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Abstract

This study proposes a two-dimensional, eight-noded automated mesh generator for precise and efficient finite element analysis (FEA) in microwave
applications. The suggested method for solving the Helmholtz problem employs an optimal domain discretization procedure. MAPLE-13 soft-
ware’s advanced automatic mesh generator was developed specifically for this work. To demonstrate the effectiveness of the approach, three
distinct waveguide structures are analyzed, with the results compared to the best available analytical or numerical solutions. The findings indicate
that the proposed method yields highly accurate and efficient finite element results, particularly for waveguide structures containing singularities.
In microwave applications, this method can significantly enhance energy transmission efficiency.
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1. Introduction

Electromagnetic waves can be guided and transferred with
minimal energy loss using hollow metal structures called
waveguides. These structures are considered essential opti-
cal devices, widely employed in various electrical applications.
Waveguides have been extensively studied for their ability to
efficiently transport electromagnetic energy, as explained in
Ref. [1], which provides a comprehensive discussion of op-
tical and microwave waveguides, along with waveguide-based
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equipment. A key aspect of understanding complex waveguide
systems is the analysis of waveguide modes. This is crucial in
radio frequency and optical computations, especially in solving
the waveguide eigenvalue problem, where the eigenvalue root
of the eigenmodes yields the cutoffwavenumber for a particular
waveguide shape. Waveguides can take on various shapes, such
as ridge-shaped, L-shaped, circular, coaxial line, or other con-
figurations. Recent research, such as the work by Bernabeu et
al. [2], has demonstrated that microwave waveguides with well-
rounded, curved geometries—rather than sharp edges—are ef-
fective in transporting electromagnetic energy. Therefore, de-
termining a waveguide’s cutoff frequencies in microwave ap-
plications, where powerful computational tools are required, is
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of critical importance. Computational electromagnetics (EM)
plays a vital role in obtaining accurate approximations of these
values, and the literature presents several numerical methods
for calculating waveguide propagation modes, including finite
element analysis (FEA) of square waveguides.

Increasing the complexity of the finite element method
(FEM) model allows us to address more practical and useful
questions. When solving problems in domains with complex
geometries, the finite difference approach (FDA), the method of
fundamental solutions with an excitation source (MFSES), and
the method of moments (MOM), which are mesh-free meth-
ods, often face significant challenges. However, increasing the
number of 8-noded quadrilateral elements in the domain leads
to more accurate results, highlighting the strength of FEM as a
promising method for waveguide eigenvalue problems.

Several researchers have proposed different methods to
tackle eigenvalue problems in ridge waveguides. Full solu-
tions to the ridge waveguide eigenvalue problem, using inte-
gral equation frameworks, have been applied to calculate trans-
verse magnetic (TM) and transverse electric (TE) modes [3]-
[10]. Recently, Tingting et al. [11] used a four-noded quadrilat-
eral finite element method to determine the cutoff wavenumber
in L-shaped and square waveguides. Microwave applications
often involve curved geometries and sharp edges, which make
traditional approaches computationally demanding for finite el-
ement analysis. Most existing software utilizes elements up to
quadratic order, but Wang et al. [12] have developed a simple
and efficient linear mesh generation technique. Additionally,
finite element methods have been applied to a wide range of
differential equations, as demonstrated by Xu et al. [13], offer-
ing practical solutions across various fields of technology.

In this study, we employ 2-D automated mesh generators in
MAPLE to present a simple, accurate, and efficient approach
for Galerkin finite element method (GFEM) calculations on L-
shaped, square, and U-shaped waveguides. The higher-order
automated mesh generators used in this method are straight-
forward and yield high-quality results. The cutoff frequencies
for these waveguides, which exhibit singularities, are calcu-
lated using the proposed method. Our approach can efficiently
handle a wide range of waveguide structures. Specifically, we
employ the 8-noded mesh generation technique to implement
FEM. The L-shaped, square, and U-shaped waveguides are dis-
cretized into a set of 8-noded quadrilaterals, followed by the ap-
plication of optimal numerical integration techniques for these
quadrilaterals. The accuracy of the results improves as the num-
ber of 8-noded quadrilaterals increases, and the results are com-
pared with those obtained from existing methods.

Section 2 details the automated process for creating an 8-
noded quadrilateral mesh and maps the mathematical formula-
tion of the 8-noded quadrilateral element into a square region.
Section 3 presents the finite element formulation, where the
Helmholtz equation is mathematically formulated using an 8-
noded finite element mesh generator and the proposed Galerkin
weighted residual FEM. In Section 4, the proposed method is
validated for various waveguide structures through three nu-
merical examples, and the results are compared with the best
available analytical or numerical solutions. A comprehensive

discussion of the numerical results is provided in Section 5.
When compared to other numerical approaches, the results

show that the proposed method, incorporating an automated
mesh generator and the Galerkin weighted residual FEM, sig-
nificantly enhances the accuracy and efficiency of the numerical
method.

2. Mathematical formulation and creation of an eight
noded quadrilateral mesh.

Mesh generation is a crucial first stage in many applications,
including finite element modeling or finite element analysis.
Physical phenomena or structures are broken down into more
manageable components to speed up numerical calculations
due to their computational efficiency and simplicity. Quadri-
lateral elements are frequently utilized in 2D simulations. In
numerical simulations and finite element analysis, a type of fi-
nite element mesh known as an 8-noded quadrilateral mesh is
employed. The term ”8-noded” designates an element that has
eight nodes, or vertices, per quadrilateral, which is defined as a
four-sided polygonal shape. Typically, the ”8-noded” quadrilat-
eral element consists of four nodes at each corner and four addi-
tional nodes at the midpoints of the edges. Compared to lower-
order elements, this node distribution allows for more accurate
depiction of the geometry and deformation within the element.

A physical domain is discretized into quadrilateral ele-
ments, each with eight nodes, to create an 8-noded quadrilat-
eral mesh, which is frequently used in numerical simulations for
structural and mechanical analysis. The physical problem is de-
termined by the field variable u. It is given by Figure 1. In finite

Figure 1. 8-noded rectangular element mapped to 8-noded standard square ele-
ment

element analysis (FEA), a quadrilateral element is often defined
by a set of nodal points, and the geometry within the element is
interpolated based on the values assigned to these nodal points.
Figure 1 illustrates how a random eight-noded convex quadri-
lateral element’s (x, y) region is translated into a square (s, t)
region. Interpolation functions, also known as shape functions,
are used to determine the variations of the physical quantities
within the element based on the values assigned to the eight
nodal points and the values of s and t, both varying from -1 to
1. The shape functions for an eight-noded quadrilateral element
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are typically given as follows.

A1 (s, t) = 0.25 (1 − s) (−s − t − 1) (−t + 1)

A2 (s, t) = 0.25 (s + 1) (−1 − t + s) (−t + 1)

A3 (s, t) = 0.25 (1 + s) (1 + t) (−1 + s + t) (1 + t)

A4 (s, t) = 0.25 (−s + 1) (−s + t − 1) (t + 1)

A5 (s, t) = 0.5 (1 − t)
(
1 − s2

)
A6 (s, t) = 0.5

(
1 − t2

)
(1 + s)

A7 (s, t) = 0.5 (1 + t)
(
1 − s2

)
A8 (s, t) = 0.5

(
1 − t2

)
(1 − s)



(1)
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and

J =
∂ (x, y)
∂ (s, t)

=
∂x
∂s
∂y
∂t
−
∂y
∂s
∂x
∂t

}
(4)

3. Mesh generation by finite element method

An 8-noded quadrilateral mesh is a type of mesh that uses
quadrilateral elements, each defined by eight nodes. This type
of mesh is commonly used in finite element analysis for solving
various engineering and scientific problems. Figure 2 illustrates
the discretization of the L-, U-, and square-shaped domains for
an eight-noded quadratic order. Tables 1-3 list the solutions
obtained using the finite element method (FEM) at each coor-
dinate. Here are the key characteristics and steps involved in
generating an 8-noded quadrilateral mesh:

• Each element has four sides and eight nodes.

• The nodes are typically numbered consecutively around
the element in a consistent manner.

• The shape functions for interpolation within the element
are more complex compared to lower-order elements,
providing higher accuracy.

• Identify and define the geometry of the domain for which
the mesh is required. This could be a complex shape de-
fined by mathematical equations or obtained from exper-
imental data.

Figure 2. L-, U-, and square-shaped waveguides discretized into 8-noded
quadrilateral meshes.

• Generate nodes within the domain. These nodes repre-
sent the discrete points where the numerical solution will
be approximated. Ensure proper distribution of nodes to
capture the geometry accurately.

• Define the connectivity between nodes to form quadri-
lateral elements. For an 8-noded quadrilateral element,
there will be a set of eight nodes that define each element.
The order of nodes is crucial for correct interpolation.

• Implement shape functions for interpolation within each
8-noded quadrilateral element. These shape functions de-
termine how the solution varies within the element based
on the values at its nodes.

• Check the quality of the generated mesh by examin-
ing metrics such as element aspect ratios, skewness, and
other quality measures. A good-quality mesh contributes
to the accuracy and stability of the numerical solution.

• If the mesh is intended for solving partial differential
equations or other physical simulations, integrate it with
appropriate solvers or simulation codes.
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Figure 3. Relative error of Sarkar [10], Tingting [11], and the present method
in L-, U-, and square-shaped waveguides.

• Apply boundary conditions to the nodes on the domain
boundary. This step is crucial for solving problems with
well-defined boundary constraints.

4. Finite element formulation procedure for solving
Helmholtz equation

The proposed finite element approach employing transfor-
mations with the mesh generators provides the mathematical
expression of the Helmholtz equation as given by

∂2u
∂x2 +

∂2u
∂y2 − ω

2
cu = 0. (5)

The finite element method is utilized in MAPLE-13 to solve
this problem using the family of eight-noded quadrilateral ele-
ments. For the TM modes, the wave amplitude is zero at the

boundary, whereas for the TE modes, the normal derivative is
zero, following the subsequent process:

• First, use the automated mesh generators to create an
eight-noded quadrilateral mesh over the two-dimensional
waveguide structure.

• Utilizing the Galerkin weighted residual finite element
technique, the element geometry must be expressed in
terms of the Lagrange shape function in order to derive
the finite element equation:

[K + L] 8 × 8 ∗ U8 × 1 = [0]8×1 (6)

Ki, j =

∫∫
Ω

(
∂Ai

∂u
∂A j

∂u
+
∂Ai

∂v
∂A j

∂v
)dxdy = Ku,u + Kv,v (7)
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LI,J =

∫∫
Ω

ω2
c Ai A j dxdy =

∫ 1

−1

∫ 1

−1
ω2

c Ai (ξ, η) A j (ξ, η)Jdηdξ.

To obtain the global matrix equation, assemble the element
equations so that the effects of each element are considered for
the entire region based on the global node numbering:

[K + L]NP×NP ∗ UNP×1 = [0]NP×1 , (8)

where NP is the overall node count. Eq. (3) becomes an eigen-
value problem, and the wavenumbers ωC are calculated using
the formula ωC =

√
eigenvalue.

Eq. (8) yields ωC , representing the TE modes’ ability
to evaluate the Helmholtz equation, reduced to an eigenvalue
problem with m algebraic equations after applying boundary
conditions to determine the TM mode.

[K + L]m×m ∗ Um×1 = [0]m×1 . (9)

To determine the TM mode, calculate the eigenvalues, and
the cutoff wavenumber is determined by obtaining the small-
est wavenumber possible. This approach uses an efficient 8-
noded mesh generator, quadrature method, and a program im-
plemented for the FEM technique to reduce computational time
and common errors in FEM analysis. It reduces numerical and
discretization errors in solving FEM equations. Therefore, var-
ious energy engineering applications, including microwave en-
gineering, can be solved with an effective and precise numerical
solution using the proposed technique.
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Table 1. TM and TE mode cutoff wavenumbers over an L-shaped waveguide structure.

Computed in [11] Present method Present method

TE TM
No. of eight noded elements = 72 No. of eight noded elements=144
CPU Time=1.5 CPU Time=2.3
TE TM TE TM

1.913 4.891 1.9113 4.8321 1.9133 4.8912
2.961 6.139 2.9660 6.1253 2.9610 6.1387
4.945 6.997 4.9433 6.9073 4.9456 6.9920
5.315 8.557 5.3015 8.5503 5.3154 8.5565

Table 2. TM and TE mode cutoff wavenumbers over a U-shaped waveguide structure.

Computed in [10] Present method Present method

TE TM
No. of eight noded elements=144 No. of eight noded elements=288
CPU Time=1.6 CPU Time=2.8
TE TM TE TM

2.2688 12.2338 2.2679 12.2330 2.2685 12.2337
5.0149 12.4106 5.0145 12.4103 5.0146 12.4100
6.6289 14.2152 6.6283 14.2139 6.6289 14.2155
7.7097 15.8221 7.7087 15.8232 7.7099 15.8227

Table 3. TM and TE mode cutoff wavenumbers over a square shaped waveguide structure.

Computed in [11] Present method Present method

TE TM
No. of eight noded elements = 72 No. of eight noded elements=144
CPU Time=1.8 CPU Time=2.5
TE TM TE TM

1.571 2.221 1.5688 2.2203 1.5713 2.2216
2.221 3.512 2.2037 3.5106 2.2218 3.5124
3.142 4.442 3.0983 4.4438 3.1422 4.4421
3.512 4.967 3.5096 4.9631 3.5125 4.9670

5. Numerical Examples

5.1. L-shaped, U-shaped, and square waveguides

Maxwell’s equations are the PDEs that govern electromag-
netic radiation. They reduce to the Helmholtz equation for the
propagation of electromagnetic waves in long waveguides. The
cutoff wavenumbers for a variety of waveguide configurations
can be found using this equation. These cutoff wavenumbers
have been obtained using various techniques in the literature. A
quick and efficient method to achieve optimal solutions to the
problem is presented. This method is used to solve a variety of
electromagnetic problems for any waveguide and also normal-
izes the CPU time for each analysis. The proposed method for
the L-, U-, and square-shaped waveguides is implemented in the
MAPLE program to calculate the first four cutoffwavenumbers.
The waveguide structures found in Sarkar et al. [10] and Tingt-
ing et al. [11] are examined. The structured 8-noded quadri-
lateral mesh for the L-, U-, and square-shaped waveguides is
depicted in Figure 2. A singularity exists at one of the sharp

edges of this structure. Tables 1-3 present the calculated cutoff
wavenumbers for both the transverse and longitudinal modes
in the L-, U-, and square-shaped waveguides, utilizing the pro-
posed structured automated mesh generator consisting of eight-
noded quadratic elements.

For electromagnetic problems, 8-noded quadratic elements
perform better than 3-noded triangular elements, according to
the numerical results from Tables 1-3. It is apparent that the
computing time is significantly reduced by using the 8-noded
automatic meshing approach. The error estimates for both ap-
proaches are displayed in Figure 3. The most effective and
straightforward method for computing eigenvalues is provided
by the proposed finite element methodology. It also offers a pro-
ductive way to determine the TE and TM modes for any kind
of waveguide configuration. Because there is minimal energy
loss, this makes it one of the best approaches for efficient energy
transmission in microwave-based applications. Therefore, this
approach can be effectively used to address a range of energy,
electromagnetic, and microwave-related problems.
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6. Conclusions.

This work presented a FEM technique using an automated
8-noded mesh generator as a straightforward, effective, and pre-
cise numerical solution procedure for microwave applications.
Tables 1-3 show the numerical results for three distinct waveg-
uides used to compute the eigenvalues and, consequently, the
TE and TM modes, demonstrating the applicability of the pro-
posed method. It is evident that the method is easy to use and
efficiently utilizes computer resources. It provides the most
accurate estimate for determining the dominant TM and TE
modes’ cutoff wavenumbers for various waveguide geometries
and topologies containing singularities. Therefore, this method-
ology can be effectively applied to numerous microwave appli-
cations as well as various other energy-related problems.
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