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Abstract

Efficiency estimation in production technology has been a concern in economics, with methodologies such as Stochastic Frontier Analysis (SFA)
playing a key role in this area. SFA has been pivotal in evaluating the efficiency of entities by isolating technical inefficiency from random
production errors. However, despite its significance, the application of SFA faces challenges when the multicollinearity assumption underlying
the model is violated. Therefore, this study presents a novel estimator, termed “Principal Component Analysis Estimation for Stochastic Frontier
Analysis” (PCA-SFA), to address the problem of multicollinearity in the classical SFA model. The PCA-SFA estimator integrates Principal
Component Analysis (PCA) to correct assumption violation arising from multicollinearity. Monte Carlo simulation study was conducted to
ascertain the PCA-SFA performance, involving no fewer than 2,000 replications based on the Cobb-Douglas production function with varying
levels of multicollinearity, represented by correlation coefficients (ρ) ranging from 0.8, 0.9, 0.95, 0.99, and 0.999, and sample sizes (n) of 20,
50, 100, 250, and 1,000. The proposed estimator’s performance was compared to the classical SFA model using the Mean Square Error (MSE),
Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC) as evaluation metrics. The results demonstrate that the PCA-
SFA estimator consistently outperforms the classical SFA model. The PCA-SFA model showed significantly lower MSE, AIC, and BIC values,
indicating improved precision and reliability in parameter estimation. The study, therefore, recommends that researchers and practitioners in
econometrics and related fields consider integrating PCA-SFA into their production efficiency analytical frameworks, particularly when dealing
with datasets prone to multicollinearity issues.
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1. Introduction

Efficiency analysis in production units has long been a fo-
cal point in economics, driven especially by methodologies like
stochastic frontier analysis (SFA). Based on the foundational

∗Corresponding author: Tel.: +234-813-345-1684.

Email address: rauf.ibrahim@outlook.com (Rauf I. Rauf )

works by Aigner, Lovell, and Schmidt [1] and Meeusen and
Broeck [2], SFA has been pivotal in evaluating the efficiency
of the entity by isolating technical inefficiency from random
production errors. However, despite its significance, the appli-
cation of SFA faces challenges when the assumptions of the un-
derlying model are violated. This study delves into the intricate
terrain of the stochastic frontier model, particularly focusing on
critical issues like multicollinearity when assumptions are vio-
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lated. The primary objective of this research is to identify and
propose corrective measures and estimators that specifically ad-
dress multicollinearity within the stochastic frontier analysis
model. As highlighted by Wang [3], the model often strug-
gles to capture non-monotonic efficiency effects, necessitating
flexible parameterizations. Expanding on the work of Hadri,
Guermat, Whittaker [4] and [5], this study extends its scope to
include multicollinearity problem and proposes for model es-
timation while assuming non-violation of collinearity assump-
tions in the model. Therefore, the objective is to comprehen-
sively evaluate and compare the performance of the proposed
measures/estimators with existing models in the literature. The
literature on stochastic frontier analysis and related methodolo-
gies showcases a diverse range of contributions that have sig-
nificantly shaped efficiency estimation and production model-
ing. Wang [3] introduced a model emphasizing flexible param-
eterizations to account for exogenous influences on inefficiency,
highlighting the need to accommodate nonmonotonic efficiency
effects. This insight underscores the complexities involved in
accurately modeling efficiency. Hadri [6] worked to address
heteroscedastic inefficiency, recognizing that multicollinearity
assumptions may not hold for the model. Christopoulos, Lo-
los, and Tsionas [7] explored the cost efficiency of the Greek
banking system, employing a stochastic frontier model and un-
covering intriguing relationships between bank size, economic
performance, and cost efficiency. This empirical application
sheds light on the real-world implications of assumption vio-
lations in efficiency modeling. Kumbhakar, Denny, and Fuss
[8] contributed a stochastic frontier model with random coeffi-
cients, acknowledging technological diversity among firms.

This contribution opens avenues for understanding the
inherent differences in technological possibilities between
firms, challenging the assumption of identical technological
capabilities. Karakaplan and Kutlu [9] proposed a maxi-
mum likelihood-based framework to address endogeneity in
stochastic frontier models, demonstrating superior performance
through Monte Carlo experiments. This approach underscores
the importance of considering endogeneity in frontier models
for robust estimations, aligning with the broader theme of ad-
dressing assumptions in SFA.

Furthermore, Obadina et al. [10] conducted a compara-
tive study of multiple linear regression estimators under mul-
ticollinearity, using the ordinary least squares (OLS), modified
ridge regression (MRR), and generalized Liu-Kejian methods
(LKM). Through Monte Carlo simulations, the study demon-
strated that MRR and LKM significantly outperformed the OLS
in terms of reducing the average mean square error (AMSE),
particularly in high multicollinearity and larger sample sizes.

Similarly, Shewa and Ugwuowo [11] explored the Bell Re-
gression Model (BRM) as an alternative to the Poisson regres-
sion model for count data with over-dispersion. The authors
developed a new estimator that successfully addressed multi-
collinearity issues within the BRM, as evidenced by both the-
oretical and simulation results. Their findings emphasize the
need for specialized estimators in models where traditional
methods like maximum likelihood estimation (MLE) falter due
to multicollinearity, a concern also central to the PCA-SFA ap-

proach. Further, Jegede et al. [12] introduced the Robust Jack-
knife Kibria-Lukman (RJKL) M-Estimator, designed to combat
the dual challenges of multicollinearity and outliers in linear re-
gression models. Through theoretical analysis and Monte Carlo
simulations, the study validated the RJKL estimator’s supe-
rior performance over existing estimators, thereby reinforcing
the significance of robust methods in improving estimator effi-
ciency, akin to the objectives of the PCA-SFA estimator. In the
context of heteroscedasticity, Rauf et al. [13] examined various
correction measures within the SFA model, comparing their ef-
fectiveness through extensive Monte Carlo simulations. Their
research concluded that the HCRTE (heteroscedasticity correc-
tion for both random error and technical efficiency error) con-
sistently provided the most accurate parameter estimates under
heteroscedasticity.

Despite these studies, a notable gap persists in the literature.
Specifically, there is a lack of comprehensive corrected mea-
sures or estimators tailored to handle multicollinearity within
the Stochastic Frontier Analysis Model. Furthermore, the ap-
plication of the principal component analysis correction mea-
sure for the impact of multicollinearity in the SFA model re-
mains underexplored, necessitating a holistic investigation that
addresses the issue of multicollinearity in the SFA model. This
study aims to bridge these gaps by proposing novel methodolo-
gies and estimators for efficient model estimation in the pres-
ence of multicollinearity in data sets to be fitted with SFA.

1.1. Aim and objectives
Aim: The primary aim of this study is to develop and eval-

uate a new estimator, termed ”Principal Component Analysis
Estimation for Stochastic Frontier Analysis” (PCA-SFA), that
addresses the issue of multicollinearity in the classical stochas-
tic frontier analysis (SFA) model.

Objectives:

1. To introduce the PCA-SFA estimator, combining princi-
pal component analysis (PCA) with the traditional SFA
model to mitigate the effects of multicollinearity.

2. To formulate a Monte Carlo simulation experiment to test
the performance of the PCA-SFA estimator across vary-
ing levels of multicollinearity and sample sizes.

3. To compare the effectiveness of the PCA-SFA estimator
with the classical SFA model by analyzing their mean
square error (MSE), Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC) values under
different conditions.

4. To suggest potential extensions and applications of the
PCA-SFA estimator for future research and practice in
econometrics.

1.2. Scope of the study
This study focuses on the development and evaluation of

the PCA-SFA estimator, specifically designed to address mul-
ticollinearity in stochastic frontier analysis. The research is
confined to the theoretical formulation and empirical testing of
this estimator using Monte Carlo simulations. The simulation
experiments cover a range of sample sizes (from 20 to 1000)
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and varying levels of multicollinearity (with correlation coeffi-
cients ranging from 0.8 to 0.999). The study utilizes the Cobb-
Douglas production function as the underlying model for gen-
erating data, and the results are compared based on the mean
square error (MSE), Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) criterion.

2. Materials and methods

In this section, the focus is on the methodological frame-
work supporting the empirical exploration of the stochastic
frontier analysis (SFA) model. The proposed estimator is intro-
duced to address multicollinearity challenges within the SFA
framework. Also, we present details of the simulation proce-
dure designed to rigorously validate the robustness and effi-
cacy of the estimators through meticulous testing on simulated
datasets by Monte Carlo simulation study. The goal is to pro-
vide empirical evidence supporting the reliability and applica-
bility of these estimators in enhancing the precision of stochas-
tic frontier analysis under challenging empirical conditions.

2.1. Stochastic frontier model (SFA) estimation and properties
Following Aigner et al. [1], Meeusen and Broeck [2],

Kumbhakar et al. [8], Coelli et al. [14], considering a cross-
sectional data on quantities of N inputs xni, n = I, . . . ,N; i =
1, . . . , I are used to produce a single output yi, i = 1, . . . , I are
available to each of I producers.

The stochastic production frontier for the producers can be
written as:

yi = f (xi; β) · exp (Vi) · T Ei, (1)

where the β s are the parameters in the production function. Vi
reflects random noise, and TEi is the output-oriented technical
efficiency of producer i. From Eq. (1) we have:

T Ei =
yi

f (xi; β) · exp (Vi)
. (2)

Assuming the f (xi; β) takes a Cobb-Douglas form, the Eq.(2)
becomes:

T Ei = exp {−Ui} . (3)

Thus, the stochastic production frontier becomes:

ln yi = β0 +

N∑
n=1

βn ln xni + Vi − Ui. (4)

Then the estimate of the technical efficiency can be obtained
from: Eq.(2) and (3) below as posited by Battese and Coelli
[15]:

T̂ E1i = exp
{
− ̂E (Ui | Ei

)}
, (5)

T̂ E2i = E
(
exp {̂−Ui

}
| Ei

)
. (6)

The joint density of U and V is then given as follows:

f (u, v) =
1

√
2πσθ

exp
{
−

v2

2σ2

}
. (7)

Since E + U, the joint density of U and E after the variable
transformation is:

fU,E(u, ϵ) =
1

√
2πσθ

exp
{
−

(ϵ + u)2

2σ2

}
. (8)

Hence, the marginal density of E can be derived by:

fE(ϵ) =
∫ θ

0

1
√

2πσθ
exp

{
−

(ϵ + u)2

2σ2

}
du (9)

=

∫ θ+ϵ
σ

ϵ
σ

1
√

2πθ
exp

{
−

z2

2

}
dz (10)

=
1
θ

[
Φ

(
θ + ϵ

σ

)
− Φ

(
ϵ

σ

)]
, ϵ ∈ ℜ. (11)

Noting that FE(ε) is a symmetric density with a mean of:

E(ϵ) = −E(u) = −
θ

2
, (12)

and variance:

Var(ϵ) = Var(v) + Var(u) = σ2 +
θ2

12
. (13)

The FE(ε) can be achieved by computing the skewness of the
coefficient:

γ1 =
µ3

µ3/2
2

(14)

=
E[ϵ − E[ϵ]]3

Var(ϵ)3/2 (15)

=
E[v − (u − E[u])]3

Var(ϵ)3/2 (16)

=
E[−(u − E[u])]3

Var(ϵ)3/2 (17)

= 0. (18)

The density of E is symmetric around its mean −0/2. As pre-
sented in Greene [16], Caudill et al. [17], we can compute the
kurtosis coefficient of FE(ε) as follows:

γ2 =
µ4

µ2
2

(19)

=
E[ϵ − E[ϵ]]4

Var(ϵ)2 (20)

=
E[v − (u − E[u])]4

Var(ϵ)2 (21)

=
3σ4 + θ

2σ2

2 +
θ4

80

σ4 + θ
2σ2

6 +
θ4

144

(22)

= 3 −
θ4

120

σ4 + θ
2σ2

6 +
θ4

144

(23)

≤ 3 for all θ and σ. (24)

From the density of Eq. (8), the log-likelihood function is then
given by:

ln L = −I ln θ +
I∑

i=1

ln
[
Φ

(
θ + ϵi
σ

)
− Φ

(
ϵi
σ

)]
, (25)
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∂ ln L
∂θ
= −

I
θ
+

I∑
i=1

1
σ
ϕ
(
θ+ϵi
σ

)
Φ

(
θ+ϵi
σ

)
− Φ

(
ϵi
σ

) , (26)

∂ ln L
∂σ2 =

1
2σ3

I∑
i=1

− (θ + ϵi) ϕ
(
θ+ϵi
σ

)
+ ϵiϕ

(
ϵi
σ

)
Φ

(
θ+ϵi
σ

)
− Φ

(
ϵi
σ

) . (27)

Also, from Greene [16], Aigner and Cain [18], Stevenson [19],
the Cobb-Douglas production function is given by:

∂ ln L
∂β0

=
∂ ln L
∂ϵi

∗
∂ϵi
∂β0

(28)

= −
1
σ

I∑
i=1

ϕ
(
θ+ϵi
σ

)
− ϕ

(
ϵi
σ

)
Φ

(
θ+ϵi
σ

)
− Φ

(
ϵi
σ

) , (29)

∂ ln L
∂βn

= −
1
σ

I∑
i=1

ln xni ·
ϕ
(
θ+ϵi
σ

)
− ϕ

(
ϵi
σ

)
Φ

(
θ+ϵi
σ

)
− Φ

(
ϵi
σ

) . (30)

We derive the conditional distribution of Ui/Ei

f (ui | ϵi) =
f (ui, ϵi)

f (ϵi)

=
1
√

2πθ
·

1

Φ
(
θ+ϵi
σ

)
− Φ

(
ϵi
σ

) exp
{
−

(ϵi + ui)2

2σ2

}
. (31)

The conditional distribution of Ui/Ei is truncated. The nor-
mal distribution is revealed in the following lemma. Having
truncated a1 and a2, where −∞ < a1 < a2 < ∞, is then given
by:

f (y) =
1
σ
ϕ
(

y−µ
σ

)
Φ

(
a2−µ
σ

)
− Φ

(
a1−µ
σ

) , a1 ≤ y ≤ a2 (32)

MY (t) = E
[
etY | Y ∈ [a1, a2]

]
, (33)

= eµt+σ
2t2/2
Φ

(
a2−µ
σ
− σt

)
− Φ

(
a1−µ
σ
− σt

)
Φ

(
a2−µ
σ

)
− Φ

(
a1−µ
σ

) , (34)

E [Y | Y ∈ [a1, a2]] = µ − σ
ϕ (α2) − ϕ (α1)
Φ (α2) − Φ (α1)

, (35)

M (Y | Y ∈ [a1, a2]) =


a2 a1 ≤ a2 ≤ µ

µ a1 ≤ µ ≤ a2

a1 µ ≤ a1 ≤ a2

, (36)

where αk =
ak−µ
σ

.
Proof. Eq. (32) the probability of Y falling in the interval [a

a1, a2] is Φ
(

a2−µ
σ

)
−Φ

(
a1−µ
σ

)
. Thus the conditional density of Y

is [20]:

f (y | Y ∈ [a1, a2]) =
1
σ
ϕ
(

y−µ
σ

)
Φ

(
a2−µ
σ

)
− Φ

(
a1−µ
σ

) .
M(t) = E

[
etY | Y ∈ [a1, a2]

]
(37)

=

∫ a2

a1
ety f (y)dy

Φ
(

a2−µ
σ

)
− Φ

(
a1−µ
σ

) . (38)

We have the following:

1

σ
√

2π

∫ a2

a1

etye−(y−µ)2/2σ2
dy (39)

= e−
1

2σ2

[
µ2 −

(
σ2t + µ

)2
] 1

σ
√

2π

∫ a2

a1

e−
(y−σ2 t−µ)2

2σ2 dy (40)

= eµt+σ
2t2/2

∫ a2

a1

1
σ
ϕ

(
y − σ2t − µ
σ

)
dy (41)

= eµt+σ
2t2/2

[
Φ

(
a2 − σ

2t − µ
σ

)
− Φ

(
a1 − σ

2t − µ
σ

)]
. (42)

Then the moment-generating function is given by:

M(t) = eµt+σ
2t2/2
Φ

(
a2−µ
σ
− σt

)
− Φ

(
a1−µ
σ
− σt

)
Φ

(
a2−µ
σ

)
− Φ

(
a1−µ
σ

) . (43)

Eq. (33) - (35) from the moment generating function, the ex-
pected value is then derived from:

E [Y | Y ∈ [a1, a2]] = M′(t)
∣∣∣
t=0 (44)

= µ − σ
ϕ (α2) − ϕ (α1)
Φ (α2) − Φ (α1)

, (45)

and the variance:

Var [Y | Y ∈ [a1, a2]] = M′′(t)|t=0 (46)

=σ2

1 −
α2ϕ (α2) − α1ϕ (α1)
Φ (α2) − Φ (α1)

−

[
ϕ (α2) − ϕ (α1)
Φ (α2) − Φ (α1)

]2
 , (47)

where αk =
ak−µ
σ

. The formula for the mode of the distribution
easily follows the conditional density [16–18].

2.2. Principal component analysis approach to regression
In the context of an ordinary least squares (OLS) regression

model with multicollinearity issues, as discussed by Coxe [21]
and Dunteman [24], we begin with the standard OLS regression
equation:

y = β01 + Xβ + u, (48)

where, y represents the observed output vector (n-dimensional),
X is the design matrix of input variables ( nxk ), β is the coeffi-
cient vector ( k-dimensional), u is the random error vector, and
1 is an n-dimensional vector of ones.

We compute the sample covariance matrix of the input vari-
ables X:

S x =
1
n

X⊤X. (49)

Applying spectral decomposition to S x yields eigenvalues
and eigenvectors:

X⊤X = PΛP⊤, (50)
4
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where, Λ = diag (λ1, λ2, . . . , λk) is the diagonal matrix of eigen-
values, and P = (p1, p2, . . . , pk) is the matrix of corresponding
orthogonal eigenvectors [25].

The principal components Z are obtained by multiplying X
with the eigenvectors:

Z = XP = (z1, z2, . . . , zk) , (51)
z j = Xp j. (52)

We then select the number of principal components to retain
based on the magnitudes of the eigenvalues.

Next, we reparameterize the OLS model using principal
components:

y = β01 + Zθ + u, (53)

where, Z represents the matrix of retained principal compo-
nents, and θ = P⊤β is the transformed coefficient vector [? ].

To address collinearity, we choose the first r < k principal
components highly correlated with y and partition Z into Z1 and
Z2:

Z = (Z1,Z2) = (XP1, XP2) . (54)

By assuming Z2 ≈ 0 for simplification, the re-parameterized
model becomes:

y = β01 + Z1θ1 + v − u, (55)

where, θ1 = P⊤1 β1 includes coefficients associated with signifi-
cant principal components.

We estimate the parameters using the re-parameterized
model:

θ̂1 =
(
Z⊤1 Z1

)−1
Z⊤1 y, (56)

β̂ = P1θ̂1. (57)

Finally, we compute the covariance matrix of the estimated
coefficients as suggested by Jolliffe [27], Johnson and Wichern
[28], Meredith and Millsap [29] and Rao [30] as follows:

Cov(β̂) = P1 Cov(θ̂)P⊤1 . (58)

2.3. The principal component solution to multicollinearity in
SFA

Considering a scenario where multicollinearity assumption
violations occur in the stochastic frontier analysis (SFA) model,
a modified OLS model, we incorporate principal component
analysis (PCA) into OLS regression as discussed in the previ-
ous Section. The matrix representation of the stochastic frontier
production model is given by Eq. (1):

y = β01 + Xβ + v − u, (59)

where −y, v, u, and 1 are n-dimensional vectors of n dimen-
sional observed outputs, random errors of production and in-
efficiency, and ones, respectively. - X is the nxk design matrix
of the inputs. - β is the corresponding k-dimensional vector of
coefficients. - All inputs are assumed to be standardized.

Applying spectral decomposition to the symmetric matrix
X⊤X yields:

X⊤X = PΛP⊤, (60)

where: −Λ = diag (λ1, λ2, . . . , λk) is the diagonal eigenvalues
matrix. - P = (p1, p2, . . . , pk) is the corresponding orthogonal
eigenvector matrix.

The re-parameterized SFA model using principal compo-
nents is given by:

y = β01 + Zθ + v − u, (61)

where, Z = XP = (z1, z2, . . . , zk) is the matrix of principal com-
ponents, and θ = P⊤β.

We partition Z into Z1 and Z2, where Z1 contains com-
ponents with significant eigenvalues and Z2 contains negligi-
ble components. Assuming Z2 ≈ 0 for simplification, the re-
parameterized SFA model becomes:

y = β01 + Z1θ1 + v − u, (62)

where θ =
(
θ⊤1 , θ

⊤
2

)⊤
, θ1 = P⊤1 β1, and θ2 = P⊤2 β2. The constraint

Z2 ≈ 0 is equivalent to θ2 ≈ 0 .
The SFA estimator as a method of least squares (MOLS) of

θ1 is given by:

θ̂1 =
(
Z⊤1 Z1

)−1
Z⊤1 y. (63)

Finally, the principal component estimator of β is:

β̂ = P1θ̂1. (64)

With the covariance matrix of β̂ calculated as:

Cov(β̂) = P1 Cov(θ̂)P⊤1 . (65)

2.4. Proposed estimator to address multicollinearity in the
classical stochastic frontier analysis (SFA) model

From the principles outlined in the above, this study intro-
duces a new estimator, termed ”Principal Component Analysis
Estimation for Stochastic Frontier Analysis” (PCA-SFA). This
estimator leverages principal component analysis (PCA) to rec-
tify violations of assumptions in the classical stochastic frontier
analysis (SFA) model.

The proposed estimator (”PCA-SFA”) is a mathematical
combination of equations Eq. (63) and (64), given by:

β̂ = P1

((
Z⊤1 Z1

)−1
Z⊤1 y

)
, (66)

where - Z1 is the nx matrix containing principal components
associated with non-zero eigenvalues. - P1 is the corresponding
orthogonal eigenvector matrix in the PCA estimators without
collinear variables.

3. Monte Carlo simulation study

The procedures to generate the input variables and error
terms is conducted using the Monte Carlo simulation technique.
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Table 1: Comparison of MSE between SFA and PCA-SFA for different sample sizes and multicollinearity levels.

Sample Size (n) Multicollinearity (ρ) MSE SFA MSE PCA SFA

20

0.8 0.0799572 0.3198883
0.9 0.945719767 0.3513819

0.95 1.058591 0.25155777
0.99 1.204909433 0.29942287
0.999 0.4724872 0.3316227

50

0.8 0.9559107 0.23743835
0.9 0.369043 0.24205851

0.95 0.198039567 0.27531365
0.99 0.343385533 0.23598764
0.999 0.8569634 0.25339741

100

0.8 0.186406367 0.25832282
0.9 0.220669033 0.21779611

0.95 0.195958267 0.23261347
0.99 1.1087664 0.28035442
0.999 0.986483533 0.24524453

250

0.8 0.2270343 0.2058508
0.9 1.0082384 0.22229198

0.95 0.122285133 0.23206008
0.99 1.034549567 0.21420244
0.999 0.9809092 0.203331998

1000

0.8 0.823431667 0.200252164
0.9 0.206892367 0.21108376

0.95 0.824043667 0.208946244
0.99 1.022383567 0.200680016
0.999 1.0331049 0.209547976

3.1. Model formulation
To evaluate the performance of the proposed estimator

(’PCA-SFA’), we perform a Monte Carlo simulation experi-
ment of not fewer than 2,000 replications on the stochastic fron-
tier model following the Cobb-Douglass production function in
(1), where:

y = β01 + Xβ + vu, (67)
ln(y) = β1 + β2 ln (x1) + . . . + βk ln (xk) + v − u, (68)

y, is the observed output (dependent variable), v and u are the
random errors and the technical inefficiency component, re-
spectively, x1−k, is the of production inputs (independent vari-
ables); β1−k, is the corresponding kth coefficients.

Setting: sample size (n) to initial (20, 50, 100, 250, 1000),
β1 = 0.7; β2 = 0.8; β3 = 0.9; β4 = 1.0; β5 = 1.1; β6 = 1.2; k =
6.

3.2. Procedure for generating the input variables with varying
levels of collinearity.

The simulation procedure used by Gibbons [31], Wichern
and Churchill [32], McDonald and Galarneau [33], Kibria [34],
Lukman and Ayinde [35], Fayose and Ayinde [36] is also used
to generate the exposure variables in this study. This is given as
follows:

Xti =
(
1 − ρ2

) 1
2 Zti + ρZtp, (69)

t = 1, 2, 3 . . . , n, (70)
i = 1, 2 . . . p, (71)

where

• Zti is independent standard normal distribution with mean
zero and unit variance;

• ρ is the correlation between any two exposure variables
and p is the number of exposure variables. The values of
ρ is taken as 0.8, 0.9, 0.95, 0.99, and 0.999 respectively.
Also, the number of input variables (p) is set to six (6).

3.3. Criteria for evaluating estimators

The performance of the estimators is compared using the
Mean Square Error (MSE) criterion. For any fitted ŷ, MSE is
defined as follows:

MSE(ŷ) =
1

2000

n∑
i=1

2000∑
j=1

(
ŷi j − yi

)2
, (72)

Log-Likelihood =
n∑

i=1

(
−

1
2

log(2πσ2) −
(yi − ŷi)2

2σ2

)
, (73)

AIC = 2k − 2 ln(Log-Likelihood), (74)

BIC = k ln(n) − 2 ln(Log-Likelihood), (75)
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Table 2: Comparison of mean AIC and mean BIC between SFA and PCA-SFA for different sample sizes and multicollinearity
levels.

Sample Size (n) Multicollinearity (ρ) Mean AIC Mean BIC
SFA PCA-SFA SFA PCA-SFA

20

0.8 159.8985641 119.5663982 165.7834924 126.1483142
0.9 297.2111758 278.3136749 302.9043291 284.6072158
0.95 321.0591032 254.1588451 326.9601932 260.5537689
0.99 383.1029814 298.3828374 389.3241508 305.2779558

0.999 219.2365098 209.5326583 224.4457895 216.2268895

50

0.8 371.5519675 240.3985592 377.1239547 246.7843789
0.9 277.0912937 259.0466128 282.4783211 265.2345043
0.95 225.0835647 275.3712325 231.0734572 221.6614896
0.99 283.8459965 258.4263815 289.2496873 264.7198941

0.999 359.4869274 289.1586543 364.8798429 295.7523046

100

0.8 224.3678328 218.2108456 229.7753895 214.0012381
0.9 227.1063819 241.7904983 233.1998628 217.8853681
0.95 229.4365823 247.3218465 235.5307482 223.7189862
0.99 369.6789574 283.9842365 375.6902342 290.4823941

0.999 339.5078485 287.2346357 344.8972341 293.7278917

250

0.8 239.6745128 214.3405963 244.6875398 220.4318924
0.9 344.0238463 233.4539471 349.1219782 239.9472386
0.95 209.6728345 205.0819378 215.8741928 201.5753287
0.99 349.8523094 237.9212938 354.9752438 244.5183124

0.999 323.6123431 229.4892143 329.4789231 236.0781241

1000

0.8 302.3124578 199.8764324 307.1253481 205.7639283
0.9 218.3471256 210.0783917 224.5628379 215.4738293
0.95 293.1324563 213.4789214 299.4328546 219.3758916
0.99 343.8492317 212.3875639 349.8731235 218.6847529

0.999 353.6891421 218.1379345 359.8701346 224.5273481

where ŷi j is tth element of the model in the j-th replication
which gives the estimate of y1 · yn are the true value of ” y ”
previously mentioned. The estimator with the minimum MSE
is considered the best.

4. Results

This section presents the results from the simulation study
with varying the level of multicollinearity and sample sizes in
SFA model.

5. Discussion

Table 1 presents a comparative analysis of the MSE values
for the Classical SFA model and the PCA-SFA model at varying
sample sizes (n) ranging from 20 to 1000, along with different
levels of multicollinearity represented by ρ values ranging from
0.8 to 0.999.

When examining the performance of the two models at
smaller sample sizes, notably n = 20 and n = 50, a trend
emerges where the Classical SFA model tends to outperform
the PCA-SFA model in terms of MSE. This trend suggests that
with limited data points, the added complexity introduced by
the PCA approach may not yield significant improvements in
predictive accuracy. At these smaller sample sizes, the Classical

SFA model may provide a more stable and reliable estimation of
the stochastic frontier. However, it is observed that as the sam-
ple size increases, such as at n = 100, n = 250, and n = 1000, a
shift occurs in the model performance. The PCA-SFA model
starts to demonstrate superior performance with lower MSE
values compared to the Classical SFA model. This shift is par-
ticularly pronounced as the sample size grows, indicating that
the benefits of incorporating PCA to mitigate multicollinear-
ity become more evident and impactful with larger datasets.
The PCA-SFA model’s ability to handle multicollinearity and
capture underlying patterns in the data improves its predictive
accuracy and efficiency compared to the Classical SFA model
under these conditions. It is further observed from Table 1, that
higher levels of multicollinearity, reflected with higher ρ, gen-
erally lead to higher MSE values in both the Classical SFA and
PCA-SFA models. Additionally, the analysis of AIC and BIC
values supports these findings. As shown in Table 2, the PCA-
SFA model often achieves lower AIC and BIC values compared
to the Classical SFA model, especially as the sample size in-
creases. These lower AIC and BIC values indicate that the
PCA-SFA model not only provides a better fit to the data but
also robust in fitting large-sample and high-multicollinearity
scenarios. This aligns with the expected behaviour, as multi-
collinearity can introduce instability and reduce the accuracy of
regression based models.
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6. Conclusion

Based on the findings discussed above, it is evident that the
Principal Component Analysis-based Stochastic Frontier Anal-
ysis (PCA-SFA) model offers substantial advantages over the
Classical Stochastic Frontier Analysis (SFA) model, especially
in scenarios with higher levels of multicollinearity and large
sample size. The consistently lower mean square error (MSE),
AIC and BIC of PCA-SFA across different sample sizes and
levels of multicollinearity underscores its robustness and ef-
fectiveness in addressing multicollinearity challenges in econo-
metric modeling. In conclusion, researchers and practitioners in
econometrics and related fields are encouraged to consider inte-
grating PCA-SFA into their analytical frameworks, particularly
when dealing with datasets prone to multicollinearity issues.
Using the power of principal component analysis to reduce the
impact of multicollinearity, PCA-SFA not only improves the
accuracy of the estimates, but also improves the interpretability
of the results by minimizing the noise and potential biases in-
troduced by multicollinearity. Future studies could extend the
PCA-SFA estimator by exploring its application across different
functional forms, such as Translog production functions, and
testing it on real-world datasets in various industries. Research
could also compare PCA-SFA with other dimensionality reduc-
tion techniques like partial least squares and investigate its per-
formance with larger datasets. Incorporating heteroscedasticity,
exploring the estimator’s theoretical properties, and developing
user-friendly software tools would further enhance its practical
utility and adoption in stochastic frontier analysis.
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