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Abstract

This paper extends the framework of soft set theory to directed graphs by introducing and analyzing the concepts of the normal product and
restricted normal product of soft directed graphs. Building on Molodtsov’s foundational work in developing soft set theory to address uncertainty
in data, this study presents new methods for modeling and understanding complex systems where uncertainty plays a significant role. Soft
directed graphs, which enhance traditional graph models by incorporating parameters and uncertain relationships, serve as the foundation for this
investigation. The normal product, defined as a combination of two soft directed graphs based on their respective parameter sets, and the restricted
normal product, which combines soft directed graphs only where their parameter sets intersect, provide a comprehensive framework for these new
operations. This paper also establishes the structural properties of these products, ensuring they are well-defined and retain the key features of soft
directed graphs. Furthermore, we derive combinatorial identities related to vertex and arc counts, as well as degree sums, offering deeper insights
into the composition and behavior of these graph products.
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1. Introduction

Graphs are essential tools for modelling relationships be-
tween entities in various real-world scenarios. Their power lies
in their ability to simplify complex connections into straight-
forward representations. In numerous applications, graphs are
crucial, providing solutions to problems in areas ranging from
social networking to transportation logistics and beyond.

∗Corresponding author: Tel.: +919745919303;
Email address: sijopgorg@pavanatmacollege.org (Sijo P. George)

A graph is composed of two primary elements: vertices (or
nodes) and edges (or links). Directed graphs, a specific type of
graph, feature edges with a direction, indicating a one-way rela-
tionship between vertices. In practical applications, graphs are
found in many diverse contexts. For instance, social media plat-
forms use graphs to depict connections between users, enabling
functions like friend recommendations and social network anal-
ysis. Navigation systems, such as Google Maps, use graphs to
model road networks, helping users find optimal routes between
locations. The internet can be represented as a graph, with web
pages serving as vertices and hyperlinks as edges. Blockchains,
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the technology behind cryptocurrencies, employ graphs to rep-
resent transaction histories and verify transactions. Addition-
ally, graphs are integral to neural networks, representing the
connections between artificial neurons.

The concept of soft sets, introduced by Molodtsov [1], ex-
tends the traditional set theory to handle uncertainties. Soft set
theory provides a mathematical framework for dealing with im-
precise or uncertain information, making it useful in solving
problems where traditional mathematical tools fall short. This
theory has been successfully applied to various practical prob-
lems, with researchers like Maji et al. [2, 3], Mohammed[4],
and Saleh et al. [5, 6] further developing it and using it in
decision-making scenarios.

Building on the foundation of soft set theory, researchers
such as Thumbakara and George [7, 8] introduced the concept
of soft graphs. Soft graphs extend the traditional graph model
to incorporate uncertainty, enabling the representation and anal-
ysis of uncertain relationships between entities. Later modifi-
cations by Akram and Nawas [9–12] introduced variations such
as fuzzy soft graphs, which further expanded the applicability
of soft graphs. Akram and Zafar [13, 14] studied soft trees and
fuzzy soft trees. Advancements in the field of soft graphs have
been significant. Researchers like Thenge, Jain, and Reddy
[15–17] have contributed to the development of soft graphs,
particularly focusing on parameterization, which is essential for
practical applications. George, Thumbakara, and Jose have fur-
ther expanded the domain by introducing concepts such as soft
hypergraphs [18], soft directed graphs [19, 20], and soft disem-
igraphs [21], and thoroughly investigating their properties and
applications.

The study of soft graphs has also led to the exploration of
graph product operations. Product operations allow the com-
bination of two graphs to create a new graph with specific
properties. Additionally, researchers like Baghernejad and Bor-
zooei [22] have demonstrated the utility of soft graphs and soft
multigraphs in managing complex systems such as urban traffic
flows. Further contributions to the field include the introduction
of novel concepts such as Eulerian and Hamiltonian soft graphs
[23, 24], graph isomorphism [25], and various product opera-
tions on soft graphs [26, 27] and soft directed graphs [28–31].
Additionally, researchers have extended these concepts to soft
directed graphs and introduced soft semigraphs [32–36] and
soft directed hypergraphs [37], applying principles from soft
sets to these structures and defining operations and properties
associated with them.

The study of soft graphs represents a significant advance-
ment in graph theory, enabling the representation and analysis
of uncertain relationships in complex systems. The applica-
tion of soft set theory to graphs opens up new possibilities for
solving practical problems in diverse fields. In this work, the
normal product and restricted normal product of soft directed
graphs are introduced and studied.

2. Preliminaries

In this preliminary section, we lay the foundation for com-
prehending soft sets, directed graphs, and soft directed graphs.

Also, we provide a brief overview of topics including the di-
part and various types of degrees associated with soft directed
graphs.

2.1. Directed Graphs

For preliminaries of directed graphs, we refer to Ref. [38].
“A directed graph or digraph Ψ∗ consists of a non-empty finite
set ϱ of elements called vertices and a finite set δ of ordered
pairs of distinct vertices called arcs. We often write Ψ∗ = (ϱ, δ)
to represent a directed graph. The number of vertices and arcs in
a directed graph Ψ∗ are called order and size respectively. The
first vertex w of an arc (w, z) is called its tail and the second
vertex z is called its head. If (w, z) is an arc then z is adjacent
from w and w is adjacent to z. A vertex w is incident to an arc
a if w is the head or tail of a. A directed graph Ψ∗∗ = (ϱ′, δ′)
is called a subdigraph of Ψ∗ = (ϱ, δ) if ϱ′ ⊆ ϱ and δ′ ⊆ δ.
The in-degree of a vertex z denoted by ideg z is the number
of vertices in Ψ∗ from which z is adjacent and out-degree of
z denoted by odeg z is the number of vertices in Ψ∗ to which
z is adjacent. The sum ideg z + odeg z is called the degree
of the vertex z and is denoted by deg z. In a directed graph
Ψ∗ = (ϱ, δ),

∑
z∈ϱ ideg(z) =

∑
z∈ϱ odeg(z) =Number of arcs in

Ψ∗ and
∑

z∈ϱ deg(z) = 2(Number of arcs in Ψ∗).”
Some directed graph products can be defined in a manner

that is similar to how the corresponding graph products are de-
fined [39]. “Let Ψ∗1 = (ϱ1, δ1) and Ψ∗2 = (ϱ2, δ2) be two directed
graphs. Their categorical product Ψ∗1 × Ψ

∗
2 is a directed graph

with vertex set ϱ(Ψ∗1 × Ψ
∗
2) = ϱ1 × ϱ2 and arc set δ(Ψ∗1 × Ψ

∗
2),

where ((z1, z′1), (z2, z′2)) is an arc in Ψ∗1×Ψ
∗
2 if and only if (z1, z2)

is an arc in Ψ∗1 and (z′1, z
′
2) is an arc in Ψ∗2. ”

2.2. Soft Set

Molodstov [1] defined soft set as follows: “Let R be a set of
parameters and U be an initial universe set. Then a pair (F,R)
is called a soft set (over U) if and only F is a mapping of R into
the power set of U. That is, F : R→ P(U).”

2.3. Soft Directed Graphs

Jose et. al. [19, 20] defined soft directed graph as follows:
“Let Ψ∗ = (ϱ, δ) be a directed graph having vertex set ϱ and arc
set δ and letℜ be a non-empty set. Let a subset R ofℜ×ϱ be an
arbitrary relation fromℜ to ϱ. Define a mapping γ : ℜ→ P(ϱ)
by γ(ε) = {u ∈ ϱ|εRu} where P(ϱ) denotes the powerset of ϱ.
The pair (γ,ℜ) is a soft set over ϱ. Define another mapping
α : ℜ → P(δ) by α(ε) = {(w, z) ∈ δ|{w, z} ⊆ γ(ε)} where P(δ)
denotes the powerset of δ. The pair (α,ℜ) is a soft set over the
arc set δ. Then Ψ = (Ψ∗, γ, α,ℜ) is called a soft directed graph
if it satisfies the following conditions:

1. Ψ∗ = (ϱ, δ) is a directed graph having vertex set ϱ and arc
set δ,

2. ℜ is a nonempty set of parameters,
3. (γ,ℜ) is a soft set over the vertex set ϱ,
4. (α,ℜ) is a soft set over the arc set δ,
5. (γ(ε), α(ε)) is a subdigraph of Ψ∗ for all ε ∈ ℜ.
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If we represent (γ(ε), α(ε)) by M(ε) then the soft directed graph
Ψ is also given by {M(ε) : ε ∈ ℜ}. Then M(ε) corresponding
to a parameter ε inℜ is called a directed part or simply dipart
of the soft directed graph Ψ.

Let Ψ = (Ψ∗, γ, α,ℜ) be a soft directed graph and let M(ε)
be a dipart ofΨ for some ε ∈ ℜ. Let z be a vertex of M(ε). Then
dipart indegree of z in M(ε) denoted by ideg z[M(ε)] is defined
as the number of vertices of M(ε) from which z is adjacent.
That is, ideg z[M(ε)] is the number of arcs of M(ε) that have
z as its head. Similarly, dipart outdegree of z in M(ε) denoted
by odeg z[M(ε)] is defined as the number of vertices of M(ε) to
which z is adjacent. That is, odeg z[M(ε)] is the number of arcs
of M(ε) that have z as its tail. The dipart degree of z in M(ε) is
defined as the sum, ideg z[M(ε)]+ odeg z[M(ε)] and is denoted
by deg z[M(ε)].”

3. Normal Product (or Strong Product) of Soft Directed
Graphs

In this section, we define and explore the normal product
(or strong product) of two soft directed graphs. We begin with
a formal definition of the normal product for two soft directed
graphs, Ψ1 and Ψ2, constructed from their respective directed
graphs Ψ∗1 and Ψ∗2. Following this, Theorem 1 establishes that
Ψ1⊠Ψ2 itself forms a soft directed graph of the normal product
ofΨ∗1 andΨ∗2. Theorem 2 quantifies the vertices and arcs within
Ψ1 ⊠ Ψ2, offering insight into their structural composition. Fi-
nally, Theorem 3 addresses the degree sums of the vertices in
Ψ1 ⊠ Ψ2, providing important combinatorial identities for the
in-degrees and out-degrees.

Definition 3.1. Let Ψ∗1 = (ϱ1, δ1) and Ψ∗2 = (ϱ2, δ2) be two
directed graphs and Ψ1 = (Ψ∗1, γ1, α1,ℜ1) = {M1(ε) : ε ∈ ℜ1}

and Ψ2 = (Ψ∗2, γ2, α2,ℜ2) = {M2(ε) : ε ∈ ℜ2} be two soft
directed graphs of Ψ∗1 and Ψ∗2 respectively. Then the normal
product (or strong product) of Ψ1 and Ψ2, which is represented
byΨ1⊠Ψ2 is defined asΨ1⊠Ψ2 = {M1(ε1)⊠M2(ε2) : (ε1, ε2) ∈
ℜ1 × ℜ2}. Here M1(ε1) ⊠ M2(ε2) denotes the normal product
(or strong product) of the diparts M1(ε1) of Ψ1 and M2(ε2) of
Ψ2 which is defined as follows: M1(ε1) ⊠ M2(ε2) is a directed
graph with vertex set ϱ(M1(ε1)⊠ M2(ε2)) = γ1(ε1)×γ2(ε2) and
arc set δ(M1(ε1) ⊠ M2(ε2)), where ((z1, z′1), (z2, z′2)) is an arc in
M1(ε1) ⊠ M2(ε2) if and only if

1. z1 = z2 and (z′1, z
′
2) is an arc in M2(ε2) or

2. (z1, z2) is an arc in M1(ε1) and z′1 = z′2 or
3. (z1, z2) is an arc in M1(ε1) and (z′1, z

′
2) is an arc in M2(ε2).

Example 1. Let Ψ∗1 = (ϱ1, δ1) be a directed graph which is
shown in Figure 1.
Let ℜ1 = {v1, v8} ⊆ ϱ1 be a set of parameters. Define a
mapping γ1 : ℜ1 → P(ϱ1) by γ1(ε) = {u ∈ ϱ1 | u = ε or u is ad-
jacent from ε},∀ε ∈ ℜ1. That is, γ1(v1) = {v1, v2, v3}

and γ1(v8) = {v3, v6, v8}. Here (γ1,ℜ1) is a soft set
over ϱ1. Define another mapping α1 : ℜ1 → P(δ1)
by α1(ε) = {(w, z) ∈ δ1 | {w, z} ⊆ γ1(ε)},∀ε ∈ ℜ1.
That is, α1(v1) = {(v1, v2), (v1, v3), (v2, v3)} and
α1(v8) = {(v8, v3), (v8, v6)}. Here, (α1,ℜ1) is a soft set over δ1.

Figure 1. Directed Graph Ψ∗1 = (ϱ1, δ1)

Then M1(v1) = (γ1(v1), α1(v1)) and M1(v8) = (γ1(v8), α1(v8))
are subdigraphs of Ψ∗1 as shown in Figure 2. Therefore
Ψ1 = {M1(v1),M1(v8)} is a soft directed graph of Ψ∗1.

Figure 2. Soft Directed Graph Ψ1 = {M1(v1),M1(v8)}

Let Ψ∗2 = (ϱ2, δ2) be a directed graph which is shown in
Figure 3. Consider the parameter setℜ2 = {u2} ⊆ ϱ2. Define a
mapping γ2 : ℜ2 → P(ϱ2) by γ2(ε) = {u ∈ ϱ2 | u = ε or u is ad-
jacent from ε},∀ε ∈ ℜ2. That is, γ2(u2) = {u2, u3}. Here,
(γ2,ℜ2) is a soft set over ϱ2. Define another mapping α2 :
ℜ2 → P(δ2) by α2(ε) = {(w, z) ∈ δ2 | {w, z} ⊆ γ2(ε)},∀ε ∈ ℜ2.
That is, α2(u2) = {(u2, u3)}. Here, (α2,ℜ2) is a soft set over
δ2. Then, M2(u2) = (γ2(u2), α2(u2)) is a subdigraph of Ψ∗2 as
shown in Figure 4. Therefore, Ψ2 = {M2(u2)} is a soft directed
graph of Ψ∗2.
Then the normal product of these two soft directed
graphs Ψ1 and Ψ2 is given by Ψ = Ψ1 ⊠ Ψ2 =

{M1(v1) ⊠ M2(u2),M1(v8) ⊠ M2(u2)} and is shown in Figure 5.

Theorem 3.1. Let Ψ∗1 = (ϱ1, δ1) and Ψ∗2 = (ϱ2, δ2) be two di-
rected graphs and Ψ1 and Ψ2 be two soft directed graphs of Ψ1
and Ψ2 respectively. Then the normal product Ψ1 ⊠Ψ2 is a soft
directed graph of Ψ∗1 ⊠ Ψ

∗
2.

Proof. Let Ψ1 = (Ψ∗1, γ1, α1,ℜ1) = {M1(ε) : ε ∈ ℜ1} be a soft
directed graph of Ψ∗1 = (ϱ1, δ1) and Ψ2 = (Ψ∗2, γ2, α2,ℜ2) =
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Figure 3. Directed Graph Ψ∗2 = (ϱ2, δ2)

Figure 4. Soft Directed Graph Ψ2 = {M2(u2)}

Figure 5. Ψ = Ψ1 ⊠ Ψ2 = {M1(v1) ⊠ M2(u2),M1(v8) ⊠ M2(u2)}

{M2(ε) : ε ∈ ℜ2} be a soft directed graph ofΨ∗2 = (ϱ2, δ2). Then
the normal product Ψ1 ⊠Ψ2 is defined as Ψ1 ⊠Ψ2 = {M1(ε1)⊠
M2(ε2) : (ε1, ε2) ∈ ℜ1 × ℜ2}. Here M1(ε1) ⊠ M2(ε2) denotes
the normal product of the diparts M1(ε1) of Ψ1 and M2(ε2) of
Ψ2, which is defined as follows: M1(ε1) ⊠ M2(ε2) is a directed
graph with vertex set ϱ(M1(ε1)⊠ M2(ε2)) = γ1(ε1)×γ2(ε2) and
arc set δ(M1(ε1) ⊠ M2(ε2)), where ((z1, z′1), (z2, z′2)) is an arc in
M1(ε1) ⊠ M2(ε2) if and only if

1. z1 = z2 and (z′1, z
′
2) is an arc in M2(ε2) or

2. (z1, z2) is an arc in M1(ε1) and z′1 = z′2 or
3. (z1, z2) is an arc in M1(ε1) and (z′1, z

′
2) is an arc in M2(ε2).

The normal product Ψ∗1 ⊠Ψ
∗
2 of the two directed graphs Ψ∗1 and

Ψ∗2 is a directed graph with vertex set ϱ(Ψ∗1 ⊠Ψ
∗
2) = ϱ1 × ϱ2 and

arc set δ(Ψ∗1 ⊠ Ψ
∗
2) where ((z1, z′1), (z2, z′2)) is an arc in Ψ∗1 ⊠ Ψ

∗
2

if and only if

1. z1 = z2 and (z′1, z
′
2) is an arc in Ψ∗2 or

2. (z1, z2) is an arc in Ψ∗1 and z′1 = z′2 or
3. (z1, z2) is an arc in Ψ∗1 and (z′1, z

′
2) is an arc in Ψ∗2.

Let the parameter set be ℜΨ1⊠Ψ2 = ℜ1 × ℜ2. Define a map-
ping γΨ1⊠Ψ2 fromℜΨ1⊠Ψ2 toP[ϱ(Ψ∗1⊠Ψ

∗
2)] by γΨ1⊠Ψ2 (ε1, ε2) =

γ1(ε1) × γ2(ε2),∀(ε1, ε2) ∈ ℜ1 ×ℜ2 where P[ϱ(Ψ∗1 ⊠ Ψ
∗
2)] de-

notes the power set of ϱ(Ψ∗1 ⊠Ψ
∗
2). Then (γΨ1⊠Ψ2 ,ℜΨ1⊠Ψ2 ) is a

soft set over ϱ(Ψ∗1 ⊠Ψ
∗
2). Define another mapping αΨ1⊠Ψ2 from

ℜΨ1⊠Ψ2 to P[δ(Ψ∗1 ⊠Ψ
∗
2)] by αΨ1⊠Ψ2 (ε1, ε2) = {((w, z), (c, d)) ∈

δ(Ψ∗1 ⊠ Ψ
∗
2) | {(w, z), (c, d)} ∈ γΨ1⊠Ψ2 (ε1, ε2)},∀(ε1, ε2) ∈ ℜ1 ×

ℜ2, where P[δ(Ψ∗1 ⊠Ψ
∗
2)] denotes the power set of δ(Ψ∗1 ⊠Ψ

∗
2).

Then (αΨ1⊠Ψ2 ,ℜΨ1⊠Ψ2 ) is a soft set over δ(Ψ∗1⊠Ψ
∗
2). Also if we

denote (γΨ1⊠Ψ2 (ε1, ε2), αΨ1⊠Ψ2 (ε1, ε2)) by MΨ1⊠Ψ2 (ε1, ε2), then
MΨ1⊠Ψ2 (ε1, ε2) is a subdigraph ofΨ∗1⊠Ψ

∗
2,∀(ε1, ε2) ∈ ℜ1×ℜ2,

since γ1(ε1) × γ2(ε2) ⊆ ϱ1 × ϱ2 and any arc in αΨ1⊠Ψ2 (ε1, ε2) is
also an arc in δ(Ψ∗1 ⊠ Ψ∗2). Then Ψ1 ⊠ Ψ2 can be represented
by the 4-tuple (Ψ∗1 ⊠ Ψ

∗
2, γΨ1⊠Ψ2 , αΨ1⊠Ψ2 ,ℜΨ1⊠Ψ2 ) and also by

{MΨ1⊠Ψ2 (ε1, ε2) : (ε1, ε2) ∈ ℜ1 × ℜ2} and Ψ1 ⊠ Ψ2 is a soft
directed graph of Ψ∗1 ⊠ Ψ∗2 since the following conditions are
satisfied:

1. Ψ∗1 ⊠ Ψ
∗
2 = (ϱ(Ψ∗1 ⊠ Ψ

∗
2), δ(Ψ∗1 ⊠ Ψ

∗
2)) is a directed graph

having vertex set ϱ(Ψ∗1 ⊠ Ψ
∗
2) and arc set δ(Ψ∗1 ⊠ Ψ

∗
2),

2. ℜΨ1⊠Ψ2 = ℜ1 × ℜ2 is the set of parameters which is
nonempty,

3. (γΨ1⊠Ψ2 ,ℜΨ1⊠Ψ2 ) is a soft set over ϱ(Ψ∗1 ⊠ Ψ
∗
2),

4. (αΨ1⊠Ψ2 ,ℜΨ1⊠Ψ2 ) is a soft set over δ(Ψ∗1 ⊠ Ψ
∗
2),

5. MΨ1⊠Ψ2 (ε1, ε2) = (γΨ1⊠Ψ2 (ε1, ε2), αΨ1⊠Ψ2 (ε1, ε2)) is a
subdigraph of Ψ∗1 ⊠ Ψ

∗
2,∀(ε1, ε2) ∈ ℜΨ1⊠Ψ2 = ℜ1 ×ℜ2.

Theorem 3.2. The normal product Ψ1 ⊠ Ψ2
contains

∑
(εi,ε j)∈ℜ1×ℜ2

|γ1(εi)||γ2(ε j)| vertices and∑
(εi,ε j)∈ℜ1×ℜ2

(|γ1(εi)||α2(ε j)| + |γ2(ε j)||α1(εi)| + |α1(εi)||α2(ε j)|)
arcs, if we count the vertices and arcs as many times they
appear in different diparts of Ψ1 ⊠ Ψ2.

Proof. By definition, Ψ1 ⊠ Ψ2 = {M1(ε1) ⊠ M2(ε2) : (ε1, ε2) ∈
ℜ1 ×ℜ2}. The parameter set of Ψ1 ⊠Ψ2 isℜ1 ×ℜ2. Consider
the dipart M1(εi) ⊠ M2(ε j) of Ψ1 ⊠ Ψ2 corresponding to the
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parameter (εi, ε j) ∈ ℜ1×ℜ2. The vertex set of M1(εi)⊠M2(ε j)
is γ1(εi) × γ2(ε j) which contains |γ1(εi)||γ2(ε j)| elements. This
is true for all diparts of Ψ1 ⊠ Ψ2. Therefore total number of
vertices in Ψ1 ⊠ Ψ2 is

∑
(εi,ε j)∈ℜ1×ℜ2

|γ1(εi)||γ2(ε j)|, if we count
the vertices as many times they appear in different diparts of
Ψ1 ⊠ Ψ2.
Also we know, ((zq, zr), (zs, zt)) is an arc in M1(εi) ⊠ M2(ε j) if
and only

1. zq = zs and (zr, zt) is an arc in M2(ε j) or
2. (zq, zs) is an arc in M1(εi) and zr = zt or
3. (zq, zs) is an arc in M1(εi) and (zr, zt) is an arc in M2(ε j).

Now, each arc in M1(εi) ⊠ M2(ε j) was made by just one of
these three requirements (any two can’t be true at the same
time). So to get the total number of arcs in M1(εi) ⊠ M2(ε j),
we add the number of arcs generated by each condition. Con-
sider the first condition for adjacency, i.e.,zq = zs and (zr, zt) is
an arc in M2(ε j). The number of arcs generated by this con-
dition will be the number of arcs in the directed graph M2(ε j)
times the number of vertices in the directed graph M1(εi), which
is given by |γ1(εi)||α2(ε j)|. Then consider the second condi-
tion for adjacency, i.e.,(zq, zs) is an arc in M1(εi) and zr = zt.
The number of arcs generated by this condition will be the
number of arcs in the directed graph M1(εi) times the num-
ber of vertices in the directed graph M2(ε j), which is given by
|γ2(ε j)||α1(εi)|. Finally consider the third condition for adja-
cency, i.e., (zq, zs) is an arc in M1(εi) and (zr, zt) is an arc in
M2(ε j). There are |α1(εi)| arcs in M1(εi) and |α2(ε j)| arcs in
M2(ε j). So we can choose a pair of arcs ak and al such that one
is from M1(εi) and the other is from M2(ε j) in |α1(εi)||α2(ε j)|
different ways. Suppose that ak is the arc (zq, zs) in M1(εi) and
al is the arc (zr, zt) in M2(ε j) . Then this pair of arcs gives an arc
((zq, zr), (zs, zt)) in M1(εi) ⊠ M2(ε j). Hence the number of arcs
generated by this condition will be |α1(εi)||α2(ε j)|. That is, the
total number of arcs in M1(εi) ⊠ M2(ε j) = (|γ1(εi)||α2(ε j)| +
|γ2(ε j)||α1(εi)| + |α1(εi)||α2(ε j)|). This is true for all diparts
of Ψ1 ⊠ Ψ2. Therefore total number of arcs in Ψ1 ⊠ Ψ2 is∑

(εi,ε j)∈ℜ1×ℜ2
(|γ1(εi)||α2(ε j)| + |γ2(ε j)||α1(εi)| + |α1(εi)||α2(ε j)|),

if we count the arcs as many times they appear in different di-
parts of Ψ1 ⊠ Ψ2.

Example 2. Consider the directed graphs given in Exam-
ple 1. Here we have, total number of vertices in Ψ1 ⊠
Ψ2 = 12 and

∑
(εi,ε j)∈ℜ1×ℜ2

|γ1(εi)||γ2(ε j)| = (3.2) + (3.2) =
12. That is, the total number of vertices in Ψ1 ⊠ Ψ2 =∑

(εi,ε j)∈ℜ1×ℜ2
|γ1(εi)||γ2(ε j)|. Also total number of arcs in Ψ1 ⊠

Ψ2 = 21 and
∑

(εi,ε j)∈ℜ1×ℜ2
(|γ1(εi)||α2(ε j)| + |γ2(ε j)||α1(εi)| +

|α1(εi)||α2(ε j)|) = (3.1+2.3+3.1)+(3.1+2.2+2.1) = 21. That is,
total number of arcs inΨ1⊠Ψ2 =

∑
(εi,ε j)∈ℜ1×ℜ2

(|γ1(εi)||α2(ε j)|+
|γ2(ε j)||α1(εi)| + |α1(εi)||α2(ε j)|).

Theorem 3.3. Let Ψ∗1 = (ϱ1, δ1) and Ψ∗2 = (ϱ2, δ2) be
two directed graphs and Ψ1 = (Ψ∗1, γ1, α1,ℜ1) and Ψ2 =

(Ψ∗2, γ2, α2,ℜ2) be two soft directed graphs of Ψ∗1 and Ψ∗2 re-
spectively. Then

(i)
∑

(εi,ε j)∈ℜ1×ℜ2

∑
(w,z)∈γΨ1⊠Ψ2

(εi,ε j)

ideg(w, z)[MΨ1⊠Ψ2 (εi, ε j)] =

∑
(εi,ε j)∈ℜ1×ℜ2

∑
(w,z)∈γΨ1⊠Ψ2

(εi,ε j)

odeg(w, z)[MΨ1⊠Ψ2 (εi, ε j)] =

∑
(εi,ε j)∈ℜ1×ℜ2

(|γ1(εi)||α2(ε j)| + |γ2(ε j)||α1(εi)| + |α1(εi)||α2(ε j)|)

(ii)
∑

(εi,ε j)∈ℜ1×ℜ2

∑
(w,z)∈γΨ1⊠Ψ2

(εi,ε j)

deg(w, z)[MΨ1⊠Ψ2 (εi, ε j)] =

∑
(εi,ε j)∈ℜ1×ℜ2

2(|γ1(εi)||α2(ε j)| + |γ2(ε j)||α1(εi)| + |α1(εi)||α2(ε j)|).

Proof. (i) Consider any dipart MΨ1⊠Ψ2 (εi, ε j) =

(γΨ1⊠Ψ2 (εi, ε j), αΨ1⊠Ψ2 (εi, ε j)) of Ψ1 ⊠ Ψ2 which
is given by M1(εi) × M2(ε j). By Theorem 3.2,
we have number of arcs in M1(εi) × M2(ε j) is
(|γ1(εi)||α2(ε j)| + |γ2(ε j)||α1(εi)| + |α1(εi)||α2(ε j)|). Since
the dipart MΨ1⊠Ψ2 (εi, ε j) is a directed graph having
(|γ1(εi)||α2(ε j)| + |γ2(ε j)||α1(εi)| + |α1(εi)||α2(ε j)|) arcs, we
have ∑

(w,z)∈γΨ1⊠Ψ2
(εi,ε j)

ideg(w, z)[MΨ1⊠Ψ2 (εi, ε j)] =

∑
(w,z)∈γΨ1⊠Ψ2

(εi,ε j)

odeg(w, z)[MΨ1⊠Ψ2 (εi, ε j)] =

(|γ1(εi)||α2(ε j)| + |γ2(ε j)||α1(εi)| + |α1(εi)||α2(ε j)|),

since each arc in MΨ1⊠Ψ2 (εi, ε j) contributes 1 each to the
sum
∑

(w,z)∈γΨ1⊠Ψ2
(εi,ε j) ideg(w, z)[MΨ1⊠Ψ2 (εi, ε j)] and to the sum∑

(w,z)∈γΨ1⊠Ψ2
(εi,ε j) odeg(w, z)[MΨ1⊠Ψ2 (εi, ε j)]. This is true for all

the diparts MΨ1⊠Ψ2 (εi, ε j) of Ψ1 ⊠ Ψ2. Hence,∑
(εi,ε j)∈ℜ1×ℜ2

∑
(w,z)∈γΨ1⊠Ψ2

(εi,ε j)

ideg(w, z)[MΨ1⊠Ψ2 (εi, ε j)] =

∑
(εi,ε j)∈ℜ1×ℜ2

∑
(w,z)∈γΨ1⊠Ψ2

(εi,ε j)

odeg(w, z)[MΨ1⊠Ψ2 (εi, ε j)] =

∑
(εi,ε j)∈ℜ1×ℜ2

(|γ1(εi)||α2(ε j)| + |γ2(ε j)||α1(εi)| + |α1(εi)||α2(ε j)|).

(ii) Since deg(w, z)[MΨ1⊠Ψ2 (εi, ε j)] =

ideg(w, z)[MΨ1⊠Ψ2 (εi, ε j)] + odeg(w, z)[MΨ1⊠Ψ2 (εi, ε j)] and by
part (i) of this theorem we have,∑

(εi,ε j)∈ℜ1×ℜ2

∑
(w,z)∈γΨ1⊠Ψ2

(εi,ε j)

deg(w, z)[MΨ1⊠Ψ2 (εi, ε j)] =

∑
(εi,ε j)∈ℜ1×ℜ2

2(|γ1(εi)||α2(ε j)| + |γ2(ε j)||α1(εi)| + |α1(εi)||α2(ε j)|).

Example 3. Consider the directed graphs given in Example 1.
Here we have,∑

(εi,ε j)∈ℜ1×ℜ2

∑
(w,z)∈γΨ1⊠Ψ2

(εi,ε j)

ideg(w, z)[MΨ1⊠Ψ2 (εi, ε j)] = 21,

∑
(εi,ε j)∈ℜ1×ℜ2

∑
(w,z)∈γΨ1⊠Ψ2

(εi,ε j)

odeg(w, z)[MΨ1⊠Ψ2 (εi, ε j)] = 21,

5
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(εi,ε j)∈ℜ1×ℜ2

(|γ1(εi)||α2(ε j)| + |γ2(ε j)||α1(εi)| + |α1(εi)||α2(ε j)|) =

(3.1 + 2.3 + 3.1) + (3.1 + 2.2 + 2.1) = 21.

That is,∑
(εi,ε j)∈ℜ1×ℜ2

∑
(w,z)∈γΨ1⊠Ψ2

(εi,ε j)

ideg(w, z)[MΨ1⊠Ψ2 (εi, ε j)] =

∑
(εi,ε j)∈ℜ1×ℜ2

∑
(w,z)∈γΨ1⊠Ψ2

(εi,ε j)

odeg(w, z)[MΨ1⊠Ψ2 (εi, ε j)] =

∑
(εi,ε j)∈ℜ1×ℜ2

(|γ1(εi)||α2(ε j)| + |γ2(ε j)||α1(εi)| + |α1(εi)||α2(ε j)|).

Also, ∑
(εi,ε j)∈ℜ1×ℜ2

∑
(w,z)∈γΨ1⊠Ψ2

(εi,ε j)

deg(w, z)[MΨ1⊠Ψ2 (εi, ε j)]

= 24 + 18 = 42,∑
(εi,ε j)∈ℜ1×ℜ2

2(|γ1(εi)||α2(ε j)|+ |γ2(ε j)||α1(εi)|+ |α1(εi)||α2(ε j)|) =

2(3.1 + 2.3 + 3.1) + 2(3.1 + 2.2 + 2.1) = 42.

That is,∑
(εi,ε j)∈ℜ1×ℜ2

∑
(w,z)∈γΨ1⊠Ψ2

(εi,ε j)

deg(w, z)[MΨ1⊠Ψ2 (εi, ε j)] =

∑
(εi,ε j)∈ℜ1×ℜ2

2(|γ1(εi)||α2(ε j)| + |γ2(ε j)||α1(εi)| + |α1(εi)||α2(ε j)|).

4. Restricted Normal Product (or Restricted Strong Prod-
uct) of Soft Directed Graphs

This section delves into the concept of the restricted nor-
mal product (or restricted strong product) of two soft directed
graphs, extending the theoretical framework of directed graphs
in soft set theory. We start by defining the restricted normal
product Ψ1 ⋄ Ψ2, constructed from two soft directed graphs Ψ1
and Ψ2 of a base directed graph Ψ∗, ensuring that their parame-
ter sets intersect. Following this, Theorem 4 asserts that the re-
stricted normal product Ψ1 ⋄Ψ2 is itself a soft directed graph of
the normal product of the base graph Ψ∗. Theorem 5 quantifies
the vertices and arcs inΨ1 ⋄Ψ2, providing a clear combinatorial
structure. Finally, Theorem 6 examines the degree sums of the
vertices within Ψ1 ⋄ Ψ2.

Definition 4.1. Let Ψ∗ = (ϱ, δ) be a directed graph and
Ψ1 = (Ψ∗, γ1, α1,ℜ1) = {M1(ε) : ε ∈ ℜ1} and Ψ2 =

(Ψ∗, γ2, α2,ℜ2) = {M2(ε) : ε ∈ ℜ2} be two soft directed graphs
of Ψ∗ such thatℜ1 ∩ℜ2 , ϕ. Then the restricted normal prod-
uct (or restricted strong product) of Ψ1 and Ψ2, which is repre-
sented by Ψ1 ⋄ Ψ2 is defined as Ψ1 ⋄ Ψ2 = {M1(ε) ⊠ M2(ε) :
ε ∈ ℜ1∩ℜ2}. Here M1(ε)⊠ M2(ε) denotes the normal product
of the diparts M1(ε) of Ψ1 and M2(ε) of Ψ2 which is defined
as follows: M1(ε) ⊠ M2(ε) is a directed graph with vertex set
ϱ(M1(ε)⊠M2(ε)) = γ1(ε)×γ2(ε) and arc set δ(M1(ε)⊠M2(ε)),
where ((z1, z′1), (z2, z′2)) is an arc in M1(ε)⊠ M2(ε) if and only if

1. z1 = z2 and (z′1, z
′
2) is an arc in M2(ε) or

2. (z1, z2) is an arc in M1(ε) and z′1 = z′2 or
3. (z1, z2) is an arc in M1(ε) and (z′1, z

′
2) is an arc in M2(ε).

Example 4. Let Ψ∗ = (ϱ, δ) be a directed graph which
is shown in Figure 6. Let ℜ1 = {v1, v6} ⊆ ϱ be a set

Figure 6. Directed Graph Ψ∗ = (ϱ, δ)

of parameters. Define a mapping γ1 : ℜ1 → P(ϱ) by
γ1(ε) = {u ∈ ϱ | u = ε or u is adjacent from x or u is ad-
jacent to ε},∀ε ∈ ℜ1. That is, γ1(v1) = {v1, v2, v3, v5}

and γ1(v6) = {v4, v6, v7, v8, v10}. Here (γ1,ℜ1) is a soft
set over ϱ. Define another mapping α1 : ℜ1 → P(δ)
by α1(ε) = {(w, z) ∈ δ | {w, z} ⊆ γ1(ε)},∀ε ∈ ℜ1.
That is, α1(v1) = {(v1, v2), (v3, v1), (v5, v1)} and
α1(v6) = {(v6, v10), (v6, v4), (v6, v7), (v8, v6), (v7, v8)}. Here,
(α1,ℜ1) is a soft set over δ. Then M1(v1) = (γ1(v1), α1(v1))
and M1(v6) = (γ1(v6), α1(v6)) are subdigraphs of Ψ∗ as shown
in Figure 7. Therefore Ψ1 = {M1(v1),M1(v6)} is a soft directed
graph of Ψ∗.

Figure 7. Soft Directed Graph Ψ1 = {M1(v1),M1(v6)}

Consider another parameter set ℜ2 = {v3, v6} ⊆ ϱ. Define a
mapping γ2 : ℜ2 → P(ϱ) by γ2(ε) = {u ∈ ϱ | u = ε or u is ad-
jacent from ε},∀ε ∈ ℜ2. That is, γ2(v3) = {v1, v3} and
γ2(v6) = {v4, v6, v7, v10} . Here, (γ2,ℜ2) is a soft set over ϱ.
Define another mapping α2 : ℜ2 → P(δ) by α2(ε) = {(w, z) ∈
δ | {w, z} ⊆ γ2(ε)},∀ε ∈ ℜ2. That is, α2(v3) = {(v3, v1)}
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and α2(v6) = {(v6, v10), (v6, v4), (v6, v7)}. Here, (α2,ℜ2)
is a soft set over δ. Then, M2(v3) = (γ2(v3), α2(v3)) and
M2(v6) = (γ2(v6), α2(v6)) are subdigraphs of Ψ∗ as shown in
Figure 8. Therefore, Ψ2 = {M2(v3),M2(v6)} is a soft directed
graph of Ψ∗.

Figure 8. Soft Directed Graph Ψ2 = {M2(v3),M2(v6)}

Then the restricted normal product of these two soft directed
graphs Ψ1 and Ψ2 is given by Ψ = Ψ1 ⋄Ψ2 = {M1(v6)⊠M2(v6)}
and is shown in Figure 9.

Figure 9. Ψ = Ψ1 ⋄ Ψ2 = {M1(v6) ⊠ M2(v6)}

Theorem 4.1. Let Ψ∗ = (ϱ, δ) be a directed graph and
Ψ1 = (Ψ∗, γ1, α1,ℜ1) = {M1(ε) : ε ∈ ℜ1} and Ψ2 =

(Ψ∗, γ2, α2,ℜ2) = {M2(ε) : ε ∈ ℜ2} be two soft directed graphs
of Ψ∗ such thatℜ1 ∩ℜ2 , ϕ. Then the restricted normal prod-
uct Ψ1 ⋄ Ψ2 is a soft directed graph of Ψ∗ ⊠ Ψ∗.

Proof. Let Ψ1 = (Ψ∗, γ1, α1,ℜ1) = {M1(ε) : ε ∈ ℜ1} and
Ψ2 = (Ψ∗, γ2, α2,ℜ2) = {M2(ε) : ε ∈ ℜ2} be soft directed
graphs ofΨ∗ = (ϱ, δ) such thatℜ1∩ℜ2 , ϕ. Then the restricted
normal productΨ1⋄Ψ2 is defined asΨ1⋄Ψ2 = {M1(ε)⊠M2(ε) :
ε ∈ ℜ1∩ℜ2}. Here M1(ε)⊠ M2(ε) denotes the normal product
of the diparts M1(ε) of Ψ1 and M2(ε) of Ψ2 which is defined
as follows: M1(ε) ⊠ M2(ε) is a directed graph with vertex set
ϱ(M1(ε)⊠M2(ε)) = γ1(ε)×γ2(ε) and arc set δ(M1(ε)⊠M2(ε)),
where ((z1, z′1), (z2, z′2)) is an arc in M1(ε)⊠ M2(ε) if and only if

1. z1 = z2 and (z′1, z
′
2) is an arc in M2(ε) or

2. (z1, z2) is an arc in M1(ε) and z′1 = z′2 or
3. (z1, z2) is an arc in M1(ε) and (z′1, z

′
2) is an arc in M2(ε).

The normal product Ψ∗ ⊠Ψ∗ is a directed graph with vertex set
ϱ(Ψ∗⊠Ψ∗) = ϱ×ϱ and arc set δ(Ψ∗⊠Ψ∗), where ((z1, z′1), (z2, z′2))
is an arc in Ψ∗ ⊠ Ψ∗ if and only if

1. z1 = z2 and (z′1, z
′
2) is an arc in Ψ∗ or

2. (z1, z2) is an arc in Ψ∗ and z′1 = z′2 or
3. (z1, z2) as well as (z′1, z

′
2) are arcs in Ψ∗.

Let the parameter set be ℜΨ1⋄Ψ2 = ℜ1 ∩ ℜ2. Define a map-
ping γΨ1⋄Ψ2 from ℜΨ1⋄Ψ2 to P[ϱ(Ψ∗ ⊠ Ψ∗)] by γΨ1⋄Ψ2 (ε) =
γ1(ε) × γ2(ε),∀ε ∈ ℜ1 ∩ ℜ2 where P[ϱ(Ψ∗ ⊠ Ψ∗)] denotes
the power set of ϱ(Ψ∗ ⊠ Ψ∗). Then (γΨ1⋄Ψ2 ,ℜΨ1⋄Ψ2 ) is a soft
set over ϱ(Ψ∗ ⊠ Ψ∗). Define another mapping αΨ1⋄Ψ2 from
ℜΨ1⋄Ψ2 to P[δ(Ψ∗ ⊠ Ψ∗)] by αΨ1⋄Ψ2 (ε) = {((w, z), (c, d)) ∈
δ(Ψ∗ ⊠ Ψ∗) | {(w, z), (c, d)} ∈ γΨ1⋄Ψ2 },∀ε ∈ ℜ1 ∩ ℜ2, where
P[δ(Ψ∗ ⊠ Ψ∗)] denotes the power set of δ(Ψ∗ ⊠ Ψ∗). Then
(αΨ1⋄Ψ2 ,ℜΨ1⋄Ψ2 ) is a soft set over δ(Ψ∗ ⊠ Ψ∗). Also if we
denote (γΨ1⋄Ψ2 (ε), αΨ1⋄Ψ2 (ε)) by MΨ1⋄Ψ2 (ε), then MΨ1⋄Ψ2 (ε) is
a subdigraph of Ψ∗ ⊠ Ψ∗,∀ε ∈ ℜ1 ∩ ℜ2, since γ1(ε) ×
γ2(ε) ⊆ ϱ × ϱ and any arc in αΨ1⋄Ψ2 (ε) is also an arc in
δ(Ψ∗ ⊠ Ψ∗). Then Ψ1 ⋄ Ψ2 can be represented by the 4-tuple
(Ψ∗ ⊠ Ψ∗, γΨ1⋄Ψ2 , αΨ1⋄Ψ2 ,ℜΨ1⋄Ψ2 ) and also by {MΨ1⋄Ψ2 (ε) : ε ∈
ℜ1 ∩ℜ2} and Ψ1 ⋄Ψ2 is a soft directed graph of Ψ∗⊠Ψ∗ since
the following conditions are satisfied:

1. Ψ∗ ⊠ Ψ∗ = (ϱ(Ψ∗ ⊠ Ψ∗), δ(Ψ∗ ⊠ Ψ∗)) is a directed graph
having vertex set ϱ(Ψ∗ ⊠ Ψ∗) and arc set δ(Ψ∗ ⊠ Ψ∗),

2. ℜΨ1⋄Ψ2 = ℜ1 ∩ ℜ2 is the set of parameters which is
nonempty,

3. (γΨ1⋄Ψ2 ,ℜΨ1⋄Ψ2 ) is a soft set over ϱ(Ψ∗ ⊠ Ψ∗),
4. (αΨ1⋄Ψ2 ,ℜΨ1⋄Ψ2 ) is a soft set over δ(Ψ∗ ⊠ Ψ∗),
5. MΨ1⋄Ψ2 (ε) = (γΨ1⋄Ψ2 (ε), αΨ1⋄Ψ2 (ε)) is a subdigraph of
Ψ∗ ⊠ Ψ∗,∀ε ∈ ℜΨ1⋄Ψ2 = ℜ1 ∩ℜ2.

Theorem 4.2. The restricted normal product Ψ1 ⋄ Ψ2 contains∑
ε∈ℜ1∩ℜ2

|γ1(ε)||γ2(ε)| vertices and
∑
ε∈ℜ1∩ℜ2

(|γ1(ε)||α2(ε)| +
|γ2(ε)||α1(ε)| + |α1(ε)||α2(ε)|) arcs, if we count the vertices and
arcs as many times they appear in different diparts of Ψ1 ⋄ Ψ2.

Proof. By definition, Ψ1 ⋄ Ψ2 = {M1(ε) ⊠ M2(ε) : ε ∈ ℜ1 ∩

ℜ2}. The parameter set of Ψ1 ⋄ Ψ2 is ℜ1 ∩ ℜ2. Consider the
dipart M1(ε)⊠M2(ε) ofΨ1⋄Ψ2 corresponding to the parameter
ε ∈ ℜ1 ∩ ℜ2. The vertex set of M1(ε) ⊠ M2(ε) is γ1(ε) ×
γ2(ε) which contains |γ1(ε)||γ2(ε)| elements. This is true for all
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diparts ofΨ1⋄Ψ2. Therefore total number of vertices inΨ1⋄Ψ2
is
∑

x∈ℜ1∩ℜ2
|γ1(ε)||γ2(ε)|, if we count the vertices as many times

they appear in different diparts of Ψ1 ⋄ Ψ2.
Also we know, ((zq, zr), (zs, zt)) is an arc in M1(ε)⊠M2(ε) if and
only

1. zq = zs and (zr, zt) is an arc in M2(ε) or
2. (zq, zs) is an arc in M1(ε) and zr = zt or
3. (zq, zs) is an arc in M1(ε) and (zr, zt) is an arc in M2(ε).

Now, each arc in M1(ε) ⊠ M2(ε) was made by just one of these
three requirements (any two can’t be true at the same time).
So, to get the total number of arcs in M1(ε) ⊠ M2(ε), we add
the number of arcs generated by each condition. Consider the
first condition for adjacency, i.e.,zq = zs and (zr, zt) is an arc
in M2(ε). The number of arcs generated by this condition will
be the number of arcs in the directed graph M2(ε) times the
number of vertices in the directed graph M1(ε), which is given
by |γ1(ε)||α2(ε)|. Then consider the second condition for adja-
cency, i.e.,(zq, zs) is an arc in M1(ε) and zr = zt. The number
of arcs generated by this condition will be the number of arcs
in the directed graph M1(ε) times the number of vertices in the
directed graph M2(ε), which is given by |γ2(ε)||α1(ε)|. Finally
consider the third condition for adjacency, i.e., (zq, zs) is an arc
in M1(ε) and (zr, zt) is an arc in M2(ε). There are |α1(ε)| arcs
in M1(ε) and |α2(ε)| arcs in M2(ε). So we can choose a pair
of arcs ak and al such that one is from M1(ε) and the other is
from M2(ε) in |α1(ε)||α2(ε)| different ways. Suppose that ak is
the arc (zq, zs) in M1(ε) and al is the arc (zr, zt) in M2(ε) . Then
this pair of arcs gives an arc ((zq, zr), (zs, zt)) in M1(ε) ⊠ M2(ε).
Hence the number of arcs generated by this condition will be
|α1(ε)||α2(ε)|. That is, the total number of arcs in M1(ε) ⊠
M2(ε) = (|γ1(ε)||α2(ε)| + |γ2(ε)||α1(ε)| + |α1(ε)||α2(ε)|). This is
true for all diparts of Ψ1 ⋄Ψ2. Therefore total number of arcs in
Ψ1⋄Ψ2 is

∑
ε∈ℜ1∩ℜ2

(|γ1(ε)||α2(ε)|+|γ2(ε)||α1(ε)|+|α1(ε)||α2(ε)|),
if we count the arcs as many times they appear in different di-
parts of Ψ1 ⋄ Ψ2.

Example 5. Consider the directed graphs given in Example 4.
Here we have, total number of vertices in Ψ1 ⋄ Ψ2 = 20 and∑
ε∈ℜ1∩ℜ2

|γ1(ε)||γ2(ε)| = (5.4) = 20. That is, the total num-
ber of vertices in Ψ1 ⋄ Ψ2 =

∑
ε∈ℜ1∩ℜ2

|γ1(ε)||γ2(ε)|. Also total
number of arcs in Ψ1 ⋄ Ψ2 = 50 and

∑
ε∈ℜ1∩ℜ2

(|γ1(ε)||α2(ε)| +
|γ2(ε)||α1(ε)| + |α1(ε)||α2(ε)|) = (5.3 + 4.5 + 5.3) = 50. That
is, total number of arcs in Ψ1 ⋄ Ψ2 =

∑
ε∈ℜ1∩ℜ2

(|γ1(ε)||α2(ε)| +
|γ2(ε)||α1(ε)| + |α1(ε)||α2(ε)|).

Theorem 4.3. Let Ψ∗ = (ϱ, δ) be a directed graph and Ψ1 =

(Ψ∗, γ1, α1,ℜ1) and Ψ2 = (Ψ∗, γ2, α2,ℜ2) be two soft directed
graphs of Ψ∗. Then

(i)
∑

ε∈ℜ1∩ℜ2

∑
(w,z)∈γΨ1⋄Ψ2 (ε)

ideg(w, z)[MΨ1⋄Ψ2 (ε)] =

∑
ε∈ℜ1∩ℜ2

∑
(w,z)∈γΨ1⋄Ψ2 (ε)

odeg(w, z)[MΨ1⋄Ψ2 (ε)] =

∑
ε∈ℜ1∩ℜ2

(|γ1(ε)||α2(ε)| + |γ2(ε)||α1(ε)| + |α1(ε)||α2(ε)|)

(ii)
∑

ε∈ℜ1∩ℜ2

∑
(w,z)∈γΨ1⋄Ψ2 (ε)

deg(w, z)[MΨ1⋄Ψ2 (ε)] =

∑
ε∈ℜ1∩ℜ2

2(|γ1(ε)||α2(ε)| + |γ2(ε)||α1(ε)| + |α1(ε)||α2(ε)|).

Proof. (i) Consider any dipart MΨ1⋄Ψ2 (ε) =

(γΨ1⋄Ψ2 (ε), αΨ1⋄Ψ2 (ε)) of Ψ1 ⋄ Ψ2 which is given by
M1(ε) × M2(ε). By Theorem 4.2, we have number of arcs in
M1(ε) × M2(ε) is (|γ1(ε)||α2(ε)| + |γ2(ε)||α1(ε)| + |α1(ε)||α2(ε)|).
Since the dipart MΨ1⋄Ψ2 (ε) is a directed graph having
(|γ1(ε)||α2(ε)| + |γ2(ε)||α1(ε)| + |α1(ε)||α2(ε)|) arcs, we have∑

(w,z)∈γΨ1⋄Ψ2 (ε)

ideg(w, z)[MΨ1⋄Ψ2 (ε)] =

∑
(w,z)∈γΨ1⋄Ψ2 (ε)

odeg(w, z)[MΨ1⋄Ψ2 (ε)] =

(|γ1(ε)||α2(ε)| + |γ2(ε)||α1(ε)| + |α1(ε)||α2(ε)|),

since each arc in MΨ1⋄Ψ2 (ε) contributes 1 each to
the sums

∑
(w,z)∈γΨ1⋄Ψ2 (ε) ideg(w, z)[MΨ1⋄Ψ2 (ε)] and∑

(w,z)∈γΨ1⋄Ψ2 (ε) odeg(w, z)[MΨ1⋄Ψ2 (ε)]. This is true for all
the diparts MΨ1⋄Ψ2 (ε) of Ψ1 ⋄ Ψ2. Hence,∑

ε∈ℜ1∩ℜ2

∑
(w,z)∈γΨ1⋄Ψ2 (ε)

ideg(w, z)[MΨ1⋄Ψ2 (ε)] =

∑
ε∈ℜ1∩ℜ2

∑
(w,z)∈γΨ1⋄Ψ2 (ε)

odeg(w, z)[MΨ1⋄Ψ2 (ε)] =

∑
ε∈ℜ1∩ℜ2

(|γ1(ε)||α2(ε)| + |γ2(ε)||α1(ε)| + |α1(ε)||α2(ε)|).

(ii) Since deg(w, z)[MΨ1⋄Ψ2 (ε)] = ideg(w, z)[MΨ1⋄Ψ2 (ε)] +
odeg(w, z)[MΨ1⋄Ψ2 (ε)] and by part (i) of this theorem we have,∑

ε∈ℜ1∩ℜ2

∑
(w,z)∈γΨ1⋄Ψ2 (ε)

deg(w, z)[MΨ1⋄Ψ2 (ε)] =

∑
ε∈ℜ1∩ℜ2

2(|γ1(ε)||α2(ε)| + |γ2(ε)||α1(ε)| + |α1(ε)||α2(ε)|).

Example 6. Consider the directed graphs given in Example 4.
Here we have,∑

ε∈ℜ1∩ℜ2

∑
(w,z)∈γΨ1⋄Ψ2 (ε)

ideg(w, z)[MΨ1⋄Ψ2 (ε)] = 50,

∑
ε∈ℜ1∩ℜ2

∑
(w,z)∈γΨ1⋄Ψ2 (ε)

odeg(w, z)[MΨ1⋄Ψ2 (ε)] = 50,

∑
ε∈ℜ1∩ℜ2

(|γ1(ε)||α2(ε)| + |γ2(ε)||α1(ε)| + |α1(ε)||α2(ε)|)

= 5.3 + 4.5 + 5.3 = 50.

That is, ∑
ε∈ℜ1∩ℜ2

∑
(w,z)∈γΨ1⋄Ψ2 (ε)

ideg(w, z)[MΨ1⋄Ψ2 (ε)] =

8
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ε∈ℜ1∩ℜ2

∑
(w,z)∈γΨ1⋄Ψ2 (ε)

odeg(w, z)[MΨ1⋄Ψ2 (ε)] =

∑
ε∈ℜ1∩ℜ2

(|γ1(ε)||α2(ε)| + |γ2(ε)||α1(ε)| + |α1(ε)||α2(ε)|).

Also, ∑
ε∈ℜ1∩ℜ2

∑
(w,z)∈γΨ1⋄Ψ2 (ε)

deg(w, z)[MΨ1⋄Ψ2 (ε)] = 100,

∑
ε∈ℜ1∩ℜ2

2(|γ1(ε)||α2(ε)| + |γ2(ε)||α1(ε)| + |α1(ε)||α2(ε)|)

= 2(5.3 + 4.5 + 5.3) = 100.

That is, ∑
ε∈ℜ1∩ℜ2

∑
(w,z)∈γΨ1⋄Ψ2 (ε)

deg(w, z)[MΨ1⋄Ψ2 (ε)] =

∑
ε∈ℜ1∩ℜ2

2(|γ1(ε)||α2(ε)| + |γ2(ε)||α1(ε)| + |α1(ε)||α2(ε)|).

5. Conclusion

This research has advanced the theoretical framework of
graph theory by introducing and thoroughly investigating the
concepts of normal and restricted normal products for soft di-
rected graphs. These operations extend the classical notions of
graph products into the realm of soft set theory, allowing for
the incorporation of uncertainty into graph models. The def-
initions and theorems presented herein provide a robust foun-
dation for understanding the structural and combinatorial prop-
erties of these new graph constructs. The results demonstrate
that the normal product and restricted normal product of soft
directed graphs preserve the soft directed graph structure, en-
suring that these products are well-defined within the context
of soft set theory. Moreover, the combinatorial identities related
to vertex and arc counts, as well as degree sums, offer valuable
insights for further research and practical applications.
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