.org/10.1155/2017/4523754
https://doi.org/10.1155/2017/4523754
http://dx.doi.org/10.1109/JAS.2019.1911378
http://dx.doi.org/10.1109/JAS.2019.1911378
https://doi.org/10.1016/j.neucom.2013.05.053
https://doi.org/10.3390/rs6065795
http://dx.doi.org/10.1080/00207721.2013.801096
http://dx.doi.org/10.1080/00207721.2013.801096
https://doi.org/10.1155/2017/9512741
https://doi.org/10.1007/s10614-016-9562-7
https://doi.org/10.1007/s10614-016-9562-7
https://doi.org/10.1016/j.neunet.2014.01.008
https://www.researchgate.net/publication/344639091_Credit_card_fraud_detection_using_machine_learning_A_survey
https://www.researchgate.net/publication/344639091_Credit_card_fraud_detection_using_machine_learning_A_survey
https://www.researchgate.net/publication/344639091_Credit_card_fraud_detection_using_machine_learning_A_survey


Eteng et al. / J. Nig. Soc. Phys. Sci. 7 (2025) 2066 15

“Credit card fraud detection and concept-drift adaptation with delayed
supervised information”, International Joint Conference on Neural Net-
works (IJCNN), Killarney, Ireland, 2015, pp. 1-8.https://doi.org/10.1109/
IJCNN.2015.7280767.

[33] A. Izotova & A. Valiullin, “Comparison of Poisson process and machine
learning algorithms approach for credit card fraud detection”, Procedia
Computer Science 186 (2021) 721. https://doi.org/10.1016/j.procs.2021.
04.214.

[34] S. Arora, S. Bindra, S. Singh & V. Nassa, “Prediction of credit card de-
faults through data analysis and machine learning techniques”, Materials
Today: Proceedings 51 (2021) 110. https://doi.org/10.1016/j.matpr.2021.
04.588.

[35] E. Burnaev, P. Erofeev & A. Papanov, “Influence of Resampling on Ac-
curacy of Imbalanced Classification”, International Conference on Ma-
chine Vision, Lille, France, 2015, pp. 5–12. http://dx.doi.org/10.1117/12.
2228523

[36] T. Saito & M. Rehmsmeier, “The Precision-Recall Plot Is More Infor-
mative than the ROC Plot When Evaluating Binary Classifiers on Im-
balanced Datasets”, PLOS ONE 10 (2015) e0118432. https://doi.org/10.
1371/journal.pone.0118432 .

[37] A. Dal Pozzolo, O. Caelen & Y. Le Borgne, “Learned lessons in credit
card fraud detection from a practitioner perspective”, Expert systems with
applications 41 (2014) 4915. https://doi.org/10.1016/j.eswa.2014.02.026.

[38] A. Abdallah, M. Maarof & A. Zainal “Fraud detection system: A survey”,
Journal of Network and Computer Applications 68 (2016) 90. https://doi.
org/10.1016/j.jnca.2016.04.007.

[39] J. A. P. Karax, A. Malucelli & J. P Barddal, “Decision tree-based fea-
ture ranking in concept drifting data streams”, Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, Limassol, Cyprus,
2019, pp. 590–592. https://doi.org/10.1145/3297280.3297551.

[40] H. M.Gomes, A. Bifet, J. Read, J. P. Ba rddal, F. Enembreck, B.
Pfharinger, G. Holmes & T. Abdessalem, “Adaptive random forest for
evolving data stream classification”, Machine Learning 106 (2017) 1.
https://link.springer.com/article/10.1007/s10994-017-5642-8.

[41] J. P. Barddal & F. Enembreck, “Learning regularized hoeffding trees from
data streams”, Symposium on Applied Computing, Limassol, Cyprus,
2019, pp. 574–581 https://doi.org/10.1145/3297280.3297334.

[42] F. Carcillo, A. Dal Pozzolo, Y. Le Borgne, O. Caelen, Y. Mazzer & G.

Bontempi, “Scarff: A scalable framework for imbalanced classification in
stream learning”, Information Sciences 557 (2021) 317. https://doi.org/
10.1016/j.ins.2020.11.033.

[43] F. Ahmed & R. Shamsuddin, “A comparative study of credit card fraud
detection using the combination of machine learning techniques with data
imbalance solution”, 2nd International Conference on Computing and
Data Science, Stanford, CA, USA, 2021, pp. 112–118. https://doi.org/
10.1109/CDS52072.2021.00026.

[44] K. Kerwin & N. D. Bastian, “Stacked generalizations in imbalanced fraud
datasets using resampling methods”, Journal of Defense Modeling and
Simulation: Applications, Methodology, Technology (2021); 18 (2021)
175. https://doi.org/10.1177/1548512920962219.

[45] S. Bagga, A. Goyal, N. Gupta & A. Goyal, “Credit card fraud de-
tection using pipelining and ensemble learning”, International Confer-
ence on Smart Sustainable Intelligent Computing and Applications un-
der ICITETM2020. Procedia Computer Science 173 (2020) 104. https:
//doi.org/10.1016/j.procs.2020.06.014.

[46] S. Rajora, D. L. Li, C. Jha, N. Bharill, O. P. Patel, S. Joshi, D Putal
& M.prsad, “A Comparative Study of Machine Learning Techniques for
Credit Card Fraud Detection Based on Time Variance”, IEEE Symposium
Series on Computational Intelligence (SSCI), Bangalore, India, 2018, pp.
1958–1963. https://doi.org/10.1109/SSCI.2018.8628930.

[47] T. K. Dang, T. C Tran, L. M. Tuan & M. V Tiep, “Machine Learn-
ing based on Resampling Approaches and Deep Reinforcement Learning
for Credit Card Fraud Detection Systems”, Applied Sciences 11 (2021)
10004. https://doi.org/10.3390/app112110004.

[48] UCI Machine Learning Repository. [Online] http://archive.ics.uci.edu/ml/
datasets/default+of+credit+card+clients. [Accessed 25 January 2022].

[49] gksj7. GitHub. [Online] https://github.com/gksj7/creditcardcsvpresent/
blob/main/creditcardcsvpresent.csv. [Accessed 24 January 2022].

[50] Kaggle, “Credit Card Fraud Detection”, [Online] https://www.kaggle.
com/mlg-ulb/creditcardfraud. [Accessed 23 January 2022].

[51] Machine Learning Mastery, “Stacking Ensemble Machine Learn-
ing with Python”, [Online] https://machinelearningmastery.com/
stacking-ensemble-machine-learning-with-python/. [Accessed 2
Febraury 2022].

[52] U. Leonard. GitHub. [Online] https://github.com/UdezeLeoportals/
Machine-learning/blob/main/ensemble credit rerun1.ipynb.

15

https://doi.org/10.1109/IJCNN.2015.7280767
https://doi.org/10.1109/IJCNN.2015.7280767
https://doi.org/10.1016/j.procs.2021.04.214
https://doi.org/10.1016/j.procs.2021.04.214
https://doi.org/10.1016/j.matpr.2021.04.588
https://doi.org/10.1016/j.matpr.2021.04.588
http://dx.doi.org/10.1117/12.2228523
http://dx.doi.org/10.1117/12.2228523
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1016/j.eswa.2014.02.026
https://doi.org/10.1016/j.jnca.2016.04.007
https://doi.org/10.1016/j.jnca.2016.04.007
https://doi.org/10.1145/3297280.3297551
https://link.springer.com/article/10.1007/s10994-017-5642-8
https://doi.org/10.1145/3297280.3297334
https://doi.org/10.1016/j.ins.2020.11.033
https://doi.org/10.1016/j.ins.2020.11.033
https://doi.org/10.1109/CDS52072.2021.00026
https://doi.org/10.1109/CDS52072.2021.00026
https://doi.org/10.1177/1548512920962219
https://doi.org/10.1016/j.procs.2020.06.014
https://doi.org/10.1016/j.procs.2020.06.014
https://doi.org/10.1109/SSCI.2018.8628930
https://doi.org/10.3390/app112110004
http://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
http://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://github.com/gksj7/creditcardcsvpresent/blob/main/creditcardcsvpresent.csv
https://github.com/gksj7/creditcardcsvpresent/blob/main/creditcardcsvpresent.csv
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://machinelearningmastery.com/stacking-ensemble-machine-learning-with-python/
https://machinelearningmastery.com/stacking-ensemble-machine-learning-with-python/
https://github.com/UdezeLeoportals/Machine-learning/blob/main/ensemble_credit_rerun1.ipynb
https://github.com/UdezeLeoportals/Machine-learning/blob/main/ensemble_credit_rerun1.ipynb

