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Abstract

Indexing has long been used to improve the speed of relational database systems, and choosing an adequate index at design time is critical to the
database’s efficiency. In this study, it was demonstrated empirically that data access time and data insertion time for moderately large datasets are
influenced by the index chosen at design time. However, deletion time is approximately the same. As a result, regardless of the query optimization
strategy utilized at runtime, record access/insertion time depends on the type of index employed at design time. This paper presents a comparison
of BTree indexes with Hash indexes. It was demonstrated empirically that insertion is substantially faster with the Hash index than with the Btree
index, at the expense of a larger Hash index file size. The Btree index is slower due to the rebuild time of Btree indexes during insertion. The
empirical results of this study complement that of theoretical results for both Btree and Hash indexes. On the other hand, hash index files are
large, restricting their use for applications with rapidly increasing dataset sizes; thus, a tradeoff employing Hash index or Btrees is required. In
general, this study proposes Hash indexes for small dataset applications and Btree indexes for large dataset applications on systems with limited
memory.
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1. Introduction way as the index of a textbook, if a particular topic (specified by
a word or a phrase) in the textbook is to be searched, the index
located at the back of the book is searched and the page number
corresponding to the entries in the index is used to locate the
particular topic searched.

In general, indexes can be categorized into two types: pri-
mary and secondary indexes. In the case of a primary index, the

Databases usually contain voluminous amount of data such
that queries for a subset of the data doesn’t have to require a
scan of the entire volume of available data. According to Ref.
[1], an Index for a file in a database system works in much same
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is not the case for a secondary index [2]. Instead, secondary in-
dexes are created on attributes other than the primary attribute,
which also implies that they can contain duplicate entries.

Creating indexes is essential as indexes are the most com-
monly used strategy for speeding up query response. It is there-
fore critical to appropriately select the columns to be indexed,
as well as the type of indexing technique, as the quality of index
affects the query response.

In relational databases, a query optimizer software is re-
sponsible for analyzing queries and choosing the most efficient
way to access information [3]. The query optimizer selects the
index record that will best retrieve records faster. Therefore, it
is worth mentioning that the query optimizer assumes the exis-
tence of already indexed column records. The query optimizer
makes query selection decisions by either scanning the entire
table of records or using defined indexes within the table, as
a result, the choice of the indexed column to use during query
planning is essentially an optimization problem.

For example, consider the simple query “select * from city
where name = ‘Abuja’”’. It was assumed that the table consists
of attribute “name” and depicts the query plan (Figure 1). Once
this query is submitted, the query optimizer has to choose be-
tween performing a full scan or using filtered pointers present
in the index of attribute “name” of the table - if such an index
exists. This step is known as the query execution plan step.
The execution plan is computed from the expected response
time of each index generated over time [4]. Now consider the
case where the attribute “name” is properly indexed — mean-
ing the tuples would have been ordered based on the entries of
this attribute, then if the right choice of index is made involving
the index entries for “name”, the response time would be much
less compared to a full scan of the table. In Figure 1, the key
“Abuja” would be found in the “name” index file and a pointer
to the actual record in the table can be used to directly retrieve
the record.

The example described in Figure 1 assumes columns are al-
ready indexed but it is worth mentioning that the performance
of these indexing techniques varies, so the decision of what type
of indexing technique to use has to be decided at database de-
sign time. An important aspect of software development is in-
formation storage design — one that is dynamic enough to with-
stand the growing volume of data and can also return results
of queries over a large volume of data in record time. How-
ever, choosing a particular index structure based on the kind of
data and size of data versus the available storage engine is non-
trivial. Random investigations from these studies have shown
that most developers or system analysts just design relational
schema without factoring in the kind of indexes to apply on
certain tables.

Therefore, the entirety of this work is focused on design
time choice for indexes. An extensive empirical comparative
study was conducted to suggest the right choices of indexes,
based on the kind of data type and relationship imposed on the
tables. Given that these database indexes vary in terms of time
and space complexity, it is then obvious that a very good re-
lational schema with a badly indexed table will lead to poor
query performance over a long period, especially as the vol-

ume of data increases. The motivation for this research lies
in the quest to provide a comparative framework upon which
relational database design can be referenced during the design
phase of relational databases.

In this paper, the performance of BTree vs Hash-based in-
dexes was compared as a function of response time and space
complexity, using MySQL relational engine. The specific con-
tributions of this paper are in the presentation of empirical re-
sults quantifying the data access time, data insertion time, data
deletion time, and space complexity between BTree and Hash
indexes, on different datatypes of different sizes and different
numbers of records. The goal of the study is to provide guide-
lines for database administrators when making decisions on the
type of index structure to use, especially in MySQL databases.

This article is structured as follows: section 2 presents the
index of the database while section 4 is the literature review of
the key concepts discussed within the body of this work. This
study narrowed the discussion to indexes supported by MySQL
database in section 5 while section 6 discusses the methodol-
ogy for this empirical study. Section 10 discusses the results of
the experiments of this study. The summary, conclusions, and
recommendations are presented in section 11.

2. Database index

An index is a structure that exists solely to speed up
searches to its underlying dataset. According to Ref. [1], an
index can be thought of as a collection of data entries with an
efficient method for locating all data entries with search key
value k. Each such data entry has sufficient information to al-
low retrieval of (one or more) data records with search key value
k. According to Ref. [5] an index is a data structure that im-
proves the speed of data retrieval operations on a database table
at the cost of additional writes and storage space to maintain
the index data structure. Indexes are used to quickly locate data
without having to look through every row in a database table
every time it is accessed. An index can be built utilizing one
or more columns from a database table, allowing for both quick
random lookups and efficient access to ordered items.

In designing the logical structure of a database — also known
as the schema, care should be taken on the type of index struc-
ture that should be imposed on a column. Some databases ex-
tend the power of indexing by letting developers create indices
on functions or expressions. For example, an index could be
created on upper(last_name), which would only store the up-
percase versions of the last_name field in the index. Another
option sometimes supported is the use of partial indices, where
index entries are created only for those records that satisfy some
conditional expression. A further aspect of flexibility is to per-
mit indexing on user-defined functions, as well as expressions
formed from an assortment of built-in functions. In general, the
indexes can be categorized according to their architecture:

2.1. Non—clustered indexes

In a non-clustered index structure, the data is present in an
arbitrary order but the logical ordering is specified by the index.
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Figure 1. Query planning.

The data rows may be spread throughout the table regardless of
the value of the indexed column or expression.

2.2. Clustered indexes

In a clustered index structure, each index is associated with
a particular search key. Just like the index of a book or library
catalog. It is an ordered index structure and it associates with
each search key the records that contain it. According to Ref.
[5], clustering alters the data block into a certain distinct order
to match the index, resulting in the row data being stored in
order. Therefore, only one clustered index can be created on a
given database table. The overall speed of retrieval can greatly
be increased using a clustered index but usually only where the
data is accessed sequentially in the same or reverse order of the
clustered index. In practice, files are rarely kept sorted since
this is too expensive to maintain when data is updated [6].

3. Index structure architecture

Most index structures usually follow two well-known de-
sign structures. They can be either Hash-based or Tree-based
index structures as shown in Figure 2 and Figure 3.

3.1. Hash-based index structures

In Hash-based index structures, records are organized using
a technique called Hashing to quickly find records that have a
given search key value. According to Ref. [1], addresses of
disk blocks containing the desired record are obtained directly
by computing a function on the search key value of the record.
Formally, let K denote the set of all search key values, and let
B denote the set of all bucket addresses. A Hash function % is a
function from K to B. To insert a record with the search key K;,
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Figure 2. Concept of Hashing [6].

compute A(K;) is executed, which gives the address of the disk
block.

3.2. Tree-based index structures

A tree is a widely used data structure that simulates a hi-
erarchical tree structure with a root node known as the parent
node and sub-nodes known as child nodes. Generally, the tree
data structure is represented as a set of linked nodes. A typical
example of a tree-based index structure is the B-Tree, B+-Tree,
R-Tree, R+ Tree [7], and the Indexed Sequential Access Method
(ISAM) [8].

The ISAM [8], was originally developed by IBM for main-
frame computers. It contains an index of tables whose elements
are pointers allowing individual records to be retrieved with-
out having to search the entire data set. This index is small
and can be searched quickly usually using a binary search algo-
rithm, thereby allowing the databases to access only the records
it needs. When an ISAM file is created, index nodes are fixed
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and their pointers do not change during insertion and deletion
of records that occur later. This is the reason why ISAM are
static structures unlike the B+ Trees (discussed in the next para-
graph). As a consequence of this fixed or static index structure,
if insertions to some leaf node exceed the node’s capacity, new
records are stored in overflow chains. If there are many more
inserts than deletions from a table, these overflow chains can
gradually become very large, and this affects the time required
for retrieval of a record.

The B+ tree index structure is widely used. It is a balanced
tree in which the internal nodes direct the search and the leaf
nodes contain the data entries.

Since the tree structure grows and shrinks dynamically, it is
not feasible to allocate the leaf pages sequentially as in ISAM,
where the set of primary leaf pages are static. To retrieve all
leaf pages efficiently, it links them using page pointers. By or-
ganizing them into a doubly linked list, it can easily traverse the
sequence of leaf pages (sometimes called the sequence set) in
either direction [1]. This structure is illustrated in Figure 3.

4. Literature review

Index selection has been extensively studied in Refs. [2, 9—
11], albeit from an optimization standpoint. The goal in most
of these studies is to develop an efficient algorithm for selecting
optimal indexes among the various columns already indexed
at design time. By assuming each index response time as a
dependent variable, the index selection problem is in effect cast
as an optimization problem with objective/cost function being
specifically crafted linear combination of index columns.

In the work by Ref. [2], they formulated a general cost
model that incorporated dependency between primary and sec-
ondary index operational statistics. Due to the complexity of
their cost function, they split the objective into two: one involv-
ing primary index selection and the other secondary index se-
lection. Because these problems are mutually dependent, their
formulation raised the question of “what order should primary
and secondary index selection be based on?” — to which they
discovered that primary index selection supersedes.

The work by Chaudhuri et al. [9] presented a formal state-
ment for the index selection problem and showed that it is com-
putationally “hard” to solve or even approximate. However,
they developed a new algorithm based on reformulating the ob-
jective as a knapsack problem. The novelty of their approach
lies in an LP (linear programming) based method that assigns
benefits to individual indexes. For a slightly modified algo-
rithm, that does more work, they proved specific guarantees
about the quality of their solution (As these specific guarantees
are not relevant to this research therefore readers are recom-
mended to Ref. [9] for more details).

In the work by Schlosser et al. [10], they introduced a re-
cursive strategy that does not exclude index candidates in ad-
vance and effectively accounts for index interaction. They used
a large real-world workload to demonstrate the applicability of
their approach for both large and small databases.

More recently Yadav et al. [11] introduced AIM (Automatic
Index Manager), a configurable index management system that
identifies impactful secondary indexes for SQL databases to ef-
ficiently use available resources such as CPU, I/O, and storage.
It proposes a novel way of exploring the search space of candi-
date indexes such that the execution cost of the workload run-
ning on it can be minimized under certain constraints.

Works by Refs. [12, 13] surveyed the different index se-
lection approaches. In [12], they discussed the big data re-
quirements for indexing and offered a comparison study on
different indexing selection techniques such as non-artificial
intelligence-based selection techniques, artificial intelligence,
and collaborative-based techniques.

The work of Shin er al. [14] presents a novel approach to
optimizing keyword search in relational databases by leverag-
ing an inverted index data structure and proposing a multi-way
skip-merge join algorithm. The contribution of the paper re-
lates to reducing search time delays by minimizing unneces-
sary comparisons during query execution. The utilization of
the gallop search within the merge-join method demonstrates a
significant improvement over the traditional method. However,
the paper lacks of comprehensive empirical evaluation across
diverse datasets and real-world applications, which could limit
the generalizability of the results.

The work of He et al. [15] proposes a query execution time
estimation in databases using graph neural networks to cap-
ture dependency and interaction relationships. They employed
graph-based feature modeling and neural networks to enhance
the accuracy of query execution time predictions. The three-
stage process—workload generation, graph-based feature mod-
eling, and training and estimation—provides a comprehensive
framework for accurate time estimation, which is crucial for ef-
fective database management and monitoring. The experimen-
tal results demonstrating the superior accuracy of this approach
compared to existing methods further solidify its contribution.
However, the paper may have weaknesses related to the scala-
bility of the proposed method in very large databases, as well
as the potential overhead introduced by the graph modeling pro-
cess.

Whairit el al. [16] introduce JINDEX, a JSON and index-
based search system for plant germplasm databases, address-
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ing the limitations of traditional data warehousing in terms of
structural flexibility, scalability, and search performance. They
proposed a hybrid key-value/document data model within a
NoSQL framework, allowing for flexible and efficient storage
and retrieval of plant germplasm data. The results highlight
significant improvements in query response time compared to
previous relational database implementations, underscoring the
system’s practical viability since its deployment in 2020. How-
ever, their method can have potential challenges in managing
and updating the on-disk tree structure over time.

Most of the above works focused on indexing selection al-
gorithms for already indexed columns. The main goal of tech-
niques in the reviewed works is to minimize query access time
by selecting index columns at runtime. However, to the best of
our knowledge, there is little or no information about controlled
empirical results showing the performances between different
indexes selected at design time given the existence of these in-
dex selection algorithms.

The following section presents the empirical analysis by
describing the index structures in the MYSQL database. All
empirical results are expected to be presented in graphical and
graph.

5. MySQL index structures

The MySQL relational database system comes with options
for several storage engines. Each table in MySQL comes with
an option to specify the kind of storage engine that will be used
[4]. Some of these storage engines are listed below:

a) MyISAM: This default MySQL version 5 storage engine
is used by most developers in web, data warehousing, and
other application environments. MyISAM is supported
in all MySQL configurations and is the default storage
engine unless you have configured MySQL to use a dif-
ferent one by default [4].

b) Archive: Provides the solution for storing and retrieving
large amounts of seldom-referenced historical, archived,
or security audit information [4].

¢) InnoDB: This is a transaction-safe (atomicity, consis-
tency, isolation, and durability (ACID) compliant) stor-
age engine for MySQL. It is built to include commit,
rollback, and crash-recovery capabilities for the protec-
tion of user data. The InnoDB storage engine provides
row-level locking (without escalation to coarser gran-
ularity locks). It also supports nonlocking reads with
increased multi-user concurrency and performance [4].
The user data in InnoDB is stored in clustered indexes to
reduce I/O for common queries based on primary keys.
To maintain data integrity, it also supports FOREIGN
KEY referential-integrity constraints.

The MySQL 5.0 comes with two types of Indexes namely
BTree and Hash. Table 1 shows the various storage engines and
the support index.

6. Methodology

This study focuses on empirical analysis of BTrees and
Hash indexes using real data and a relational data schema of
an existing student record database. The name of the student
record management system is withheld for privacy concerns.
The database containing multiple related tables was designed
with several tables each indexed based on a target research
question.

Therefore, several SQL queries were executed on these
database tables and a performance log was obtained from the
execution. A client program written in java was used to test
various queries on MySQL and the execution time for these
queries were logged.

In subsequent sections, these logs are presented in a graph
showing the performance of these queries on different index
structures. The relational schemas designed for test in this re-
search were carefully picked such that it contains some tables
having a lot of numeric data and some containing characters.
The following section describes the logical schema used for this
analysis.

7. Logical schema

A real-time database of student records and their results in
a higher institution was used in this study. In particular, the
schemas were scaled because the full schema containing all the
tables is not required for the study. Therefore, only tables re-
quired for analyses were picked and analyzed. These tables are:

a) CourseRegistration table: The purpose of this table is to
capture student’s registration as well as hold the student’s
continuous assessment scores and exam scores. This ta-
ble is as described by the SQL description in Table 2.

This table contains a composite primary key com-
posed of columns (semester, students_student_id, ses-
sions_session_id, courses_course_id). The default index
structure is shown in Table 3.

b) Students table: The students’ table is a biodata table. The
students’ table is described in Table 4 and its default in-
dex structure is defined in Table 5.

¢) Courses table: The courses table contains course records.
It is described in Table 6 and its default index structure is
in Table 7.

d) Programs table: The Program table contains list of all the
programs. It is described in Table 8.

e) Session table: The table contains all academic sessions
records. A special point to note about this table is the
presence of a self-referential column between session_id,
current_session and next_session column. The table is de-
scribed in Table 9 and its index structure is defined in
Table 10.
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Table 1. Comparison of comparison of a few MySQL storage engines [4].

Feature MyISAM InnoDB Archive
Storage limits 256TB 64TB None
Transactions No Yes No
Locking granularity Table Row Table
MVCC No Yes No
Geospatial data type support Yes Yes Yes
Geospatial indexing support Yes Yes[a] No
B-tree indexes Yes Yes No
T-tree indexes No No No
Hash indexes No No[b] No
Full-text search indexes Yes Yes[c] No
Clustered indexes No Yes No
Data caches No Yes No
Index caches Yes Yes No
Compressed data Yes[d] Yes[e] Yes
Encrypted data[f] Yes Yes Yes
Cluster database support No No No
Replication support[g] Yes Yes Yes
Foreign key support No Yes No
Backup / point-in-time recovery[h] Yes Yes Yes
Query cache support Yes Yes Yes
Update statistics for the data dictionary  Yes Yes Yes

Table 2. Index structure for Courses_Registration table.

Field Type Null
Ca Double NO
Exam Double NO
approval_status enum(’Lecturer’, HOD’, Dean’,’ Senate’) YES
Semester enum(’1°,2°,3°,4%) NO
students_student_id varchar(20) NO
sessions_session_id varchar(20) NO
courses_course_id  varchar(20) NO

Table 3. Index structure for Courses_Registration table.

Column_name Index_type
Semester BTREE
students_student_id BTREE
sessions_session_id BTREE
courses_course_id BTREE
students_student_id BTREE
sessions_session_id BTREE
courses_course_id BTREE

The complete logical schema is presented in Figure 4. A
point to note is that the initial index for all the tables is BTree.
For the actual experiments, modifications were done on the in-
dex of these tables and performance based on select/access, in-
sertion, and deletion SQL statements logged and graphed. More
specifically, the column index was changed to Hash at each exe-
cution run, subsequently producing logged data that were even-
tually analyzed.

8. Setup for Structured Query Language (SQL)

The core goal in this research is to compare the perfor-
mance of BTree, and Hash Index structure against a given
database of records. Therefore, varied SQL statements were
executed. These statements are categorized based on the goals
to be achieved namely;

a)

b)

Access time: For the analysis of access times on records,
SELECT SQL statements were executed across differ-
ent tables to measure access time. Regarding the phys-
ical storage of these indexes, the sizes of the index
files—corresponding to a specified number of records per
table—were obtained experimentally and recorded (refer
to code snippet I).

Code snippet I: select statement

"SELECT * FROM ’experiment_\
course_registration’\
r limit "+limit.

Insertion time: To evaluate the empirical insertion time
complexity, INSERT SQL statements were executed on
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Table 4. Students table.

Field Type Null Key
student_id varchar(20) NO PRI
first_name varchar(45) NO
middle_name varchar(45) YES
last_name varchar(45) NO
current_level int(11) NO

lga_lga_id varchar(20) YES MUL
student_pwd varchar(255) YES
date_of_birth Date YES
phone_nol varchar(45) YES
phone_no2 varchar(45) YES

Email varchar(255) YES
home_address varchar(255) YES
contact_address varchar(255) YES
nok_name varchar(45) YES
nok_address varchar(255) YES
nok_phone varchar(255) YES

nok_rel varchar(255) YES
sponsor_name varchar(45) YES
sponsor_address varchar(255) YES
co_activities varchar(255) YES
graduate_status enum(’G’,;C’’S’E’R’)N’) YES
student_program varchar(20) NO MUL
done_registration tinyint(1) YES
admission_session varchar(45) NO MUL
graduation_year Date YES

Sex enum(M’,F’) YES
marrital_status enum(’S’’M’) YES

email 2 varchar(45) YES
Nationality varchar(45) YES

Passport varchar(45) YES
Disability varchar(45) YES
details_disability varchar(45) YES
medical_problem varchar(255) YES

Religion varchar(255) YES
entry_level int(11) YES
last_reg_session varchar(20) NO
last_reg_semester varchar(20) NO
country_of_origin varchar(45) YES
city_of_origin varchar(45) YES
records_updated tinyint(1) YES
sandwich_reg tinyint(1) YES
summer_reg tinyint(1) YES
sandwich_reg_com tinyint(1) YES
summer_reg_compl. tinyint(1) YES
spil_student tinyint(4) NO
student_group enum(’A’,B’) NO

various tables. However, since the “course_registration”
table contains foreign key references to the “students”
and “’session” tables, with each referenced key indexed
by either a Hash table or B-tree, we employed a compos-
ite query to assess the empirical insertion time complex-
ity (see code snippet II).

Code Snippet II: insert statement

insert into experiment_course_registration\
(select * from course_registration r\n"+\
"where not exists (select * from \
experiment_course_registration e where \
r.semester=e.semester\n" + " and \



| students A\
student_id VARCHAR{Z0)

 first_name VARCHAR{45)
mididle_name VARCHAR{45)

» last_name VARCHAR(45) "
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"] course_registration ¥
~ca DOUBLE
egarm DOUEBLE

scurrent_level INT

2 Iga_lga_id VARCHAR(20)
student_pwd VARCHAR(ZSS)

»date_of_birth DATE

+ phone_nol VARCHARI45)
phone_nod VARCHAR[45)
emall VARCHAR|255)

+ home_address VARCHAR{255)

+ contact_address VARCHAR{255)
risk_name VARCHAR(45)

+miok_address VARCHAR([255)

+ mok_phone VARCHAR{255)
nok_rel WARCHAR(255)
Spansor_name YARCHAR(45)

+ sponsor_address VARCHAR{255)

+oo_activities VARCHAR(255)

graduate_status ENUM(...)
# student_program YARCHAR{ 20)
+done_registration TINYINT(1)

] approval_status ENUMI...)
semmester ENUML...)

T students_student_id VARCHAR(20)

I sessions_session_id VARCHAR(20)

_ courses v
course_ld VARCHAR M)
course_tithe VARCHAR{255)

# course_unit INT

» course_leval INT

o samester EMUML,..)

»is_IT TINYINT(1)
| 3

f T courses_coursa_id VARCHAR(20)
data BLOB

ace_standard VARCHAR(255)
[

| programs v
program_ikd VARCHARL 20
» program_name VARCHAR45)

» dept VARCHAR[4S)

o degree VARCHAR{45)

¢ gurgtion_int INT

+ duration_string VARCHAR[255)
2 probation_level DOUBLE

» departments_department_id VARCHAR{20) _ _ _ _ .

» probation_activated TINYINT

e >
& admission_session VARCHAR(45) 4 1 1
graduation_year DATE AAT
| sessions v
+ st EMUMIMY, 'F') [ .
¢ session_id VARCHAR[20)
> marrital_status EMUM{™S, 'M')
desoription VARCHAR{45)
amall_2 VARCHAR{45)
current_session TINYINT{L)
> nationality VARCHAR(45) .
o mext_session VARCHAR{20)
? passport VARCHAR(255) > previous._session VARCHAR{20)
& maore h
-
Figure 4. Logical schema design for experimental DB.
Table 5. Default index students. Table 6. Courses.
Key_name Seq-in Column  Index_type Field Type Null
_index _name course_id varchar(20) NO
PRIMARY 1 student_.id BTREE course_title varchar(255) NO
fk_students_1g 1 lga_lga.id BTREE course_unit int(11) NO
FK _students 1 student BTREE course_level int(20) NO
_program _program Semester enum(’1°,2°3’’4’) NO
FK_students 1 admission BTREE departments_department_id  varchar(20) NO
_admission_year _session isIT tinyint(1) NO
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Table 7. Index structure for courses table.

Seq-in_index Column_name Index_type
1 Semester BTREE

2 students_student_.id = BTREE

3 sessions_session_id BTREE

4 courses_course_id BTREE

1 students_student_.id BTREE

1 sessions_session_id  BTREE

1 courses_course_id BTREE

Table 8. Programs table.
Field Type Null Key
program_id varchar(20) NO PRI
program_name varchar(45) NO
Dept varchar(45) NO MUL
Degree varchar(45) NO
duration_int int(11) NO
duration_string varchar(255) NO
Table 9. Session table.

Field Type Null Key
session_id varchar(20) NO PRI
Description varchar(45) YES
current_session  tinyint(1) NO
next_session varchar(20) YES MUL
previous_session varchar(20) YES MUL

Table 10. Index structure for session table.

Key_name Seq Column Index
_in_index _name _type
PRIMARY 1 session.id BTREE
FK _sessions 1 next_session BTREE
_next_Session
FK _sessions 1 previous BTREE
_previous_session _session
‘/ﬂ\.‘
[
.!." I‘I"‘. /.,’
/ \ /
. )/ \‘\_//

Figure 5. Selection time for BTree and Hash indexes.

r.students_student_id = \
.students_student_id and\n"+ " \
.sessions_session_id = \
.sessions_session_id and \
.courses_course_id = \
.courses_course_id) limit 10000);

O R 0K O

¢) Deletion time To evaluate the empirical deletion time, a
DELETE statement was constructed and executed on the
“course_registration” table, as demonstrated in code snip-
pet I1L.

Code snippet III: delete statement

delete FROM ’experiment_db’.\
’course_registration’\
r limit "+limit;

9. Experiment setup

In this section, the details of the actual experiments. The
client program that generates execution time log was written in
Java and a simple algorithm was used to obtain the execution
time for each SQL statement s seen in code snippet IV.

Code snippet IV: query execution

public long executeQuery(String sql)
{

try {

//Connect to the datbase

connect () ;

//Prepare the sql statement object

stmt = con.createStatement();

// time b4 query execution

long beforeTime = System.nanoTime();

//Execute query

stmt . executeQuery(sql) ;

// time after query execution

long timeAfter=System.nanoTime();

//Find the different in nanoseconds

long diff=timeAfter-beforeTime;

//close connection

closeConnection();

//return the time difference

return diff;

} catch (SQLException ex) {

closeConnection();

return -1; }

a) System configuration: The experiment was executed on
Dv6 HP Envy machine. The system configuration can be
seen in Table 11.

b) Test client tools and database configuration: This exper-
iment was performed on MySQL Server version 5.5.40
running on localhost port number 3306. A program writ-
ten in Java was used to obtain the execution time for each
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Table 11. Hardware configuration.

OS Name

OS Version

OS Manufacturer

OS Configuration

OS Build Type
Registered Organization
System Manufacturer
System Model

System Type
Processor(s)
[01]

BIOS Version
System Locale

Input Locale

Total Physical Memory
Available Physical Mem-
ory

Virtual Memory Max Size
Virtual Memory Available
Virtual Memory In Use

Microsoft Windows 8
6.2.9200 N/A Build 9200
Microsoft Corporation
Standalone Workstation
Multiprocessor Free
Hewlett-Packard
Hewlett-Packard

HP ENVY dv6 Notebook
PC

x64-based PC

1 Processor(s) Installed.
Intel64 Family 6 Model
58 Stepping 9 Gen-
uinelntel ~2401 Mhz
Insyde F.28, 25/07/2013
en-gb;English  (United
Kingdom)
en-gb;English
Kingdom)
16,273 MB
11,403 MB

(United

32,657 MB
21,737 MB
10,920 MB

of the queries that was executed. The Java program runs
on Java virtual machine version 1.7.

¢) Experiment layout: The experiment is categorized into
two parts; analysis in terms of speed of execution of SQL
queries and in terms of storage capacity.

Among the six tables selected for the study, the
course_registration table had the highest number of live
activities and, consequently, the largest volume of records. By
design, the number of records in this table grows arithmetically
with each passing semester. At the time of the study, it con-
tained approximately 149,377 records without any secondary
index structure. However, after applying indexing to certain
columns (semester, students_student_id, sessions_session_id,
and courses_course_id) using the Hash index, the table could
no longer accommodate the full 149,377 records. As a result,
the total number of records had to be scaled down to 90,171.

Conversely, applying the B-tree index to the same
columns (semester, student_student_id, sessions_session_id, and
courses_course_id) did not impose any limitation on the number
of records the table could accommodate.

For the speed analysis, three distinct experiments were con-
ducted: access time (using the SELECT statement), insertion
time (using the INSERT statement), and deletion time (using
the DELETE statement). The SQL statements employed in
these experiments are provided in Code Snippets I, II, and III,
respectively.

10

Insertion time for Btree vs hash index

Time in milisec

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Figure 6. Insertion time for BTree and Hash indexes.

Deletion time Btree vs Hash index

.,Lh

1000 50000 000! 100000
Number of records deleted - commulatively

Figure 7. Insertion time for BTree and Hash indexes.

10. Result

a) Analysis: query selection time: Given the code snippet I,
where for each limit parameter, a total of 5 runs were con-
ducted and the average obtained. Output for each Index
structure is presented in Figure 5. As expected, it was ob-
served that as the number of records selected increased,
so did the time required to return the records. This trend
is evident in both plots. However, superior performance
was noted in the case of the hash index. This aligns with
the theoretical guarantees of the hash table data structure,
which offers an average search complexity of O(1) plus
the cost of handling overflow pages, compared to the B-
tree’s search complexity of O(log n).

Additionally, in both plots in Figure 5, peaks were ob-
served at 6,000 and 7,000 records for the Hash and B-
tree indexes, respectively. This behavior is attributed to
the query planning phase of the query optimization algo-
rithm during runtime. Since the performance of a query
optimization algorithm is influenced by how efficiently
lookups are performed on either index, it was observed
that the query planning stage is significantly faster in the
case of the Hash index.
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Memory footprint for Btree and Hash Indexes
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Buee IndexSize ink8 W Datalength inkB  mNo. of Records

Figure 8. Memory footprint - BTree and Hash indexes.

b) Analysis: insertion time: A composite SQL statement

)

d)

was provided to insert batches of records from another
relational database into the experimental datasets. As
shown in the SQL statement in Code Snippet II, the query
fully utilizes the relationships defined within the experi-
mental database schema.

For each execution run, 10,000 records were fetched,
with each run repeated five times, and the average perfor-
mance was computed. Figure 6 presents the performance
plots. As seen in Figure 6, both plots exhibit a linear re-
lationship between the number of records processed and
execution time. However, the hash index demonstrates
slightly better performance compared to the B-tree index.
This observation is consistent with theoretical expecta-
tions, where insertion in a hash table operates in O(1)
time, while insertion in a B-tree operates in O(log n).

Analysis: deletion time: In the deletion time analysis,
SQL statements are based on code snippet III. The limit
variable specifies the number of records deleted in each
iteration, which is set at 10,000 per batch. Similar to
previous experiments, each run was executed five times,
with the average deletion time recorded.

In the experiment, deletion times for both Hash and Btree
indexes were relatively similar, although the Hash index
was slightly faster. This result aligns with theoretical ex-
pectations, as deletion in a Hash index operates in O(1)
time, while in a Btree index, it operates in O(log n) time.
The deletion results are illustrated in Figure 7.

Comparative analysis based on memory size. Figure 8
shows the memory footprint distribution for each table
and their respective index file sizes. Among all the index
files, that of the hash table is the largest. Essentially, it
points to the fact that as the number of records increases
so is the size of the index size. Consequently, the hash
index file will quickly become too large as the number of
records increases.

11
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11. Conclusion

This paper presents an empirical comparison of BTree and
Hash indexes using the MySQL storage engine. A sample rela-
tional database, sourced from an online student learning man-
agement system, was used for the analysis. The comparison fo-
cuses on access time (lookup), insertion time, deletion time, and
memory footprint for columns indexed with BTree and Hash
structures.

In the study, a client-side program written in java was used
to send sql statements to the relational database, while the time
of execution is recorded and stored in a text file. The data from
the logs form the input to the plots that showed the performance
of these index structures.

It was observed that regardless of the query selection al-
gorithm used, deciding on what type of index to use in a re-
lational dataset design is pivotal. This study showed that it is
relatively faster to perform selection, insertion and deletion on
a table indexed using hash index, compared to the same table
with Btree index and these results corresponds to theoretical
time complexity for both hash and Btree indexes respectively.

In terms of memory consumption, the hash index has much
more memory footprint than BTree index as the size of record
increases. Therefore, a limitation of hash indexes is in the size
of the index file. This obviously limits its usage for large tables.

In general, there is a tradeoff between achieving high speed
performance and high memory footprint so the nature of the
application should determine the choice of index. For system
requiring high volume of selection and insertion, the Btree in-
dex should be desirable while for a system with not so large
volume of data, the Hash index is most suited.
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