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Abstract

This study proposed a hybridization of higher-order Random Boolean kSatisfiability (RANkSAT) with the Hopfield neural network (HNN) as
a neuro-dynamical model designed to reflect knowledge efficiently. The learning process of the Hopfield neural network (HNN) has undergone
significant changes and improvements according to various types of optimization problems. However, the HNN model is associated with some
limitations which include storage capacity and being easily trapped to the local minimum solution. The Election algorithm (EA) is proposed to
improve the learning phase of HNN for optimal Random Boolean kSatisfiability (RANkSAT) representation in higher order. The main source
of inspiration for the Election Algorithm (EA) is its ability to extend the power and rule of political parties beyond their borders when seeking
endorsement. The main purpose is to utilize the optimization capacity of EA to accelerate the learning phase of HNN for optimal random k
Satisfiability representation. The global minima ratio (mR) and statistical error accumulations (SEA) during the training process were used to
evaluate the proposed model performance. The result of this study revealed that our proposed EA-HNN-RANkSAT outperformed ABC-HNN-
RANkSAT and ES-HNN-RANkSAT models in terms of mR and SEA. This study will further be extended to accommodate a novel field of Reverse
analysis (RA) which involves data mining techniques to analyse real-life problems.
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1. Introduction

The central motivation of many types of research carried out
in the field of, machine learning, decision science and artificial
neural networks (ANNs) is the large structure of their training
stages. Many ANNs’ complex training stage provide a powerful

∗Corresponding author tel. no:
Email address: zeeham4u2c@yahoo.com (Hamza Abubakar )

mechanism for solving optimization problems such as decision-
making or classification tasks. Neural networks are used exten-
sively in many fields of study that originated in mathematical
neurobiology. This network attempts to simulate human brain
capabilities. It has been utilized since the last decade as a theo-
retically sound alternative to traditional statistical models. The
classification based on the neural networks model becomes ef-
ficient when applied in a hybrid framework with many forms
of predictive models [16]. The inception of neural networks
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(ANNs) was initiated as variety of capable networks that act
as a useful tool for specific tasks such as recognition problem
[17], data mining [18], forecasting problems [21], prediction
problems[14]. There have been many recent developments in
an attempt to assemble different structures in refining the ex-
isting ANN models by integrating them with proficient search-
ing techniques to intensify the quality of the standalone ANN
framework [1].

Hopfield neural network (HNN) is a type of recurrent ar-
tificial network that mimics the operating capacity of human
memory. The ability of HNN to manage nonlinear complex pat-
terns by its training and testing capability is particularly useful
for interpreting complex real-life computer science communi-
ties [8]. In this work, a novel and powerful heuristics search
technique is known as Election algorithms has been explored
for effective training of Hopfield neural network model. Elec-
tion algorithms has been utilized in solving various mathemat-
ics and engineering benchmark problems which yield success-
ful performance in both convergence rate and better identifi-
cation of global optima. We can infer that the application of
employing Election algorithms is endless; from industrial plan-
ning, scheduling, decision making and machine learning. Elec-
tion algorithms have been utilized in [11] successfully for pre-
dicting groundwater level [12]. Recently, an election algorithm
has been proposed in [20] to accelerate the learning phase of
Hopfield neural network for random 2satisfiability. The perfor-
mance of Election algorithms in solving the travelling salesmen
problem has been investigated in [5]. Although Election Algo-
rithm has been applied in various optimization areas, it recorded
tremendous achievement in searching for the optimal solution
to various combinatorial optimizations problems. In our work,
Election algorithms has been applied on the trainig phase of
hopfield network model in accelerating the training process for
optimal representation (global minimum) solutions to high or-
der logic (RANkSAT for k ≤ 3).

However, we did not come across any work that combined
the global and local searching capacities of Election algorithms
in enhancing the training phase of Hopfield neural network in
searching for optimal representation of high order logic pro-
gramming (RANkSAT). Therefore, a new hybrid computational
technique has been proposed by integrating hybrid Election al-
gorithm in the learning process of Hopfield neural network for
optimal RANkSAT logical representation in achieving a effi-
ciency, robustness and better accuracy. The contributions of this
work include; (1) upgrading RAN2SAT to RAN3SAT; (2) im-
plementing the new logical rule in the Hopfield neural network
(RANkSAT-HNN);(3) incorporating Election algorithm (EA)
in the training phase of the Hopfield neural network (HNN) for
optimal random kSatisfiability and (4) performing comparison
of the Election algorithm with other state-of-the-art searching
methods in Hopfield neural network for Random kSatisfiabil-
ity representation. The present work investigate the effective-
ness of the Election algorithms in Hopfield neural network for
RANkSAT will be explored by comparing its performances to
the state-of-the-art model. By developing an effective intelli-
gent working model based on Artificial neural networks, the
proposed hybrid computational model will be useful to various

computational science and optimization communities by prov-
ing an alternative approach in doing computation. The structure
of this work is as follows. In section 2, we present the proposed
methods involving the mapping of RANkSAT as a new logical
rule in Hopfield neural network and a heuristic search method
in the Hopfield neural network learning phase via Election al-
gorithms. Section 3 reports the models’ performance evalua-
tion metrics. The experimental results of their discussions are
reported in section 4. The last Section concludes the paper.

2. Materials and Methods

2.1. Random kSatisfiability (k ≤ 3)

Propositional satisfiability Logic can be perceived as a logi-
cal rule that consists of clauses that contain literals or variables.
RANkSAT belongs to the family of non-systematic Boolean
logical clauses in which each logical clause involves a random
number of literals [13]. The general description for the formu-
lation FRANkS AT is presented in Equation (1) as follows.

FRANkS AT =
t
∧
i=0

C(3)
i

j
∧
i=0

C(2)
i

d
∧
i=0

C(1)
i (k ≤ 3) (1)

where t, j, d ∈ [1, 2, ...,N], t > 0, j > 0 and d > 0. The clause
FRAN3S AT is defined as a RANkSAT(k ≤ 3)forC(k)

i clauses de-
scribed in Equation (2) as follows.

C(k)
i =


(αi ∨ βi ∨ ψi) , i f k = 3
(αi ∨ βi) , i f k = 2
τi , i f k = 1

(2)

where the variables αi ∈ [αi,¬αi],βi ∈
[
βi,¬βi

]
,τi ∈ [τi,¬τi],ψi ∈[

ψi,¬ψi
]

are defines literals and their negation in logical clauses
respectively. In this work, we refer to Fr it as a Conjunc-
tive Normal Form (CNF) formula in which the logic clauses
in RANkSAT logic are chosen uniformly, independently among

all 2x

(
d + j + t

y

)
without replacement a logic clauses of lengthx.

We refer to the optimal mapping y (Fx) → [1, −1] as a logical
interpretation expressed as 1 for (TRUE) and -1 otherwise. Log-
ically, there are many formulations to RANkSAT logical
clauses, one of the formations taking into account k ≤ 3 is pre-
sented as follows.

FRANkS AT = (τ1 ∨ ¬τ2 ∨ τ3) ∧ (β1 ∨ β2 ∨ ¬β2) ∧ ¬α1 (3)

According to Equation (1),FRANkS AT comprises of Ci
(3)

=

(τ1 ∨ ¬τ2 ∨ τ3), C2
(2)

= (¬β1 ∨ β2)and C1
(1)

= ¬α1. There-
fore, the outcome of in Equation (3) is satisfied FRANkS AT =

−1 if (τ1, τ2, τ3, β1, β2, β2, α1) = (1, 1, 1, 1, 1, 1) 3 clauses are
satisfied

(
C(3)

i ,C(2)
1 ,C(1)

2

)
. This research FRANkS AT will be em-

bedded in Hopfield neural network via Election algorithm as
a search technique in the proposed model.FRANkS AT logic will
modify the networks to represent the true structure or behaviour
of the data involved since HNN is a non-symbolic platform,
FRANkS AT serve as a symbolic mode representation that can be
combined with these networks.
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2.2. Random kSatisfiability in Hopfield Neural Network

Hopfield neural network (HNN) belongs to the family of
a recurrent neural network that mimics the human biological
brain [15]. Its structure consists of interconnected neurons and
a powerful feature of content addressable memory that is crucial
in solving various optimization and combinatorial tasks[13].
The network is composed of organised neurons of which is
portrayed by a variable called the Ising variable. In bipolar
recognition, the neurons in discrete HNN are used whereby
S i ∈ [1,−1]. The fundamental overview of neuron state ac-
tivation in Hopfield neural networks is shown in Equation (4)
below,

S j =

{
1 , i f

∑
j Wi jS j > ς

−1 , Otherwise (4)

where Wi j is the synaptic weight vector from starting from j
neuron to i neuron. We definedS i as the state of the neuron
i in HNN and ς is the predefined value. The value of ς =

0.001 has been specified in [6],[3],[20] to certify that the net-
work’s energy decreases to zero. The synaptic weight connec-
tion in the discrete HNN contains no connection with itself, the
synaptic connection from one neuron to other neurons is zero.
The model holds symmetrical features in terms of architecture.
HNN model has similar intricate details to the Ising model of
magnetism as described in [15].

S i → sgn [hi(t)] (5)

where hi is the local field that connects all neurons in HNN. The
sum of the field is induced by each neuron state as follows,

hi =

N∑
k

N∑
j

Wi jkS jS k +

N∑
j

Wi jS j + Wi (6)

The task of the local field is to evaluate the final state of neu-
rons and generate all the possible 3-SAT induced logic that was
obtained from the final state of neurons. One of the most promi-
nent features of the HNN network is the fact that it always con-
verges. The generalized fitness function FRANkS AT regulates the
synaptic combinations in HNN and FRANkS AT is presented as
follows.

EFRANkS AT =

NN∑
i=1

V∏
j=1

Ti jk (7)

where V and NN are the number variables and the number of
neurons generated in FRANkS AT respectively. We defined the
inconsistency of FRANkS AT representation as follows.

Ti j =

 1
2

(
1 − S ρ

)
, i f ¬ρ

1
2

(
1 + S ρ

)
, otherwise

(8)

The value ofEFRANkS AT is proportional to the value of “inconsis-
tencies” of the logical clauses. The rule for updating the neural
state is,

S i (t + 1) =

{
1 , hi ≥ 0
−1 , hi < 0 (9)

Equation (9) represents the Lyapunov energy function in
HNN for 3rd order logic.

HFRANkS AT = − 1
3
∑N

i=1
∑N

j,k
∑N

k=1,i,k W (3)
i jk S iS jS k

− 1
2
∑m

i=1,i, j
∑m

j=1 W (2)
i j S iS j −

∑m
i=1,i, j W (1)

i S j
(10)

Equation (10) has been applied to classify whether a solu-
tion is a global or local minimum energy. The HNN will gen-
erate the optimal assignment when the induced neurons state
achieved global minimum energy. There are limited works to
combine HNN and EA as a single computational network. Thus,
the robustness of Election algorithm manage in improving the
training process in Hopfield model. Consequently, the quality
of the final neuronal state can be maintained according to Equa-
tion (11) as utilized in [6],[4],[3],[20] as follows.∣∣∣HFRANkS AT − Hmin

FRANkS AT

∣∣∣ ≤ ξ (11)

where ξis the pre-determined tolerance value. The value ξ =

0.001 was taken in [6],[4],[3],[20],[19],[2][10-11,18-21]. If the
FRANkS AT logical representation embedded in HNN does not sat-
isfy the criteria state in Equation (11) then the final state of the
neurons have been trapped in the wrong pattern.

2.3. Election Algorithm as Heuristic Search in Hopfield Learn-
ing Phase

The Election Algorithm (EA) is an iterative population-based
algorithm that provides a varieties of solutions in the search
space. The local search function have been partitioned into
search spaces. The optimization procedure is inspired based on
the voting process in human society [11],[10]]. Generally, the
population of an individual is divided into two parties which
later carry out a series of operations such as initialization, eli-
gibility stages, advertisement and alliance. These stratgiies are
resulted in a stronger searching technique. The primary goal of
EA is to encourage candidates to coverge on a global minimum
solution (best solution) to optimzation problem [10]. Optimiza-
tion process based on standard Hopfield model has a high prob-
ability of becoming caught at a suboptimal solution with the
number of neurons firing into the network [3],[9],[7].

Various metaheuristics algorithms, such as Electin algorithm,
have been purposefully used in HNN to improve its searching
capabilities and to solve the issue of premature convergence
before achieving the global optimal, which will maximize the
number of fulfilled clauses during the network’s training pro-
cess. Because of its ability to merge local search into a parti-
tioned search area, EA used mechanisms such as a constructive
marketing approach, a negative campaign, and an alliance to
maximize the entire searching space. The main steps of the
procedure in the EA-HNN-RANkSAT model considering k ≤ 3
is presented from stage 1 to 5 as follows:

Stage 1:Initialization
The main component of any search and optimization is to

find the right solution in terms of the problem’s variable’s pa-
rameter. It is created an array of vector parameters to be op-
timized. A population of this size NPOP as a starting point of
an individual τv =

[
τi, τ2, τ3, ...., τNPOP

]T for each solution were
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generated. Each solution is distributed within the vector bound-
ary range depending on the variable as follows,

τv = λmin
v + τ1 ∗

(
λmax

v − λmin
v

)
(12)

Where v ∈ N and τv described the location of the vth supporter
the Nvar −− dimensional search space and NPOP described to
the number of search representative. A random number with
a uniform distribution is defined as τ1 ∈ [0, 1]. This problem
searches for the optimal RANkSAT clauses.

Stage 2:Eligibility measurement
Everyone’s eligibility(fitness) function is measured based

on the FRANkS AT clauses in using as follows.

fτv
=

t∑
i=1

C(3)
i +

j∑
i=1

C(2)
1 +

d∑
i=1

C(1)
i (13)

where fτv
denoted as eligibility of each person in search spaces

τv, C(k)
i is the clause in FRANkS AT and t, j, d ∈ [1,N] are the total

number of logical clauses in FRANkS AT logic.
Stage 3: Creating an initial population
A population of persons (individuals) PC o f Npop search agent

was employed in EA. Each solution represents the eligibility
(fitness) of a candidate

(
eδC

)
and the general political parties

(PC) represent search space. Individuals’ populations are split-
ting population of individual Npop into political parties (PC) is
part of the EA policy. Each PC includes the contender (δc) and
their followers(τv)which served as search agents in the solution
space. The δc together with their τv form some PC . They τv

are divided δc based on eδc in which the initial number τv of a
δc is proportionate to eδc . According to [10] the τv of a δc, are
identified by normalizing eδc computed as follows.

αi =
∣∣∣eδCi

∣∣∣ =

∣∣∣∣∣∣ eδC −max(I)∑
k ∈ δCeδk −max(I)

∣∣∣∣∣∣ (14)

where I =
{
δc j | j ∈ δc

}
, eδCi

, αi defined the eligibility of can-
didate and normalized eligibilities of the candidate δCi respec-
tively and δC designated the initial number of candidates in the
solution space. The number of an individual to serve as initial
candidates δCi was modelled as follows.

δCi = αrNpop (15)

The original number of δτvi is modelled as follows.

δτvi = Npop − δCi (16)

Then, we randomly select δτvi of the τv and add to δCi which form
an PC in the search space.

Stage 4: Campaign strategy: ’ This stage is modelled from
step 1 to step 3 as follows

Step 1: Positive advertisement (ϑ)
In the modelling of EA ϑ. We select τv a position that is in

form of a variable of δC in the search space. The intention of
sampling the random numbers is to choose a τv1 location to be
replaced by a new voter τv2 . The method for determining the

selection rate λτ ∈ [0, 1]. The number of variables transferred
to the τv by the δC is defined according to the following.

ψτ = λτS C (17)

The random choice variables in the problem space that must
be replaced are signified by ψτ. The selection rate is defined by
λτ. S Csignifies the total number of δC in the problem space. To
transfer τv to another δC , the eligibility distance coefficient (ed)
was used model as follows,

ed =
1∥∥∥∥eδCi
− eδτvi

∥∥∥∥ + 1
(18)

where eδCi
is utilized to described the eligibility of δCi and eδτvi

has been used to represent the eligibility of δτvi voter in the
search space.

Step 2: Negative advertisement (ω)
EA algorithm uses negative campaign operation (ω)as a search

mechanism in their opposition movement, to fascinate members
of other parties This leads to the marginalized parties’ revival
and deterioration of progress in the following ways.

ω = τv
T =

{
τvi ,R j ≤ ϕ
τv j ,R j > ϕ,

(19)

where R j ∈ [0, 1] and ϕ is the negative advertisement constant
in EA.

Step 3: Coalition strategy(CL)
In Election algorithm, two or more parties come together

for a new party, sharing the same ideas and aims in space to
find solutions; confederates if they have the same ideas; EA,
two or more parties may sometimes come together for a new
party, possessing the same ideas and aims in space to find solu-
tions. As a result, some applicants are exiting the advertisement
with a new nominee dubbed ”leader,” while the candidate who
withdrew from the election arena is dubbed ”follower.” To rule
the optimum solution search in the search space, EA employs a
coalition operation. By building trial vectors using elements of
existing party candidates in the solution space and improving
the search space, the coalition strategy can effectively gather
information about effective party mergers.

τ̂
vi = τv1 + λτ(τv3 − τv2 ) (20)

where τ̂
vi defined as a coalition parameter of political parties and

λτ ∈ [0, 1] served as a scaling factor and i is an index of current
solution During the coalition process(CL). In EA, a population
of solution vectors is randomly created at the start. In Elec-
tion algorithm, each fresh solution achieved will compete with
a united party in the search space.
Stage 5:Stopping condition (Election Day)
At the start of EA, a population of the optimization algorithm
is generated at random. In the Election algorithm, each new so-
lution will participate in the search space with a unified group
[11].
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Figure 1. Implementation of RANkSAT

2.4. Simulation Procedure

Implementation of the Neuro-Heuristic searching method of
RANkSAT in HNN. The program’s main task is to find the best
”model” that find the optimal occurrences of random-kSAT.
Both logical variables and clauses were initially randomized.
Simulations were executed by manipulating a different number
of neurons complexity ranging from 10 ≤ NN ≤ 110. The sim-
ulation has been conducted on RANkSAT as a logical clause in
HNN according to the flowchart in Figure 1.

3. Performance

The efficiency of performance of the EA-HNN-RANkSAT model
has been quantified based on Global minimum ratio (mR), sta-
tistical error measurement based on the sum of square error
(SSE) and mean absolute error (MAE) as well as model compu-
tational time (CT) presented in Equation (20) to Equation (23)
respectively.

mR =
1

ab

t∑
i

HFRANkS AT (21)

S S E =

d∑
i=1

( f NN − h d)2 (22)

MAE =

d∑
i=1

1
n
| fNN − hd | (23)

where fNN and hd characterized the HNN the output and the
target output values respectively, d categorized the number of
permutations in HNN.

4. Results and Discussion

Table 1. Global minimum ratio for RANkSAT logic

NN EA ES ABC
10 1 1 1
20 1 1 1
30 1 1 1
40 1 1 0.9999
50 1 1 1
60 1 1 0.9997
70 1 NIL 1
80 1 NIL 1
90 1 NIL 0.9996

100 1 NIL 1
110 1 NIL 0.9899

Table 1 and Figure 2 until Figure 4 displayed the perfor-
mance of RANkSAT in HNN considering the third order of k ≤
3 in terms of mR, errors accumulations and time-consuming
during the program execution. In our experiments, we explore
the performance of the proposed training approach using a dif-
ferent number of neurons10 ≤ NN ≤ 110. The general trend
of the model performance indicates a massive increase in er-
rors accumulation and CPU time considering the complexity of
the neuron fired to HNN in searching for optimal RANkSAT
representation. The increasing trend in error behaviour shows
the complexity of the neuron states of RANkSAT which proved
to be an NP problem [7],[9]. According to SSE and MAE in
Figure4 and Fig 5 respectively in measuring the HNN perfor-
mance during the learning phase in searching for correct op-
timal assignment to RANkSAT logical clauses, the proposed
method, EA-HNN-RANkSAT, was able to achieve EFRANkS AT =

0, with lower statistical errors accumulation than ABC-HNN-
RANkSAT. This may be due to the multiple optimization layers
involve in EA which has a better screening stage in searching
for optimal assignment leading to EFRANkS AT → 0in fewer itera-
tions than ABC-HNN-RANkSAT.This explores the optimal ca-
pacity of EA in lowering the complexity of the HNN searching
of RANkSAT logical towards error accumulation by reducing
the number of iterations in the optimization process.

The optimal behaviour of the Hopfield neural network mod-
els based on mR has been recorded in Table 1. The effi-
ciency of the Election algorithm (EA) are observed in com-
parison with other metaheuristics search approaches in hop-
field neural network for RANkSAT representation leading to
EFRANkS AT → 0. Table 1, EA-HNN-RANkSAT and ES-HANN-
RANkSAT can retrieve more accurate neural assignment that
leads to the best global solution during the training process,
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Figure 2. SSE for RANkSAT in HNN.

Figure 3. MAE for RANkSAT in HNN

while in ABC-HNN-RANkSAT model, some neural states were
stuck at NN = 60,NN = 60,NN = 90,NN = 110 a sub-
optimal local solution,but still managed to achieved closed to
92% success. Meanwhile, ES-HNN-RANkSAT can only ac-
commodate NN ≤ 60, as the model exceeds the running time
threshold, the neuron complexity increases, which is particu-
larly problematic in the case of inconsistent interpretation
¬FRANkS AT . The core objective of incorporating metaheuristics
in artificial neural network is to increase the flow of learning
process by reducing the sensitivity of the neuros complexity,
allowing the neurons to progress into relaxation and recovery
stages sucessfully.

The EA-HNN-RANkSAT model was able to recovered a
much more appropriate final configuration that leads to a global
minimum solution. This confirms the robustness and higher
efficiency in neuro-searching embedded by EA to strengthen
the HNN learning process for RANkSAT logical representation.
If the mR of the model HNN network approaches one after the
computing cycle, all solutions generated in the network have
achieved global minimum energy[19].

It can be observed from Figure 3 and Figure 4 that the learn-
ing errors measured in terms of SSE and MAE increase mas-
sively as the neurons passed NN ≤ 20. Figure 2, presents the
trend of performance based on SSE measure. The high accumu-
lation of SSE was demonstrated by ES-HNN-RANkSAT. EA-
HNN-RANkSAT accumulated lower error with close to 98%

Figure 4. CPU Time for HNN performance.

accuracy. EA-HNN-RANkSAT performs well as the number
of neurons reaches a certain threshold. NN ≥ 20 the rapid in-
crease in error was noticed. A similar pattern is reported in Fig-
ure 3, which evaluate the models’ performance based on MAE
error. It revealed that EA-HNN-RANkSAT accumulated lower
MAE than ES-HNN-RANkSAT with higher MAE accumula-
tion. However, the performance of ABC-HNN-RANkSAT and
EA-HNN-RANkSAT displayed similar trend. In general, ES-
HNN-RANkSAT has the lowest results, with over 45 per cent
of searches failing.

The SSE and MAE values for HNN-RANkSAT searching
behaviour have been observed to increase rapidly as the net-
work’s neurons become more complex. Compared to EA-HNN-
RANkSAT and ES-HNN-RANkSAT, the proposed EA-HNN-
RANkSAT was able to obtain EFRANkS AT → 0 with a lower error
accumulation. This is due to the EA scanning process involv-
ing multiple optimization surfaces that have a better filtering
point in the state space, enabling the selection procedure to
get excellent performance leading to EFRANkS AT → 0 in fewer
iterations. In comparison to ES-HNN-RANkSAT and ABC-
HNN-RANkSAT, EA-HNN-RANkSAT registered lower SSE
and MAE, as per error analysis in Figures 2 and 3. This study
looked into the robustness of EA in decreasing the resistance
of the HNN to error occurrence by lowering the number of
iterations to the bare minimum. Consequently, in ES-HNN-
RANkSAT, the study of mR, SSE, and MAE abruptly end at
NN = 60. This may be attributed to the ineptness of the learn-
ing method used in ES-HNN-RANkSAT, which can’t handle
ambiguity. As a result of several fluctuations by neurons, the so-
lutions were crafted at a sub-optimal solution (wrong pattern).
It is clear that EA-HNN-RANkSAT agreed with ABC-HNN-
RANkSAT but outperformed ES-HNN-RANkSAT in searching
optimal representation RANkSAT logical representation.

Figure 4 displayed the HNN-RANkSAT models according
to their running time during the implementation cycle. The
proposed EA-HNN-RANkSAT was able to execute NN = 90
within 513.23 seconds faster than ABC-HNN-RANkSAT which
produce NN = 90 in about 763.02 seconds. The conventional
ES-HANN-RANkSAT model was able to withstandNN ≤ 60 in
1026.53 seconds. Examining the CPU’s use patterns in Figure
4, it could be observed that, the RANkSAT logical clauses are
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becoming complicated and complex, the searching for global
solutions to the RANkSAT logical clause required more effort
which subsequently required more execution time to achieve.
The search capacity in ES-HNN-RANkSAT demands more time
in to search 30 ≤ NN ≤ 60neurons. The EA-HNN-RANkSAT
and ABC-HNN-RANkSAT are similar in their running time to
10 ≤ NN ≤ 80neurons. However, EA-HNN-RANkSAT was
slightly faster than ABC-HNN-RANkSAT at the initial and final
searching process. This is because more neurons are reqyured
during the training phase to allow network to migrate through
the energy level and best on optimal solutions. In other words,
as the number of neurons grew, the number of errors accumu-
lated less in EA-HNN-RANkSAT, which subsequently reduce
the CPU time comsumption. In this case, ES-HNN-RANkSAT
required further iterations to find the best solution that corre-
sponds to EFRANkS AT = 0, which took more CPU time.

In the context of the RANkSAT logical representation k ≤
3, the robustness of integrating EA to promote the training phase
of HNN can be seen. Even during the learning process, EA’s
stochastic scanning behaviour expands the structure HNN for
appropriate RANkSAT representation. Consequently, the EA-
HNN-RANkSAT model’s composition would reflect the diver-
sification of the final neural states. As a result, the EA-HNN-
RANkSAT, where the chance of obtaining diversified FRANkS AT

solutions is much higher, the solutions are dynamically swapped.
As a result, EA-HNN-RANkSAT will produce a greater vari-
ety of FRANkS AT logical clauses that are achievable leading to
EFRANkS AT = 0. The essence of HNN-RANkSAT, on the other
hand, will present difficulties in the event of conflicting assign-
ment. As the number of neurons grew throughout the trial, the
integration of EA in HNN dealt systematically with the higher
learning complexity. This paper investigates the robustness and
efficacy of EA’s local quest and global approach. The robust-
ness of the local and global search capability involved in EA,
which serves as the learning mechanism in HNN, is linked to
the success of EA-HNN-RANkSAT in exploring the global so-
lution. The robustness of the local and global search capability
contained in EA, which serves as the learning mechanism in
HNN, is linked to the success of EA-HNN-RANkSAT in hunt-
ing for the global solution FRANkS AT . At the early stages of EA,
where the number of neurons is limited, the local search poten-
tial has a major impact. This paper investigates how to improve
the control parameters in EA to improve the learning process
and achieve optimum EFRANkS AT = 0 logical representation. At
the outset, a candidate selection optimization operator is needed
to speed up the process of choosing the most qualified candidate
to act as a leader (solution). Multiple optimization layers em-
ployed by EA-HNN-RANkSAT to diversify the approach space
and increase the searching capability in a specific area [11].
The positive advertisement is the first optimization layer in EA,
which optimizes among candidates in a specific political party
in the search space. The negative advertisement is another layer
that allows other candidates from another party to take the sup-
porter from their party. The coalition’s policy has the potential
to have a huge effect in attracting the largest number of people
who support the party’s manifesto in seeking global solutions.
Within a fair period, this process would provide a collabora-

tive candidate of equal fitness [12],[10]. Because of these fea-
tures in the EA, the hybrid proposed model can reduce the num-
ber of iterations an HNN is needed during the learning process
by ensuring that there is a minimal amount of error accrued
after the experimentation. The EA-HNN-RANkSAT model’s
systemic solution search space can make the local and global
search processes easier to achieve global solutions. The hybrid
approach will effectively search for the optimal solution in all
of the described spaces thanks to the partitioning mechanism of
the search space. Finally, the EA-HNN-RANkSAT model has
a shorter computing time because of its campaign and alliance
mechanisms, which systematically improve the unified party’s
chances of victory in a decent period.

5. Conclusion

A hybrid approach was proposed in this work, in which the
Election algorithm (EA) was combined with a Hopfield neural
network (HNN) to perform RANkSAT representation as a new
logical law. The proposed hybrid EA-HNN-RANkSAT model
can be conclusively shown to be a robust heuristic methodol-
ogy that is effective in improving or following preferred as-
signments, even in clauses of high difficulty, based on the find-
ings presented based on experimental simulations performed.
This is related to the EA process’s stronger optimization layers,
which speed up HNN’s learning process in looking for an opti-
mal RANkSAT assignment of greater eligibility. It was revealed
that the EA-HNN-RANkSAT model was able to complete the
searching process slightly faster than ABC-HNN-RANkSAT and
ES-HNN-RANkSAT. Notwithstanding, all of the HNN models
under consideration produced excellent results when it came
to representing RANkSAT logic in HNN and computing the
global solution to EFRANkS AT = 0 within the confines of a rea-
sonable CPU timeline. As a result, in terms of mR, MAE,
SSE, and CPU power, EA-HNN-RANkSAT faced less numeri-
cal strain during the training phase than other models. Finally,
other metaheuristics approach such as firefly algorithm, drone-
fly algorithm etc will be hybridized with the Hopfield neural
network (HNN) to enhance its computational process. We will
also explore other NP problem such as a reliability problems
in the Hopfield neural network. The study will be expanded
to include reverse analysis (RA) for actual data sets using data
mining tools.
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