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Abstract

A suitable probability distribution is required to quantify and estimate hydraulic structure design for risk evaluation and management. The inability
of model selection criteria to differentiate, in some cases, among candidate distributions used in the analysis of hydrological extremes is often
criticised. This study verifies, with the aid of model selection techniques, the potential utility of trimming and subsampling in distinguishing
between candidate distributions, which might not be feasible using the traditional goodness of fit method alone, when samples available are small.
The performance of the proposed method is evaluated through its application to real and simulated yearly peak rainfall datasets. The proposed
approach is then compared with several standard model selection techniques. Results show that the model selection techniques with the aid of
subsampling are effective in identifying the true parent distribution for the untrimmed samples given a two-parameter distribution; contrarily,
they are inefficient where a distribution with a three-parameter is the parent distribution. However, as trimming is introduced, all model selection
methods recognise the true parent distribution for a three-parameter distribution. Overall, utilising trimming and subsampling with the aid of
model selection methods yields promising outcomes in the analysis of hydrological extreme frequencies. Drawing from the results of numerical
simulation and examination of observed data, the use of trimming and subsampling can be a viable tool in differentiating among candidate
distributions used in the investigation of hydrological extreme frequencies.
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1. Introduction

Flooding, a global natural phenomenon that affects hu-
mans negatively, requires different strategies to combat. Some

∗Corresponding author Tel. No: +60-126-910-694.
Email address: norhaslinda@upm.edu.my (Norhaslinda Ali )

of these strategies include the construction of culverts, down-
stream barricades, flood projections for awareness and possible
evacuation, and effective land management in terms of stream-
flow characteristics, Kidson and Richards [1]. Considerably,
flood frequency analysis can provide risk evaluation for these
strategies. Wallis [2] defined Flood Frequency Analysis (FFA)
as a statistical approach used to identify the fundamental prob-
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ability distribution that generates observed floods and models
the exceedance probability of a return period of statistical sig-
nificance. Flooding is generally set off due to different combi-
nations of meteorological features, and these give rise to vari-
ous underlying mechanisms generating floods. Yan et al. [3]
classified flood as flood triggered by excessive rainfall, flood
resulting from rain on snow, and flood arising from snowmelt.
Floods as a result of snowmelt are usually of long duration,
while floods triggered by rainfall are usually of short dura-
tion, Ref. [4]. Though streamflow data also provides reliable
estimates for the analysis of floods, it is common practice in
hydrological studies to use rainfall observations in modelling
flood design associated with a specified recurrence interval as
they are readily available in space and time, Flamini et al. [5].
The primary objective of flood frequency analysis is to demon-
strate the correlation between the magnitude of hydrological
extremes and their rate of occurrence using a probability dis-
tribution, Refs. [6, 7]. Hydraulic structure design and the
handling of river basin administration rely on the assessment
of factors that triggered flooding, such as excessive rainfall or
peak streamflow, ideally acquired from long historical obser-
vations. Notwithstanding, the scant availability of hydromete-
orological monitoring devices, prevalent in less economically
developed countries, and the necessity for estimation of return
values linked to increasing recurrence intervals, resulted in the
use of statistical-based techniques such as the at-site analysis
of floods. This study examines how well candidate probabil-
ity distributions can describe observed floods caused by heavy
rainfall.

In practical application, the fundamental probability distri-
bution that generates an observed flood at a site or region is
unknown, Hamed and Rao [7]. Identifying and effectively dis-
criminating among these probability distributions is an existing
challenge in hydrological extremes. Methods related to param-
eter estimations are well-established in the literature and give
good outcomes for different probability distributions. However,
this is not the case with techniques for selecting a suitable un-
derlying distribution, Laio et al. [8]. The World Meteorological
Organization (WMO) operational hydrology reports by Cun-
nane [9] contain several kinds of probability distributions ex-
amined in separate circumstances around the world. Graphical
and statistical testing procedures are methods used in selecting
probability distribution in the analysis of flood frequency. The
ineffectiveness of model selection criteria to differentiate be-
tween distributions for similar applications in some cases and
the subjective nature of the graphical methods are often criti-
cised, Onoz and Bayazit [10]. Therefore, choosing an appropri-
ate probability distribution is still an existing challenge. Other
approaches are needed to discriminate further among distribu-
tions, especially in situations where this discrimination is diffi-
cult between probability distributions. The primary design be-
hind this work is to identify the probability distribution nearer
to the distribution that is believed to generate the observed data,
often referred to as the parent distribution in the context of flood
frequency analysis.

Many studies have been conducted previously on using
goodness-of-fit tests for comparison of various probability dis-

tributions used in flood frequency analysis, a few are discussed
herein. Langat et al. [11] describe current approaches such as
the goodness-of-fit tests used in identifying the most suitable
probability functions most appropriate for calculating the high-
est, lowest, and average stream flows of daily discharges. Log-
normal and generalised extreme value distribution functions
were a suitable fit for average annual stream flows. The study
suggests using the selected probability distribution model to try
other methods for choosing distributions in frequency analysis,
such as theoretical evaluation. This can help confirm the appro-
priateness of the selected distributions. Das [12] employed a
subsampling scheme in examining flood frequency. The study
investigates the sensitivity of annual maximum flood data to
subsampling in selecting the best probability distribution. The
study examined a situation with a large available dataset by
using six probability distributions and the Anderson-Darling
(AD) test in the analysis. The suggested method shows plau-
sible prospects for large samples. Chen et al. [13], showed
a technique for selecting best-fit flood frequency distributions
using combined criteria. Eight distributions and five selection
criteria; Kolmogorov Smirnov test, Anderson-Darling criterion
(ADC), Akaike Information Criterion (AIC), Akaike Informa-
tion Criterion-corrected (AICc), and Bayesian Information Cri-
terion (BIC)-were adopted. The study demonstrated that using
the composite criterion improves performance. The objective
of Hassan et al. [14] is to find a suitable model amidst five
probabililty distributions for the yearly highest peak flow data
from various sites. The AD technique was adopted for model
selection. The Pearson generalised logistic distributions show
a good fit. See Refs. [10, 15–19] for more on the suitability
of distributions for analysis of flood frequency in hydrological
extremes.

This study aims to verify using the goodness of fit technique
the potential effectiveness of trimming and subsampling in dis-
criminating among probability distributions used in hydrologi-
cal extremes for at-site frequency analysis when the discrimina-
tion between statistical distributions is difficult and the available
samples are small, which are common situations experience in
the analysis of hydrological extremes. The purpose of trimming
is to reduce the undesirable influence that lower observations
may have on the tail behaviour at the high end of a distribution.
The rationale for utilising subsampling for selecting an optimal
distribution lies in the fact that the subsamples represent sam-
ples of smaller sizes than the original sample. Thus, drawing a
reasonable number of subsamples from the original samples is
expected to yield a pool of samples that will enhance the identi-
fication of an optimal distribution for a gauged site. This study
evaluates the performance of the proposed methodology by ap-
plying it to simulated and real annual peak rainfall datasets. The
technique utilised in this study and the findings to be derived
will not only give an important complement to model selection
methods but will also assist in decision-making for minimizing
uncertainty in flood design estimation, thereby helping in haz-
ard cushioning for hydraulic structures planning, design, and
management.
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Table 1: Model selection criteria.

Method Test statistic
AIC −2 ln[L(D|θ̂) + 2m]

AICc −2 ln[L(D|θ̂) + 2m( n
n−m−1 )]

BIC −2 ln[L(D|θ̂) + ln(n)m]
AD −n − 1

n
∑n

i=1(2i − 1)[ln F(yi) + ln 1 − F(y(n−i+1))]

2. Methods

The model selection problem in flood frequency analysis
may be stated as follows: Suppose there exists a set of n ob-
servations, R = {y1, y2, ..., yn}, sorted in increasing sequence.
In practical situations, researchers typically cannot identify the
underlying parent distribution f (y) of the random variable R.
Let K j, j = 1, 2, ...,Nk, be Nk operating probability distributions
models that can take the form K j = g j(y, θ̂) utilising parame-
ters θ̂ derived from the provided data set R. The parameter θ̂
describes the likelihood distribution of y. The model selection
objective is to determine the optimal operating model K j that
best approximates the parent distribution f (y).

Trimming and a subsampling scheme can be viable tools for
flood frequency analysis. Trimming can eliminate the undesir-
able effects of smaller observations on the extreme tail charac-
teristics of a distribution describing extreme events. A resam-
pling method that draws smaller sample sizes from an original
sample is known as subsampling. The subsamples come from
the same unknown probability distribution as the original sam-
ple. As stated in Politis and Romano [20], subsampling is an
intensive numerical simulation technique often used in statisti-
cal inference. It generates a set of observations, each selected
from the true sample of a given length. The samples drawn in
subsampling are done without replacement and the subsample
size must be less than the record length of the dataset. The
rationale behind employing trimming and subsampling for dis-
tribution selection lies in the ability of trimming to mitigate the
adverse impacts of smaller observations on the upper tail be-
haviour of a distribution that characterizes extreme events, Ref.
[21, 22]. Meanwhile, subsamples represent samples from the
actual unknown distribution, analogous to the original sample,
Ref. [20].

2.1. Model selection methods

This study examines four of the frequently used model se-
lection techniques in hydrological extremes; the Akaike infor-
mation criterion, the AIC-corrected, the BIC, and the ADC
techniques. The mathematical expression for these methods
are as shown in Table 1 where n denotes the size of the sam-
ple, m is the number of estimated parameters of the jth opera-
tional model, and L(D|θ̂) =

∏n
i=1 g j(yiθ̂) represents the proba-

bility function assessed at the point θ = θ̂, Linhart and Zucchini
[23].

The Kullback-Leibler information which assesses the dif-
ference between the actual model f (x) and the model closer to
it K j = g j(x, θ̂) is utilised by the Akaike information criteria,
Akaike [24]. The highest value of the log-likelihood function

Table 2: Candidate distributions.

Distribution Probability distribution function Parameters
Normal 1

σ
√

2π
e−

1
2σ2 (y−µ)2

(µ, σ)

Gumbel exp
{
− exp

[
−
(

y−µ
σ

)]}
(µ, σ)

EV2 exp
{
−
[(

y−µ
σ

)]−ξ}
(µ, σ, ξ)

GEV exp
{
−
[
1 + ξ

(
y−µ
σ

)]− 1
ξ

}
(µ, σ, ξ)

P3 1
µΓ(ξ) (

y−σ
µ

)ξ−1e−( y−σ
µ ) (µ, σ, ξ)

LP3 1
µΓ(ξ) (

z−σ
µ

)ξ−1e−( y−σ
µ ); z = log y (µ, σ, ξ)

LN 1
σ
√

2π
e−

1
2σ2 (z−µ)2

; z = log y (µ, σ)

is utilise for model selection, assigning a greater penalty for a
higher number of estimated parameters m. In practical applica-
tion, after computing the AIC j for all distributions under con-
sideration, the model possessing the least observation is chosen
as the best approximating distribution. The difference between
the AIC and the AICc is that the AICc imposes a greater penalty
than AIC does for the number of estimated parameters m, Ref.
[25, 26]. Schwarz [27], suggested the concept of the Bayesian
information method. The BIC resembles the AIC but its for-
mulated within a Bayesian foundation. Compared to the AIC,
the BIC penalizes more heavily for the number of estimated pa-
rameters, as shown in Refs. [25, 28]. Table 1 presents the test
statistic for the operative model indexed as j. The Anderson-
Darling test utilises the weighted sum of squared variation be-
tween actual and conceptual distributions, particularly focusing
on differences in the tails where F is the cumulative probability
distributions.

2.2. Assessment of model selection criteria

In this study, we will conduct a comprehensive numeri-
cal investigation to evaluate the effectiveness of the proposed
methodology when handling limited samples in the presence
of trimming and subsampling. This investigation will compare
the model selection criteria discussed earlier. Monte Carlo ex-
periment will be used to perform the analysis by employing as
operative models M j, a collective of seven distributions often
employed in the analysis of hydrological extremes. Table 2
gives the approximating probability distributions utilised in this
study. These distributions are among the frequently used distri-
butions in the analysis of flood frequency, Refs. [1, 7, 10, 29],
and are highly recommended across the globe, Cunnane [9].

To achieve the objective of this study, the Monte Carlo ex-
periment is organised in the following manner:

1. Let f (z) = g j∗ (z, θ∗) be a lognormal parent distribution
with a given set of parameters. We generate 1000 sub-
samples each of size n from the fitted lognormal distribu-
tion.

2. Subsamples of size b are selected without replacement
from the subsamples generated in (i) with b < n. The
size of the subsample b depends on the length, n, of the
sample.
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Figure 1: Annual maximum plots.
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Figure 2: Acceptance percentage of the LN distribution for n=30 with b=20,25 for the untrimmed samples.

3. Trimming Proportion (TP) of 10% and 15% are applied
to each of the subsamples of size b selected.

4. Obtain the AIC j, AICc j, BIC j values, and ADC j p-
values, for the untrimmed and trimmed subsamples in
step iii for each of the candidate distribution, j =
1, 2, 3, .., 7.
The model having the lowest AIC value is chosen

5. The model M∗i having the lowest AIC value is chosen,
denoted by AICi∗ = AICmin. If i∗ equals j∗, AIC is cho-
sen as it correctly identifies the true parent distribution.
The same process is repeated for AICc and BIC. For the
Anderson-Darling Criterion, if the non-exceedance prob-
ability, P(A2), of the Anderson-Darling test statistic A2 is
greater than k, where k is one minus the level of signifi-

cance, then we fail to accept the candidate distribution.
6. The test procedure in steps (i)-(v) are repeated for differ-

ent subsample sizes, b. The frequency of selection for
each of the model selection technique is recorded.

According to the handbook of flood estimation from the
Institute of Hydrology Ref. [30], to perform at-site flood fre-
quency analysis, it is recommended to have a minimum data
record length of 20 years. Hence, in this study, the subsam-
ple size b will have a record length of at least 20 years. The
AIC, AICc, BIC, and ADC tests are applied to every sub-
sample to ascertain its probability distribution. The proposed
trimming and subsampling methodology will be applied to an
at-site annual maximum rainfall data series to determine the
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Figure 3: Acceptance percentage of the LN distribution for n=40 with b=20,25 for the untrimmed samples.

most suitable distribution in situations where the goodness-of-
fit test cannot discriminate between distributions. Annual rain-
fall data for two cities in Nigeria obtained from the Nigeria Me-
teorological Agency and published by Nigeria’s central bank:
https://www.cbn.gov.ng will be used. In the simulation exper-
iment, subsamples are generated from a given parent distribu-
tion, and the model selection techniques are used to establish
the candidate distribution that suitably describes the underlying
mechanism generating the data.

3. Results and discussion

To verify whether the model selection techniques work cor-
rectly in discriminating among probability distributions used
in hydrological extremes, four conventional model selection
methods; AIC, AICc, BIC, and ADC, are applied to observed
Annual Maximum (AM) rainfall data on two geographical lo-
cations; Abeokuta (ABK) and Lokoja (LKJ), in Nigeria. ABK,
located in southwest Nigeria, is situated on the eastern side of
the Ogun River amid rocky outcroppings in a wooded savanna,
it covers a region covering approximately 879 square kilome-
ters. Lokoja, located in the north-central of Nigeria, has a trop-
ical wet and dry savanna climate. It is located at the meeting
point of the river Niger and river Benue and covers an area of
3,180 km2.

Table 3 gives important information of ABK and LKJ data
series in terms of their location, data length, and moments,
while Figure 1 represents the data series plots for these loca-
tions. Table 4 displays the outcomes of using the model se-
lection techniques alone when applied to the observed yearly
peak data series for ABK and LKJ using seven candidate distri-
butions that are frequently used in the study of hydrological ex-
tremes. The standard tests for model selection are applied to the
annual peak data of ABK and LKJ to identify the optimal dis-
tribution for the observed data series. To select the optimal can-

didate distribution, the distribution with the least AIC, AICc, or
BIC value is selected, while for the ADC, if the non-exceedance
probability, P(A2), of the Anderson-Darling test statistic A2 is
greater than k, where k is one minus the level of significance,
the candidate distribution is rejected, see Laio [31]. Table 4
is a summary of the test results of the model selection criteria
for AIC, AICc, BIC and ADC tests. From Table 4, at loca-
tion ABK, the model selection criteria (AIC, AICc, and BIC)
indicate the Gumbel and lognormal distributions as the optimal
distributions, with exact test values of 412.8, 413.2, and 416.0,
respectively. Similarly, at location LKJ, the normal and log-
normal distributions are favoured by the AIC, AICc, and BIC,
with test values of 409.3, 409.7, and 412.5, respectively. For the
ADC test, all candidate distributions were accepted at location
ABK, given that P(A2) < k = 1 − α. Conversely, at location
LKJ, all candidate distributions were accepted except for the
EV2 distribution. Overall, when considering the observed data
from both ABK and LKJ, it appears that the standard model
selection criteria failed to distinguish between candidate dis-
tributions effectively. To assess the efficiency of the proposed
method in selecting the true parent distribution, a Monte Carlo
study was performed, and the methodology is applied to real
data.

3.1. Simulation study

The primary aim of the simulation study is to evaluate how
well the proposed method performs under various conditions,
including different sample sizes, subsample sizes, trimming
proportion and inherent statistical properties of the sample.The
outcomes of the Monte Carlo experiment carried out are pre-
sented in this section. The results presentations are a bit cum-
bersome because the result is dependent on the parent distribu-
tion, sample size, trimming proportions, and subsampling size.
For the purpose of a clearer presentation, results that are consid-
ered important for the purpose of this paper will be presented.
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Figure 4: Acceptance percentage of candidate distribution for trimmed samples with lognormal parent distribution.
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Figure 5: Acceptance percentage of the Gumbel distribution for n=30 with b=20,25 for the untrimmed samples.

Figure 2 and Figure 3 show the acceptance percentages of
the seven candidate distributions by the four model selection

techniques for a lognormal parent distribution for untrimmed
samples. The model selection technique correctly chooses the
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Figure 6: Acceptance percentage of the Gumbel distribution for n=40 with b=20,25,30 for the untrimmed samples.

Table 3: Statistical summary of abk and lkj annual maximum rainfall data.

Location Data length(years) Area (km2) Mean Variance Skewness Kurtosis
ABK 36 879 274.9333 5706.6600 0.8977 4.0082
LKJ 36 3180 287.3889 4540.2454 0.2389 2.5100

lognormal distribution as the parent distribution between 40%
to 84% of cases. The Bayesian information criteria are the most
effective in recognising the parent distribution than the AIC,
AICc, and ADC tests in this sequence. Though the AIC and
AICc show similar tendencies in selecting the parent distribu-
tion, the AICc is more effective than the AIC. The ADC selects
the lognormal distribution as the parent distribution in around
40-55% of the cases.

As can be seen from Figure 4, when the lognormal distri-
bution is used as the parent distribution for trimmed samples,
results show that either the lognormal or EV2 distribution is se-

lected as the parent distribution at 10% trimming proportion.
The lognormal distribution is selected between 30-48% of the
times while the EV2 distribution is chosen as the parent distri-
bution between 28-45%. However, as the trimming proportion
is increased to 15% for sample size 40, the EV2 distribution
is selected by all model selection methods as the parent distri-
bution between 56.67-66.67%. This outcome remains largely
consistent even when considering lognormal distributions with
different variances as the parent distribution. The tendency to
select the EV2 distribution, a three-parameter distribution, by
the four model selection criteria as the parent distribution can
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Figure 7: Acceptance percentage of candidate distribution for trimmed samples with Gumbel parent distribution.
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Figure 8: Acceptance percentage of the P3 distribution for n=30 with b=20,25 for the untrimmed samples.

be attributed to the effect of smaller observed values on three-
parameter distributions. Onoz and Bayazit [10] state that while
some studies are interested in the behavioral analysis of ob-
served flood data, others are keen on the predictive ability by
evaluating how good the estimates of the distribution selected
are compared to the assumed parent distribution for estimating
quantiles. In such a situation, it will be interesting to see how
the estimates of quantiles behave, in terms of prediction error,
between the distribution selected when trimming is introduced
and the true parent distribution.

By analysing Figure 5, one can observe that for the

untrimmed samples, the model selection techniques couldn’t
distinguish between the Gumbel parent distribution and the log-
normal distribution in some cases (see Figure 5(a) where only
the BIC selects the true parent distribution outrightly with ac-
ceptance rate of 40%). However, as the sample size is increased
to 40, the Gumbel distribution is selected by all model selection
techniques as the parent distribution in around 33.33% to 50%
cases for all subsample sizes, see Figure 6. The BIC is how-
ever more efficient in recognising the parent distribution than
the AICc, AIC, and ADC tests, in this order.

Employing the Gumbel distribution as the parent distribu-

8



Bako et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 2077 9

Table 4: Model selection test results for locations ABK and LKJ dataset at the 5% significance level.

Distribution
Location Test Normal Gumbel EV2 GEV P3 LP3 LN
ABK AIC 417.5 412.8 417.1 414.7 414.7 414.7 412.8

AICc 417.9 413.2 417.5 415.5 415.5 415.5 413.2
BIC 420.7 416.0 420.3 419.5 419.5 419.5 416.0
ADC 0.7745 0.0685 0.8313 0.0955 0.1198 0.1062 0.0578

LKJ AIC 409.3 410.7 416.4 410.4 410.7 410.5 409.3
AICc 409.7 411.0 416.8 411.1 411.5 411.2 409.7
BIC 412.5 413.8 419.6 415.1 415.5 415.3 412.5
ADC 0.3653 0.6975 0.9869 0.3902 0.4255 0.4146 0.4733
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Figure 9: Acceptance percentage of the P3 distribution for n=40 with b=20,25 for the untrimmed samples.
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Figure 10: Acceptance percentage of candidate distribution for trimmed samples with P3 parent distribution.

tion and introducing trimming, all model selection criteria indi-
cate the P3 distribution as the best choice (see Figure 7). There
is therefore a tendency for the model selection technique to
opt for a three-parameter distribution instead of the true par-

ent two-parameter distribution. Since one of the goals of flood
frequency analysis is the extrapolation of flood quantiles, this
result may not necessarily be a constraint, as in some cases, a
distribution that suitably describes flood data may not be ad-
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Figure 11: Acceptance percentage of candidate distribution for trimmed samples with P3 parent distribution.

equate for estimating flood quantiles. This, however, changes
the perspective from the problem of recognising the true parent
distribution to seeking the best optimal operational model for
quantile estimation, Laio et al. [15].

Using the Pearson type III distribution as the parent dis-
tribution, the model selection criteria are favorably disposed
to selecting a two-parameter distribution instead of the three-
parameter parent distribution for all samples and subsample
sizes for the untrimmed sample, see Figures 8 and 9 . The
tendency to select a two-parameter distribution by the model se-
lection criteria given the parent distribution is a three-parameter
distribution is perhaps implicitly a result of model parsimony,
which suggests choosing the simplest possible distribution that
sufficiently captures the underlying mechanism generating the

observed data, Box et al. [32].
By analysing Figures 10 and 11 we can observe that with

the introduction of trimming when Pearson type III distribution
is used as the underlying distribution, all model selection meth-
ods correctly select the Pearson type III distribution between
16% to 66.67% for all sample and subsample sizes; AIC turns
out to be the best test even when varying the sample size, sub-
sample size, and trimming proportion.

The tendency for the model selection techniques to choose
the true parent distribution when trimming is introduced is a
result of removing the undesirable effect smaller observations
may have on the extreme of a distribution, especially for a three-
parameter distribution.

10
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Figure 12: Percentage of cases a candidate distribution is accepted for subsample size 20.

3.2. Application to real data

We return to the observed yearly peak rainfall data of ABK
and LKJ with descriptive statistics as shown in Table 3. The pri-
mary objective is to assess whether trimming and subsampling,
in combination with model selection techniques, can effectively
differentiate among candidate distributions, which otherwise
cannot be accomplished solely through the use of model selec-
tion techniques alone, as demonstrated in Table 4, particularly
when working with small samples. Therefore, the proposed
methodology is now applied to the real datasets.

Through a Monte Carlo simulation, 1000 subsamples of
datasets with similar characteristics and record length, see Ta-
ble 3, as the observed annual maximum data for ABK and
LKJ are generated. The subsampling scheme is first applied

to the datasets without trimming; and subsequently applied to
the trimmed data.

The procedure for the implementation of the proposed
method to the observed datasets is structured as follows:

i Generate 1000 subsamples with similar characteristics
and record length n as the original ABK data series.

ii Subsamples of size b with b < n are selected without
replacement from the 1000 subsamples, where the size of
the subsample depends on the record length of the ABK
data series.

iii A Trimming proportion (TP) of 10% and 15% is applied
to each of the subsamples of size b selected in (ii) above.
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Figure 13: Percentage of cases a candidate distribution is accepted for subsample size 25.

iv The four model selection techniques are then applied to
the trimmed and untrimmed subsamples selected using
the seven candidate distributions.

v The test statistic for each of the model selection tech-
niques is computed and noted.

vi The procedure in steps (i)-(v) is repeated for each of the
b subsamples, and the distribution that is accepted more
frequently by each of the goodness of fit tests is noted.
Steps (i) − (vi) are also performed for the LKJ dataset.

The proposed method application to the observed station
ABK data is summarised in Figures 12 and 13. These Figures
show the accepted distributions for varying trimming propor-
tions and subsample sizes. A trimming proportion of 0% im-

plies that the dataset used is for an untrimmed sample. By
analysing Figure 12(a), one can see that for the untrimmed sam-
ple, the AIC, AICc, and BIC consistently select the Gumbel dis-
tribution as optimal, with acceptance proportions of 35%, 40%,
and 40%, respectively, while the Anderson-Darling test selects
the P3 distribution as optimal, with an acceptance percentage
of 40%.

However as trimming is introduced, the P3 distribution is
consistently selected as the optimal distribution by all four
goodness-of-fit tests. From Figures 12(b) and (c) , we can ob-
serve that both AIC and AICc exhibit similar maximum accep-
tance percentages of 75% and 80% at trimming proportions of
10% and 15%, respectively. Although the Anderson-Darling
test yields the lowest acceptance percentage for the P3 distri-
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Figure 14: Percentage of cases a candidate distribution is accepted for subsample size 20.

bution, it consistently selects the P3 distribution as optimal for
both untrimmed and trimmed data of station ABK.

Figure 13 shows the candidate distributions accepted with
varying trimming proportions for a subsample size of 25. In
the untrimmed station ABK data series, the behavior of the four
goodness-of-fit tests remains similar compared to when the sub-
sample size is 20. The acceptance percentage of the Gumbel
distribution, as shown in Figure 13(a), increases to 40%, 44%,
and 48% for the AIC, AICc, and BIC tests, respectively, com-
pared to 35%, 40%, and 40% observed when the subsample
size is 20 while, the ADC test selects the P3 distribution with
an acceptance percentage of 28% for a subsample size of 25. In
Figures 13(b) and (c), with trimming introduced to the station
ABK data series, all four model selection methods choose the
P3 distribution as the optimal distribution, with the AIC, AICc,
BIC, and ADC tests showing a marked tendency towards se-

lecting the P3 distribution accordingly. In practical situations,
we don’t know the true parent distribution, however, from ex-
amining Figures 12 and 13 we can observe some compelling
considerations. Comparing the results from the different model
selection techniques, it is evident that the ADC test consistently
predisposes to a three-parameter distribution for both trimmed
and untrimmed samples, whereas AIC, AICc, and BIC tend
to favour two-parameter distributions for untrimmed samples
and three-parameter distributions for trimmed samples. Other
factors to be considered are how well different goodness-of-fit
tests select a distribution. The ADC test consistently selects the
P3 distributions for both the trimmed and untrimmed data sets.
This demonstrates that the Anderson-Darling test possesses dis-
tinct selection abilities compared to the other three model selec-
tion methods.

We have shown the application of trimming and subsam-
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Figure 15: Percentage of cases a candidate distribution is accepted for subsample size 25.

pling, with the aid of model selection techniques, to yearly peak
rainfall data from ABK. The results for datasets from LKJ are
reported in Figures 14 and 15. From Figure 14(a), the normal
distribution is selected as the optimal distribution by the four
model selection criteria at around 40-45% when the samples
are untrimmed and the subsample size is 20. The AIC test, how-
ever selects both the normal and lognormal distribution with an
acceptance percentage of 40%. The results, as evident from
Figures 14(b) and (c) show that the ADC test behaves some-
what differently from the other model selection criteria. At 10%
trimming proportion, AIC, AICc, and BIC select the lognor-
mal distribution as the optimal distribution 45% of the time, re-
spectively, while the ADC test chooses the Gumbel distribution
as the optimal distribution with 40% acceptance. When trim-
ming proportion is increased for subsample size 20, some of
the model selection criteria couldn’t distinguish between some

distributions. At 15% trimming proportion, the AIC test selects
the Gumbel and P3 distribution as the optimal, while the BIC
test selects the Gumbel and lognormal distribution. However,
the AICc and ADC tests outright choose the Gumbel distribu-
tion as the best fit distribution.

From Figure 15, as the subsample size is increased to 25, all
four model selection criteria outrightly select the normal distri-
bution as the optimal distribution for the untrimmed samples,
with acceptance of around 40% to 52%. As trimming is intro-
duced, the lognormal distribution is selected as the optimal dis-
tribution by all model selection techniques. It is noteworthy that
the ADC test leans towards the Gumbel distribution as it has the
highest acceptance of 40% at subsample size 20 for the 10% and
15% trimming proportions respectively. Comparing the results
for the LKJ dataset, the model selection criteria choose normal
distribution as the optimal when the sample is untrimmed with a
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maximum acceptance rate of 44%, 48%, 52%, and 40% respec-
tively, for the AIC, AICc, BIC, and ADC tests. For the trimmed
samples, all model selection criteria select the lognormal dis-
tribution as the optimal distribution except for the ADC test,
whose highest acceptance rate of 40% is the Gumbel distribu-
tion. The ADC test predisposition to select Gumbel as against
the lognormal distribution chosen by the AIC, AICc, and BIC
tests for the trimmed samples is not necessarily a constraint for
flood quantile estimates for smaller samples. As estimating de-
sign floods is one of the objectives of frequency analysis, it will
be interesting to see which distribution between lognormal and
Gumbel will give quantile estimations with reduced bias and
standard error.

4. Conclusion

In this study, utilising model selection techniques, we ex-
plore the potential usefulness of trimming and subsampling to
distinguish between candidate distributions employed in flood
frequency analysis, which otherwise may not be possible by
using the standard model selection technique alone. The idea
is that while the subsamples belong to the unknown true par-
ent distribution as the real sample, trimming removes the unde-
sirable effects smaller observations may have on the upper tail
characteristics of the distribution. The proposed methodology
has shown the ability to discriminate between candidate distri-
butions, which otherwise cannot be achieved by using only the
standard goodness of fit tests. In a practical situation, our opin-
ion is that when two distinct distributions are accepted by the
selection criteria for the untrimmed and trimmed datasets and
the aim is to extrapolate rare events; an effective operational ap-
proach may be to use these two distributions for quantile esti-
mates and adopt the distribution with the least estimation error.

In summary, the model selection techniques with the aid of
subsampling are effective in identifying the true parent distri-
bution for the untrimmed samples when it is a two-parameter
distribution; contrarily, they are not as effective when the par-
ent distribution is a three-parameter distribution. Nevertheless,
as trimming is introduced, all model selection methods recog-
nise the true parent distribution for a three-parameter distribu-
tion. Overall, utilising trimming and subsampling with the aid
of model selection techniques yields promising outcomes in fre-
quency analysis of hydrological extremes.
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