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Abstract

Industrialization has led to severe environmental degradation, posing substantial health risks. The primary pollutants originate from land, air, and
water sources. Monitoring air pollution typically requires expensive equipment. To address this, scientists have created various models based on
specific criteria to predict air pollution levels. This paper explores an analytical solution to the problem of air pollution caused by point sources
that disperse contaminants into the atmosphere. Specifically, it investigates how the removal processes affect the concentration of key pollutants.
We apply the methods of separation of variables and Fourier transformation to derive an analytical solution for the mathematical model.
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1. Introduction

The industrial revolution, while driving technological and
societal progress, also generated vast quantities of pollutants
that continue to pose serious risks to human health. Airborne
contaminants infiltrate the body’s respiratory and circulatory
systems, damaging vital organs such as the brain, heart, and
lungs. Beyond their immediate environmental impacts, air pol-
lutants are also a major contributor to climate change, which
exacerbates the threats to human health. This issue has become
especially severe in urban areas, where populations are exposed
to high levels of pollution, primarily due to traffic emissions.
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Email address: lnc2research@gmail.com (K. Lakshminarayanachari)

Industrial accidents can further escalate the situation by releas-
ing toxic fogs into nearby communities. The dispersion of pol-
lutants in the atmosphere is influenced by key meteorological
factors, including air stability and wind speed.

Meteorological conditions play a critical role in the emis-
sion, transport, formation, and deposition of air pollutants.
Many studies have highlighted the connection between weather
patterns and pollution characteristics. Accurately predicting the
transport and distribution of pollutants requires a thorough un-
derstanding of the pollution sources and surrounding geograph-
ical features, including the types, quantities, and conditions of
emitted pollutants, exhaust gas conditions, stack height, and rel-
evant meteorological factors.

Recent research has focused on developing analytical so-
lutions to the advection-diffusion equation, which is central to
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understanding pollutant dispersion. Analytical solutions help
describe the physical phenomena underlying pollution spread.
Pasquil and Smith [1] emphasized that mathematical models in-
corporating all relevant factors simplify the examination of how
different parameters affect pollutant concentrations. Hildemann
and Lin [2] developed the atmospheric diffusion equation us-
ing eddy diffusivities and height-dependent wind speeds, while
Essa et al. [3] derived a three-dimensional solution using Han-
kel transforms.

Other researchers have also provided significant contribu-
tions. Sharan and Modani [4] solved the advection-diffusion
equation by modeling eddy diffusivity as a linear function of
downwind distance and wind speed using a power law. Mar-
rouf et al. [5] approached the equation similarly with power law
representations for both eddy diffusivity and wind speed. Ku-
mar and Sharan [6] derived an analytical solution for the two-
dimensional advection-diffusion equation, integrating power
and logarithmic wind velocity profiles with vertical turbulent
eddy diffusivity.

Furthermore, studies like those by Dilley and Yen [7] ex-
amined mesoscale wind patterns’ impact on pollutant disper-
sion, while Arora et al. [8] explored pollutant removal from line
sources under varying wind profiles and diffusion coefficients.
Buske [9] utilized the Laplace transform method to derive so-
lutions for the two-dimensional convection-diffusion equation.
Park et al. [10] demonstrated that the ground-level concentra-
tion ratio between finite area and point sources depends primar-
ily on lateral eddy diffusivity, while wind speed and vertical
eddy diffusivity play a lesser role.

Several studies have also focused on urban pollutant trans-
port, including Lakshminarayanachari et al. [11], who analyzed
primary pollutant transport considering chemical reactions and
mesoscale airflow. Essa et al. [12] modeled Gaussian concen-
tration in puff models, while Bhaskar et al. [13] used separa-
ble methods and Bessel functions to study pollution from line
sources. These studies collectively show that mesoscale wind
patterns and atmospheric conditions significantly affect pollu-
tant concentrations.

Nirmaladevi et al. [14] used Fourier transform techniques
to solve the three-dimensional atmospheric diffusion equation,
examining mesoscale winds and removal mechanisms on pol-
lutant distribution. Their findings indicated that pollutant con-
centrations decrease with increasing downwind, crosswind, and
vertical distances, as well as with higher removal rates. Ravin-
dranath et al. [15] employed Fourier’s transform method to
solve the Dobbins advection-diffusion equation, analyzing pol-
lutant dispersion under stable and neutral atmospheric condi-
tions, and found that pollutant concentrations decrease in the
upper part of the mixing layer under such conditions.

Latha et al. [16] investigated pollutant dispersion from line
sources in urban areas, using eddy diffusivity as a function of
vertical height and large-scale wind. They employed separa-
tion of variables and Bessel functions in their approach. Simi-
larly, Latha et al. [17] analyzed the dispersion of primary pol-
lutants from point sources, concluding that dry and wet depo-
sition processes reduce pollutant concentrations in urban areas.
McNider and Pour-Biazar [18] focused on improving meteo-

rological models, particularly in dealing with uncertainties in
turbulent mixing in the nighttime boundary layer, emphasizing
mesoscale phenomena like the nocturnal low-level jet and its
impact on air quality.

Bhaskar et al. [19] developed an analytical model for air
pollution from high-point sources in the presence of mesoscale
winds, simplifying their approach using special functions and
Bessel function orthogonality. Their findings indicated that
mesoscale winds accelerate pollutant dispersion towards the
center of urban heat islands, thus reducing atmospheric pol-
lutant concentrations. Johnson [20] underscored the impor-
tance of atmospheric dispersion models in setting and con-
trolling emission levels, particularly for improving air qual-
ity in developed countries. Ravindranath et al. [21] applied
Fourier’s method to a simplified advection-diffusion equation,
showing that pollutant concentrations decrease with increased
wind speed and reduced terrain roughness. Kafle et al. [22]
conduct in-depth research into the mathematical foundations
that support atmospheric dispersion modeling. The application
of these ideas entails using a Gaussian plume model to solve
the advection-diffusion problem.

In this research, we assume that eddy diffusivities are lin-
early dependent on downwind distance and use boundary con-
ditions consistent with physical reality. By applying an ana-
lytical approach, we derive solutions to the advection-diffusion
problem. Our findings show that pollutant concentrations peak
near the source and at ground level, with additional removal
systems leading to decreased pollution levels.

2. Methodology

2.1. Mathematical Model Formulation
The equations used to simulate the dispersion of air con-

taminants in the atmosphere are based on the gradient transport
theory.

∂c
∂t
+ u
∂c
∂x
+ v
∂c
∂y
+ w
∂c
∂z

=
∂

∂x
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kx
∂c
∂x

)
+
∂

∂y

(
ky
∂c
∂y

)
+
∂

∂z

(
kz
∂c
∂z

)
− (∝ +kw) C. (1)

C represents the concentration of pollutants in the atmosphere.
The variables u, v, and w represent the wind speeds in the x, y,
and z directions, respectively, while kx, ky, and kz denote the dif-
fusivities in the x, y, and z directions. The variable α represents
the natural removal rate of atmospheric pollutants.

In this problem, the point source is located at a height of hs

meters above ground level. The point source emits pollutants
continuously and migrates horizontally, parallel to the large-
scale airflow. The coordinates x = 0, y = 0 fix the point
source at the origin. We examine the dispersion of pollutants
at a downwind distance of l = 5 kilometers.

The following assumptions are made to construct the math-
ematical model:

1. The rate of discharge of pollutants from the point source
into the atmosphere is constant.
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2. The steady-state condition is assumed, i.e., ∂C
∂t = 0.

3. The x-coordinate is aligned with the average wind speed
(with u = U and v = 0).

4. The horizontal wind dominates the pollutant diffusion.

That is, u ∂C
∂x ≫

∂
∂x

(
kx
∂C
∂x

)
. Considering the above assumptions,

equation (1) becomes

u(x)
∂C
∂x
+ w(z)

∂C
∂z
= ky
∂2C
∂y2 + kz

∂2C
∂z2 − (α + kw)C. (2)

Here, x, y, and z are the coordinate axes. The speed of airflow,
U(x), in the x direction is found to vary with vertical distance
from the ground level, and it is expressed as:

U(x) = U0(1 − ax),

where U0 represents the average wind speed. The velocity of
air in the z direction is given by:

W(z) = U0(az).

Typically, in atmospheric conditions, Ky > Kz. The boundary
conditions for equation (2) are as follows:

(i) Pollutants are discharged from the elevated point source,
with a concentration Q, located at (0, 0, hs). The concen-
tration is given by

C(x, y, z) =
Qδ(y)δ(z − hs)

U(x)
at x = 0, 0 ≤ hs ≤ H. (3)

where hs is the stack height, H is the mixing height, and
δ is the Dirac delta function.

(ii) The concentration of contaminants approaches zero as
they move in the y direction away from the point source,
i.e.,

C(x, y, z) = 0 as y→ ∞. (4)

(iii) At the ground level (z = h), pollutants are reflected from
the Earth’s surface, such that

∂C
∂z
= vdC at z = h. (5)

(iv) Pollutants are reflected at height H from the ground sur-
face, given by

kz
∂C
∂z
= wsC at z = H. (6)

Recent studies show that large-scale wind speeds are considered
constant. We assume the horizontal mesoscale wind to flow in a
vertical direction equal to u = U0. We can apply the continuity
equation to determine the vertical mesoscale airflow w(z).

we = aU0z,

U(x) = u + ue = U0 (1 − ax) ,

where a is constant.

2.2. Method of Solution

Using the following dimensionless parameter approach, we
reduce the differential equation (2), which describes the diffu-
sion of atmospheric pollutants and boundary constraints, to di-
mensionless to obtain the solution.

x∗ =
KZ0 x
U0H2 , y

∗ =
y
H
,Z∗ =

z
H
,

U∗ =
U
U0
,C∗ =

U0H2C
Q
,

β∗ =
KY

Kz0

, γ∗ =
Kz

Kz0

, δ (y∗) = Hδ (y) ,

α∗ =
U0H2α

KZ0

, k∗w =
H2kw

KZ0

.

On dropping asterisks (*) and using the boundary conditions (3)
- (6), equation (2) can be made in the dimensional-less form as
shown below:

(1 − ax)
∂C
∂x
+ az
∂C
∂Z
= β
∂2C
∂y2 + γ

∂2C
∂z2 − (∝ +kw)C. (7)

C(x, y, z) =
Qδ (y) δ (z − hs)

U(x)
at x = 0. (8)

C = 0 when y→ ±∞. (9)

∂C
∂z
= NC at z = 1. (10)

∂C
∂z
= MC at z = h/H. (11)

The solution to equation (7) is obtained by applying the Fourier
transform technique, utilizing the boundary conditions (8) to
(11). By taking the Fourier transform of equation (7) with re-
spect to the variable “y”, we obtain

(1 − ax)
∂C̄
∂x
+ (p2β + α + kw)C̄ = γ

∂2C̄
∂z2 − az

∂C̄
∂z
, (12)

where C̄ = C̄ (x, p, z) is the Fourier transform of c with respect
to y and p. By considering the Fourier transform, the boundary
conditions become

C̄ (x, y, z) =
Qδ (y) δ (z − hs)

U(x)
at x = 0, (13)

C̄ = 0 when y→ ±∞, (14)

∂C̄
∂z
= NC̄ at z = 1, (15)

∂C̄/∂z = MC̄ at z = h/H. (16)

When we solve equation (12) using the separation of variables
approach, we assume the following trial solution.

c̄ = X (x) Z(z), (17)
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where Z(z) is a function of z only and X (x) is a function of
only x. By substituting the equation (17) in equation (12), the
differential equations are obtained

(1 − ax)
X

dX
dx
+

(
p2β + λ2 + kw + α

)
= 0. (18)

γ
d2z
dz2 − az

dZ
dz
+ λ2Z = 0. (19)

The term λ2 represents the separation constant. The solutions
of equation (18) & equation (19) are of the form

X = C1(1 − ax)
p2β+kw+λ2+α

a . (20)

Z = a0 f (z) + a1g (z) , (21)

where a0, a1, and C1 are constants and

f (z) = 1 −
λ2

2!γ
z2 −
λ2(2a − λ2)

4!γ2 z4 −
λ2(2a − λ2)(3a − λ2)z6

6!γ3

g (z) = z +
(a − λ2)

3!γ
z3 +

(a − λ2)(3a − λ2)
5!γ2 z5+

(a − λ2)(5a − λ2)(3a − λ2)z7

7!γ3 .

After substituting the values of X(x) and Z(z) from the equa-
tions (20) and (21) we get

C̄ = (1 − ax)
(p2β+∝+kw+λ2)

α (a0 f (z) + a1g (z)) . (22)

The term C1 is considered to be 1 without loss of generality.
After using the boundary conditions ∂C/∂z = NC at z = 1, we
get

N =
f (1)
f ′ (1)

(23)

∂C̄/∂z = MC̄ at z = h/H, M =
f (h/H )
f ′ (h/H )

. (24)

Again, using the boundary condition C̄(x, y, z) = δ (z−hs)
(1−ax) at x=0

and as well as applying∫ 1

0
δ (z − hs) fn (z) dz = fn(hs),

and ∫ 1

0
zp fmb (z) fn (z) dz = 0 .

For m , n the solution can be written as

C̄ = (1 − ax)
(p2β+λ2+kw+∝)

α
f (hs)

p
f (z) , (25)

where

p =
∫ 1

0
f 2 (z)dz.

After taking the inverse Fourier transform of the equation (25),
we can write

C = 0.28209
√

a

β log
(

1
1−ax

) (1 − ax)
(λ2+kw+∝)

α
f (hs)

p
.

f (z) exp
(

ay2

4β log (1 − ax)

)
. (26)

Figure 1. Concentration versus Height for various values of the removal rate

3. Results and Discussion

Considering the removal mechanism, we have developed an
analytical mathematical model to investigate the impacts of pri-
mary pollutant concentrations in both the horizontal and verti-
cal directions. Appropriate boundary conditions are incorpo-
rated to represent the point source in the city region. Contam-
inants are expected to undergo removal mechanisms through
both dry and wet deposition processes. Convection-diffusion
equations with initial and boundary conditions are solved using
the method of separation of variables, Fourier transform, and
series solutions.

Figure 1 illustrates how the concentration varies with height
for different values of the removal rate. It is evident that as the
removal rate increases, the concentration of contaminants de-
creases. The graph shows the pollutant concentration curve
with respect to vertical distance (0 ≤ z ≤ 5) for values of
a = 0.1 and a = 0.5 at crosswind distance y = 0. The graphs
are plotted for both height and concentration in the absence and
presence of mesoscale wind. It is clear that as α increases, the
concentration first rises, reaches a maximum at a certain height,
and then decreases as the value of a increases, eventually tend-
ing toward zero. This behavior is consistent with the natural
dispersion of pollution. Figure 2 shows the variation of air im-
purity concentration with distance, both in the presence and ab-
sence of a removal rate. We observe that as the removal rate
α increases, the concentration decreases along the horizontal
distance (0 ≤ x ≤ 5). The graph of air impurity concentra-
tion with respect to downwind distance for values of α = 0 and
α = 2 is analyzed. We observe that the concentration declines
after reaching a maximum at a specific distance and eventually
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Figure 2. Concentration versus Distance for various values of α

reaches zero as the distance increases.
Figure 3 illustrates the concentration variation with height

for different values of wet deposition kw. It is observed that as
z increases, the concentration initially rises, attains a maximum
at certain heights, and then decreases as z continues to increase,
eventually tending toward zero. The concentration approaches
zero more quickly when a = 0.5 compared to a = 0.1.

Figure 4 displays the variation of concentration with dis-
tance for different values of α. The graph shows the concen-
tration curve with respect to downwind distance (0 ≤ x ≤ 5).
We observe that the concentration approaches zero faster when
a = 0.5 compared to a = 0.1. The concentration initially in-
creases with increasing x, reaches a maximum at a certain dis-
tance, and then decreases, approaching zero along the horizon-
tal direction.

4. Conclusion

This study demonstrates the use of mathematical models to
evaluate the impact of air pollution levels, specifically through
governing equations that assess air quality and emissions from
various sources. Our analytical model successfully captures the
concentration of pollutants from specific locations, focusing on
both dry and wet deposition processes. The analysis highlights
the importance of removal processes in reducing the concen-
tration of primary pollutants, revealing that pollutant concen-
trations diminish with increasing distance from the source and
height above ground, primarily due to diffusion and removal
mechanisms.

Figure 3. Concentration versus Height for various values of kw

Figure 4. Concentration versus Distance for various values of vd

The mesoscale model used in this study replicates key atmo-
spheric phenomena, such as transient storms, weather fronts,
and wind flow dynamics, making it particularly suitable for
evaluating the effects of wind on pollutant dispersion. These
models, which incorporate interactions between wind and ter-
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rain, provide insights into pollution patterns relevant to urban
environments. The findings emphasize the necessity of re-
moval processes to effectively reduce pollutant concentrations
throughout the city, except in areas close to point sources.

This research underscores the importance of implement-
ing effective air quality management strategies, such as eco-
friendly transportation, sustainable construction practices, and
stricter emission regulations. Moreover, public awareness cam-
paigns and community involvement are crucial in fostering en-
vironmental responsibility. By building partnerships among
government agencies, industries, and communities, cities can
develop more comprehensive solutions to combat air pollution.
Ultimately, this collaborative approach is essential for creating
sustainable urban ecosystems that benefit both current and fu-
ture generations.
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