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Abstract

This study addresses the growing concern of technostress, a condition caused by the overwhelming use of digital technologies, exacerbated by
the COVID-19 pandemic. The researchers developed a predictive model using machine learning algorithms, Random Forest (RF) and Support
Vector Machine (SVM), to assess and manage technostress levels. The model considers factors such as age, gender, technology usage hours,
and technological experiences to classify stress levels into high, moderate, and low categories. The study collected data through a questionnaire
administered to knowledgeable respondents, using a non-probabilistic sampling approach. The results showed that both RF and SVM algorithms
achieved high accuracy in classifying technostress, with SVM performing slightly better (94.5% vs 84.50%). The model’s effectiveness in
predicting stress levels for users with varying degrees of stress is a significant contribution to the field. The research also developed an interactive
user interface to facilitate user engagement with the model, promoting stress management and well-being in a technology-driven society. The
study’s findings provide valuable insights into the challenges posed by technostress and offer a solution for mitigating its effects. The use of
machine learning algorithms to classify gender based on the dataset demonstrates the model’s potential applications in various areas. Overall,
this study demonstrates the importance of addressing technostress in the digital age and provides a valuable tool for managing stress levels. The
development of predictive models like this one can help individuals and organizations mitigate the negative impacts of technostress, promoting a
healthier and more sustainable relationship with technology.
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1. Introduction

The aftermath of the COVID-19 pandemic has reverberated
across the globe, leaving in its wake a landscape reshaped by

∗Corresponding author: Tel.: +234-810-738-1867

Email address: g.james@topfaith.edu.ng (Gabriel James )

unprecedented challenges and paradigm shifts. With millions
of lives lost and economies reeling, the pandemic has exacted
a staggering toll on public health, livelihoods, and social fab-
ric [1]. Amidst this turmoil, the ubiquitous adoption of digital
technologies has emerged as a double-edged sword, offering
both salvation and strife in equal measure.
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The rapid transition to remote work, online education, and
virtual interactions has underscored the indispensable role of
technology in sustaining essential functions and fostering con-
nectivity amidst physical distancing measures [2]. However,
this newfound reliance on digital tools has also precipitated a
surge in technostress, a multifaceted phenomenon character-
ized by the deleterious effects of information overload, digital
fatigue, and maladaptive technology use [3].

As societies grapple with the repercussions of prolonged
remote work and virtual engagement, the toll of technostress
on mental well-being looms large. Excessive screen time, in-
cessant notifications, and blurred boundaries between work and
leisure have fueled stress, anxiety, and burnout among individ-
uals navigating the digital landscape [4]. The telecommunica-
tions sector, in particular, has witnessed a seismic shift, with
virtual meetings, teleworking, and online education becoming
the new norm [5]. Against this backdrop, understanding and
mitigating the impact of technostress assumes paramount im-
portance. Technostress, as defined by Tarafda and elucidated by
Cuervo et al. and Derra, encapsulates the psychological strain
arising from an imbalance between technology demands and
individuals’ coping mechanisms [6]. Yet, despite its pervasive
influence on behavior and well-being, technostress remains a
relatively nascent area of study, with its nuances and implica-
tions warranting further exploration [7].

This research endeavors to bridge this gap by leveraging
machine learning techniques to unravel the complexities of
technostress in the post-COVID-19 era. By harnessing the pre-
dictive power of hybrid machine learning models, the study
seeks to elucidate the determinants and manifestations of tech-
nostress, offering insights into its classification, prediction, and
mitigation strategies [8]. Central to this endeavor is analyz-
ing demographic factors, such as age and gender, alongside
behavioral indicators like hours spent on technology and tech-
nological experiences. Through a comprehensive examination
of these variables, the research aims to delineate the contours
of technostress and its impact on mental health and technol-
ogy adoption [9]. Moreover, the study endeavors to shed light
on the implications of technostress for individuals, organiza-
tions, and policymakers. By fostering awareness and under-
standing of technostress dynamics, the research aims to equip
stakeholders with the knowledge and tools needed to navigate
the digital landscape with resilience and well-being [10]. This
research represents a concerted effort to unravel the complex-
ities of technostress in the wake of the COVID-19 pandemic.
By elucidating its drivers, manifestations, and implications, the
study endeavors to pave the way for informed interventions and
strategies aimed at promoting mental well-being and fostering
a healthy relationship with technology in the digital age.

Harper & Sellen [11] conducted a study on the understand-
ing of the psychological and social impacts of technology use,
particularly in the workplace using qualitative research meth-
ods. Their research aimed to understand how technology affects
individuals and teams in organizational settings. exploring as-
pects like User experience, Social interactions, Communication
patterns, Work practices, and Emotional responses. By using
qualitative research methods, such as interviews, observations,

and focus groups, Harper & Sellen gathered rich, in-depth data
to gain a nuanced understanding of the complex interactions be-
tween technology, individuals, and organizations. Their study
provides valuable insights into the psychological and social im-
plications of technology adoption in the workplace, informing
strategies for effective technology integration, user support, and
workplace design.

Manuel et al. [12] investigated individual differences in
moderating effects of technostress. Their work may have in-
volved quantitative surveys, psychological assessments, and
possibly qualitative interviews to investigate the role of per-
sonal characteristics in mitigating or exacerbating technostress,
using the methodology of ordinary statistical inference to as-
sume the role of individual characteristics in mitigating or ex-
acerbating technostress. By using ordinary statistical inference,
they were able to identify significant relationships between in-
dividual differences and technostress outcomes, providing in-
sights into how personal factors influence the experience of
technostress. This idea made them acquire the knowledge to
inform strategies for technostress management, tailored to indi-
vidual needs and characteristics.

Paul et al. [13] Developed theoretical frameworks and mea-
surement tools for assessing technostress which involved quan-
titative surveys, psychological assessments, and possibly qual-
itative interviews to investigate the role of individual character-
istics in mitigating or exacerbating technostress using ordinary
statistical inference to assume the role of individual characteris-
tics in mitigating or exacerbating technostress. Their work pro-
vides a foundation for understanding technostress and its rela-
tionship with individual differences, enabling the development
of targeted interventions and strategies to mitigate technostress.

Breaugh [14] conducted a qualitative study to examine or-
ganizational factors that contribute to technostress, based on
the assumption that organizational characteristics play a signif-
icant role in shaping employees’ technostress experiences us-
ing qualitative research methods, such as In-depth interviews,
Focus groups, and Observations. Breaugh collected data from
Organizational culture, Technological infrastructure, Manage-
ment styles, Communication practices, and Work processes
which enabled him to gain a rich understanding of the organi-
zational factors that influence technostress. By analyzing the
data, Breaugh identified key organizational factors that con-
tribute to technostress, providing insights for organizations to
develop strategies to mitigate technostress and create a health-
ier work environment. The study’s qualitative approach allowed
for an in-depth exploration of the complex interactions between
organizational factors and technostress, providing valuable in-
sights for practitioners and researchers alike.

Liu et al. [15] proposed a novel concept that solves the fac-
tor that influenced physician technostress using Mobile Elec-
tronic medical records (MEMRs). By addressing these factors,
Liu et al.’s concept aimed to reduce physician technostress,
improve user satisfaction, and enhance the overall efficiency
of MEMRs in healthcare settings. Their work contributes to
the development of more effective and user-friendly mobile
health information systems, ultimately improving patient care
and physician well-being.
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Monica et al. [16] carried out research that tested the psy-
chometric characteristics of the Italian translation of the brief
version of the technostress creators scale and applied the scale
to investigate techno stress during the COVID-19 emergency.
After validating the Italian version of the TCS, they applied it
to investigate technostress levels among individuals during the
COVID-19 emergency, likely exploring relationships with fac-
tors like Technology use intensity, Digital skills, Psychological
well-being, and Work-related stress. Their findings contribute
to the understanding of technostress in the Italian context and
its impact on individuals during crises like the pandemic.

Norshiba Norhisham [17] conducted a qualitative study to
create awareness among employees and employers about the
importance of support systems in reducing technostress using
qualitative research methods, such as interviews, focus groups,
or content analysis, the study gathered data to gain a deeper un-
derstanding of the phenomenon. Their findings revealed the im-
portance of Technical support, Emotional support, Managerial
support, and Peer Support in reducing technostress and promot-
ing a healthy work environment. By creating awareness among
employees and employers, the study aimed to encourage orga-
nizations to implement support systems that foster well-being,
productivity, and job satisfaction.

2. Methodology

2.1. Material and methods

A thorough review of existing literature on technology
stress, machine learning methodologies, and stress manage-
ment strategies was conducted to establish the theoretical
framework for the research and identify gaps in current knowl-
edge. The survey applied a structured questionnaire that was
designed to collect quantitative data on technostress experi-
ences, demographics, technology usage patterns, and stress
management strategies. The questionnaire was developed based
on insights from the literature review and validated scales
such as the Technostress Creators Scale. Participants were re-
cruited through online social media (WhatsApp and Facebook),
and professional networks. The sampling approach was non-
probabilistic, which ensured knowledgeable respondents partic-
ipated in the survey. The sample was made up of diversities in
terms of age, gender, occupation, and technological proficiency.
The quantitative data were collected through the administration
of the survey to the participants, which was distributed electron-
ically, and participants had the option to respond anonymously.
These data were bifurcated into two segments: pre-COVID-19
and post-COVID-19, to assess changes in technostress levels
over time.

After collecting the data, relevant features such as age, gen-
der, hours spent on technology, and technological experiences
were selected as input parameters for the predictive model by
employing feature engineering techniques to enhance the pre-
dictive power of the model. At this point, the Random Forest
Algorithm was developed as a predictive model for assessing
and managing technostress levels. This model was trained on
the collected data to classify stress levels into high, moderate,

Figure 1: Framework for the proposed system.

and low categories based on the input parameters. In the end,
the performance evaluations of the hybrid model were done us-
ing the accuracy, precision, recall, and F1-score metrics, re-
spectively. Cross-validation techniques were employed to en-
sure the robustness and generalizability of the model.

2.2. Model’s conceptual framework

The proposed model is presented in Figure 1.
Both Random Forest models and the Support Vector Ma-

chine can be used to explain the relationship between the pre-
dictor(s) and the outcome variables (technostress) [18]. The
goal is to understand the general relationship between the vari-
ables rather than the model’s predictability. Based on the sum-
mary of the hybrid model, the following conclusion can be
reached:
Intercept: The intercept α0 for hybrid models was obtained to
be 0.606. In both models, the intercept had a p-value above
0.05, implying that there was no statistical significance to the
predicted outcome (technostress).
Analysis of variance: Models had an F-statistics score that was
greater than one, and the p-value obtained in models was below
the threshold value of 0.05.
Analysis of the impact of predictor variables: In this model,
only ‘technostress’ had statistical significance. In other words,
out of the four predictor variables (gender, age, hours spent, and
experiences using technology).

2.2.1. Description of key components of the proposed model
Data collection. As earlier stated, the data collected, which
was non-probabilistic to ensure knowledgeable respondents
participated in the survey, was bifurcated into two segments:
pre-COVID-19 and post-COVID-19, which helps in assessing
changes in technostress levels over time. Firstly, the Technos-
tress levels which is considered as a continuous variable mea-
suring technostress levels on a scale of 1-5. Secondly, the
frequency of technology use: A categorical variable indicat-
ing how often respondents use technology (e.g., daily, weekly,
monthly). Thirdly, the type of technology used: A categorical
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Table 1: The particulars of the respondents obtained from the
questionnaires.

Demographic
variables

Frequencies Percentages

Gender
Male 350 70.0
Female 150 30.0

Profession
Employee 300 60.0
Self-employed 70 14.0
Students 130 26.0

Age
18-28 yrs 300 60.0
29-39 yrs 95 19.0
40-50 yrs 50 10.0
51-60 yrs 55 11.0

Education
DIP/OND/ND 80 16.0
AD/FD/HD/HND 169 33.8
BSC 100 20.0
PGD 71 14.2
Master 25 5.0
Others 55 11.0

Frequently used
technology
Mobile phone 176 35.2
Android Devices 124 24.8
Computer 90 18.0
Other
Technology-
based gadgets

110 22.0

variable indicating the type of technology used (e.g., computer,
smartphone, tablet). By this method of data organization, it
was possible to easily analyze the changes in technostress lev-
els over time (pre-COVID-19 vs. post-COVID-19) which helps
in exploring the relationships between demographic character-
istics and technostress-related variables. Table 1 provides valu-
able insights into the demographic characteristics of the study
participants, which will be instrumental in analyzing the impact
of technostress and assessing changes in stress levels over time,
particularly in the pre-COVID-19 and post-COVID-19 periods.

Table 1 shows that out of the total respondents, 70% were
male, while 30% were female. This gender distribution re-
flects a slight imbalance, with a higher representation of male
respondents in the study. The respondents’ professions var-
ied, with 60% being employees, 14% self-employed, and 26%
students. This distribution indicates a diverse sample repre-
senting different occupational backgrounds. The age distribu-
tion of respondents ranged from 18 to 60 years, with the ma-
jority (60%) falling within the 18–28 year bracket. The re-

Figure 2: Trends in technostress levels over time.

Figure 3: Trends of technostress levels based on technology
over time.

maining respondents were distributed across the 29–39, 40–50,
and 51–60 age groups, representing varying stages of adult-
hood. The educational qualifications of the respondents var-
ied, with 16% holding DIP/OND/ND degrees, 33.8% holding
AD/FD/HD/HND degrees, 20% holding BSc degrees, 14.2%
holding PGD degrees, 5% holding Master’s degrees, and 11%
having other qualifications. This distribution reflects a diverse
educational background among the respondents. The table also
presents data on the respondents’ frequently used technology,
with 35.2% using mobile phones, 24.8% using Android de-
vices, 18% using computers, and 22% using other technology-
based gadgets. This distribution highlights the prevalence of
mobile technology in the respondents’ daily lives. Figure 2
illustrates the usage level of different technological devices
among the respondents.

Figure 2 shows the line chart showing the trends in technos-
tress levels over time, with one line representing technostress
levels before COVID-19 and another line representing technos-
tress levels after COVID-19. The x-axis represents different
time points, and the y-axis represents technostress levels. It
showcases the changes in technostress levels before and after
the COVID-19 pandemic across different time points.
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Table 2: Features dataset and the correlation categories
(Adapted from Okpudoh [19]).

S/N Features Description Data type
1 Gender Male and Female Nominal
2 Age Active Age (18-60) Ordinal
3 Hours Spent Workable hours (1 hour-

12 hours)
Nominal

4 Technology Frequently used technol-
ogy

Nominal

5 Technology
Stressed

Stress experienced with
technology (Stressed or
not stressed)

Nominal

Table 3: x and y data sample variables.

Technology Frequently
used tech-
nology (%)

The percentage hours
spent on technology
per day (%)

Mobile phone 176 35.2
Android devices 124 24.8
Computer 90 18.0
Other
Technology-
based gadgets

110 22.0

Figure 3 presents the plot showing the trends of technostress
levels based on the technology used over time. This plot pos-
sesses two lines representing the trends of technostress levels
for each technology before and after the COVID-19 pandemic.
Table 2 shows the dataset and the various categories.

2.2.2. Correlation
Correlation is the statistical measurement of the relationship

between two variables. The two variables showing a straight-
line relationship to each other signifies that the metric works
perfectly. This correlation coefficient signifies the strength of
the relationship between the two variables. This is represented
mathematically as:

τxy =

∑
(xi − x) (yi − y)√∑
(xi − x)2 (yi − y)2

, (1)

where τxy is the correlation coefficient of the linear relationship
between the variables x and y, xi are the values of the x-variable
in a sample x is the mean of the values of the x − x-variable, yi

are the values of the y-variable in a sample, and y is the mean
of the values of the y-variable.

There is a need to determine how frequently used technol-
ogy correlates with hours used to determine the level of stress
devices can exert on users.

Step A:. The data sample with the values of x-variable and y-
variable was obtained as presented in Table 2.

Step B:. The means (averages) for the x-variable and the y-
variable were computed, respectively:

x =
x∑

n=1

xn
i

n
. (2)

Hence, the mean average for technology used equals 25.1

y =
y∑

n=1

yn
i

n
. (3)

Similarly, the mean average for hours spent is 125.0.

Step C:. For the x-variable, the mean was subtracted from each
value of the x-variables to form a new variable, e. Similarly, for
the y-variable, the mean was subtracted from each value of the
y-variables to form a new variable f.

Step D:. Each e-value was multiplied by the corresponding f-
value and the sum of all the products computed, which represent
the numerators of equations 1 and 2, respectively.

Step E:. The square of each e-value was computed, and the
summation of the results was calculated accordingly. Table 3
shows steps C to E in a correlation table.

With the numbers, the correlation coefficient was obtained
by applying equation (1):

rxy =
−33.9

√
795.3 × 351.4

= 0.00012. (4)

Therefore, this coefficient indicates that the most used technol-
ogy and hours spent do not have a high positive correlation.
This means that the frequently used technology does not have a
greater impact or a determining factor on the hours spent.

2.2.3. Data pre-processing
To make the data ready for further analysis and the devel-

opment of a predictive model to mitigate technostress in the
post-COVID-19 era, data preprocessing was done using the fol-
lowing steps:

Data cleaning. Missing values were squared for each demo-
graphic variable; when found, they were either input or the cor-
responding entries were completely removed. This was to en-
sure consistency in data entry formats. As a result, outliers were
identified and handled to avoid distorting the analyzed results.

Encoding categorical variables. Categorical variables (e.g.,
gender, profession, age, education, and frequently used tech-
nology) were converted into a numerical format using the one-
hot encoding technique. This step was essential since machine
learning algorithms require numerical input.

Normalization/scaling. To bring variables like age with nu-
meric variables to a similar scale, the variables were normalized
to prevent any variable from dominating others during analysis.
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Table 4: Correlation analysis.

Technology X Y E F E×F E2 F2

Mobile phone 30.3 10 11.7 -4.3 -50.31 136.89 18.49
Computer 21.3 27 2.7 12.7 34.29 7.29 161.29
Security Devices 33.1 10 14.5 -4.3 -62.35 210.25 18.49
Static Equipment 8.9 3 -9.7 -11.3 109.61 94.09 127.69
Dynamic Equipment 11.4 19 -7.2 4.7 -33.84 51.84 22.09
Tele Devices 23 15 -4.4 0.7 -3.08 19.36 0.49
Other gadgets 2 16 -16.6 1.7 -28.22 275.56 2.89

Bifurcation into pre-COVID-19 and post-COVID-19 data. The
datasets were separated into two segments: the pre-COVID-
19 and post-COVID-19 periods. This allows for analyzing
changes in technostress levels and demographic characteristics
over time. The bifurcation was accurately performed based on
the indicators of periods.

Exploratory data analysis (EDA). An exploratory data analysis
(EDA) was conducted to gain insights into the distribution of
demographic variables and their relationships with technostress
levels. The data was visualized using a line chart.

Feature selection. Finally, the demographic variables that were
most relevant for predicting technostress levels were identi-
fied through statistical tests, and the subset of features that
were most informative for building the predictive model was
selected.

2.2.4. Model formulation and training
The dataset was divided into a ratio of 80:20, where 80%

represented the training datasets and 20% represented the test-
ing datasets. This splinted dataset was randomly implemented
in the Python programming language. The main purpose of
splitting the dataset into training and testing data was to create
separate unseen data different from the training data that was
used during the model training and fitting. This method allows
for accurate and proper model evaluation [18–21].

Two machine Learning (ML) models which are the Random
Forest Models (RFM) and Support Vector Machines (SVM)
were used for the classification of the impact of technostress
in the COVID and post-COVID eras; at the end, a comparative
analysis was done to ascertain the ML that performed better
than the other.

Random forest model equation. The Random Forest model is
a popular ensemble learning technique used for both classifi-
cation and regression tasks [20]. In the context of mitigating
technostress, Random Forest was employed to predict and clas-
sify stress levels based on various demographic characteristics
and technological experiences. Random Forest combines the
predictions of multiple decision trees to improve the overall ac-
curacy and robustness of the model. Each decision tree in the
forest is trained independently on a random subset of the data
and features, reducing the risk of overfitting.

The estimated values of the impact of the technostress are
given as follows:

Technostress = α̂0 + α̂1 × gender + α̂2 × age (5)
+ α̂3 × hour spent + α̂3 × tech used + ĉ,

where α0 → α3 represent the estimated slopes for all the pre-
dictor variables, ci = yi − ŷ represents the error.

The regression line, commonly known as the residual sum
of squares (RSS), is the estimate that minimizes the sum of
squared residual values. It is given as:

n∑
i=1

(yi − ŷi)2 (6)

n∑
i=1

(
yi − â0 + â1 × gender + â2 × age (7)

+â3 × hour spent + â4 × tech used
)2 ,

where â0 → â4 represent the estimated coefficients, which are
the coefficients used for minimizing the RSS

Support vector machine equation. Support vector machine
(SVM) is a powerful supervised machine learning algorithm
used for classification and regression tasks [17]. In the con-
text of the research on mitigating technostress, SVM was ap-
plied to predict and classify stress levels based on the demo-
graphic characteristics and technological experiences of indi-
viduals. SVM is effective for classifying individuals into dif-
ferent stress level categories (high, moderate, and low) based
on features such as age, gender, hours spent on technology, and
educational background. SVM aims to find the optimal hyper-
plane that separates the data into different classes while maxi-
mizing the margin and minimizing classification errors. In its
simplest form, the SVM equation for binary classification is de-
fined as follows:

f (x) = sign(w · x + b), (8)

where f (x) is the decision function that predicts the class la-
bel of a new data point x, w is the weight vector perpendicular
to the hyperplane, influencing the orientation of the decision
boundary, x is the input vector representing the features of the
data point, b is the bias term or intercept, which determines the
offset of the decision boundary from the origin, sign is the sign
function, which assigns a class label based on the sign of the
decision function.
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Figure 4: Comparison of predicted and true technostress levels.

Table 5: Table of evaluations of the performance metrics.

Model Accuracy Precision Recall F1-score
Random
forest
model

0.8450 0.5385 0.5833 0.5600

Support
vector
machine

0.94500 0.5385 0.5833 0.5600

Figure 5: Feature importance for random forest model with sup-
port vector machine.

Assessing the linear regression model. The linear regression
model is a critical aspect of understanding its performance and
suitability for the research objectives. In the context of the re-
search on mitigating technostress using a machine learning ap-
proach, assessing the linear regression model involves evalu-
ating its ability to predict and manage stress levels based on
technology usage and other demographic variables. It has to
do with assessments of the linear regression model to evaluate
its overall fit to the data. This involves examining measures
such as the coefficient of determination (R2) and adjusted R2

Figure 6: Receiver operating characteristic (ROC) curve for
predicting technostress.

to determine how well the model explains the variability in the
response variable (technostress levels). The equation is given
as:

R2 =

√∑n
i=1 (yi − ŷi)2

n
. (9)

Assessing the linear regression model involves a comprehensive
evaluation of its fit to the data, adherence to assumptions, and
predictive performance. By examining various aspects of the
model’s performance, researchers can determine its reliability
and suitability for predicting and managing technostress levels
in the post-COVID-19 era [22, 23].

3. Discussion of results

Figure 4 illustrates the comparison between the predicted
values and the true values obtained from the hybrid model
trained on the provided dataset. Each bar in the plot repre-
sents the count of occurrences of a particular combination of
predicted and true values. The x-axis represents the true values,
which indicate the actual stress levels experienced with tech-
nology. The y-axis represents the count of occurrences for each
true value. Each bar in the plot corresponds to a unique com-
bination of predicted and true values. By visualizing the counts
of these combinations, we can assess how well the model’s pre-
dictions align with the actual values. Ideally, we would want to
see higher bars along the diagonal, indicating a higher number
of correct predictions (where the predicted value matches the
true value). This plot provides insights into the model’s per-
formance and can help identify any discrepancies or patterns
in its predictions. It allows for a qualitative assessment of the
model’s accuracy and effectiveness in predicting technostress
levels based on the provided features.

The performance metrics provide an evaluation of the Ran-
dom Forest and Support Vector Machine models for predicting
technostress levels based on the dataset.
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Figure 7: Joint plotting of dataset.

From Table 5, the RF model achieved an accuracy of 84.5%,
and SVM achieved an accuracy of 94.5%; indicating that the
SVN correctly predicted technostress levels for 94.5% of the
instances in the dataset than RF. Precision measures the pro-
portion of correctly predicted positive instances out of all in-
stances predicted to be positive. In this case, both models
achieved a precision of 53.85%, indicating that around 54% of
the instances predicted as experiencing technostress were cor-
rectly identified, both models achieved an improved precision
of 75.22%, indicating that around 75.22% of the instances pre-
dicted as experiencing technostress were more correctly identi-
fied.

Recall, also known as sensitivity , measures the proportion
of correctly predicted positive instances out of all actual pos-
itive instances (Figure 5). Both models achieved a recall of
58.33%, indicating that they captured approximately 58% of all
instances that were experiencing technostress, while the hybrid

model achieved an enhanced recall of 80.21%, indicating that
the model captured approximately 80.21% of all instances that
were experiencing technostress.

The F1-score is the harmonic mean of precision and recall,
providing a balance between the two metrics. It takes into ac-
count both false positives and false negatives. Both models
achieved an F1-score of 0.56, suggesting a moderate balance
between precision and recall, while the hybrid model achieved
an F1-score of 0.67, suggesting an adequate balance between
precision and recall.

The overall statistics show that the hybridization of the Ran-
dom Forest and Support Vector Machine models performed
better in predicting technostress levels based on the provided
dataset. However, with an accuracy of 84.10%, there is room
for improvement in the model’s predictive performance. Fur-
ther optimization and fine-tuning of the models may be neces-
sary to achieve better results. Additionally, analyzing other fac-
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tors or incorporating more data could potentially enhance the
models’ predictive capabilities.

Figure 6 predicts the probabilities of the positive class
(Stressed) for the instances in the test set using the pre-
dict proba method. This method returns the probability esti-
mates for all classes, but we’re interested in the probability of
the positive class. This curve represents the true positive rate
(sensitivity) against the false positive rate (specificity) at vari-
ous threshold settings.

The ROC curve and AUC help in evaluating the perfor-
mance of binary classifiers, particularly in cases where the class
distribution is imbalanced.

Figure 7 visualizes the relationships between pairs of fea-
tures in the dataset, while also providing individual distribu-
tions for each feature along the diagonal [24–26]. It also pro-
vides a comprehensive overview of the dataset, allowing us
to explore relationships between features and stress levels re-
ported by respondents. [27].

4. Conclusion

The paper focused on analyzing the quantitative data and
pre-processing the data. The work is the comparative analy-
sis of the applications of two machine learning models for the
characterization and prediction of technostress in the COVID
and post-COVID eras. The data was trained and tested to help
predict and classify. The SVM model performed better than the
RF model in predicting technostress in all the situations using
different predictors, with the highest mean estimates of perfor-
mance parameters and, overall, the lowest uncertainty estimates
of those parameters. In the world today, COVID-19 and post-
COVID pose a threat to humans, causing them to spend more
time on technology than their daily lifestyle activities. In this
paper, successful analysis and design were done, and Python
programming and Django were the software tools used to clas-
sify and predict the impact of technostress in the COVID and
post-COVID eras using RF and SVM. The paper compared two
different ML models to predict and classify the impact of tech-
nostress in the COVID and post-COVID eras. In classifying
the impact of technostress, the SVM model was classified ac-
curately. The emphasis was on the determination of how well
the prediction and classification will be if a user has low or
high stress. Nevertheless, an interactive user interface was de-
veloped to aid in the evaluation of the impact of technostress on
technology use and hours spent on technology. To enhance an
effective and efficient interaction with the model. Despite the
numerous advantages derived from the use of technologies, it
has been proven that they have effects on the stress experienced
by workers who use them. In this sense, it is vital for the differ-
ent organizations that have adapted their processes to carry out
the diagnosis in their workers to mitigate the effects generated
by technostress. This paper successfully developed a model for
effective and efficient analysis of technostress applied to the ed-
ucational context, where the remote presence methodology was
adopted.
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