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Abstract

Malware detection and classification are important requirements for information security because malware poses a great threat to computer users.
As the growth of technology increases, malware is getting more sophisticated and thereby more difficult to detect. Machine learning techniques
have been extensively used for malware detection and classification. However, most of them are binomial classifications that only detect the
presence of malware but do not classify them into types. This study sets out to develop a multinomial malware classifier using an adaptive
neuro-fuzzy inference system (ANFIS) and investigate the effectiveness of ANFIS in the classification. A first-order Sugeno ANFIS model was
developed. It has five layers and uses two if-then rules. The ANFIS model was trained and tested with two prominent malware datasets from the
Canada Institute of Cyber Security. The experimental results showed that the performance of the ANFIS model degrades as the size of the datasets
increases, and the accuracy, precision, recall, and root mean square error is 94%, 0.88, 0.87, and 0.19 respectively.
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1. Introduction

Advancements in technology have led to the prolific use of
computer systems and the Internet. According to the Interna-
tional Telecommunication Union (ITU) malware report, 51.2%
of the population of the world (about 3.9 billion people) were
using the Internet as at the end of 2018, and the number con-
tinues to increase every year [1]. This widespread use of com-
puters has also brought about an increase in their malicious us-
age. Malware is a computer program designed for malicious

∗Corresponding author: Tel.: +234-809-227-2747.
Email address: bajehamos@unilorin.edu.ng (Amos Orenyi Bajeh)

purposes and thus poses threats to computer and information
security. According to the 2020 malware report of Malware-
bytes, more than 50 million malware events were detected in
2019 [2]. Malware programs are constantly increasing in num-
ber and sophistication. The Internet has made the transmission
of malware easier than before, posing cyber security threats.
Malware types include worms, trojan horses, backdoors, spy-
ware, ransomware, bots, and rootkits.

The last decade has witnessed tremendous growth in using
artificial intelligence for solving problems including cyber se-
curity threats. Several published studies on malware detection
techniques have leveraged machine learning [3]. The number
of research papers published in 2018 is 7,720, a 95% increase
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from the number of publications in 2015, which in turn, is a
47% increase from the number of publications in 2010. This
increase in the number of studies is the result of various factors
including but not limited to the increasing number of publicly
labeled feeds of malware, the increase in computational power,
and the evolution of the machine learning field which achieved
breakthrough success on a wide range of tasks [4]. Artificial
neural network, a machine learning technique with the feature
of processing information in parallel, is being extensively used
for malware detection. For instance, Damaševičius et al. [5]
proposed an ensemble-based classification using a neural net-
work model to classify Windows portable executable (PE) mal-
ware, and the result of the study shows a performance accuracy
of 98.8%. Even though the neural network is modeled after the
human brain neurons, its output is not like humans, it cannot ex-
plain the decision. On the other hand, fuzzy systems can model
data but cannot learn from it. The combination of a neural net-
work and a fuzzy inference engine yields a hybrid system called
artificial neuro-fuzzy inference system (ANFIS).

Recently, researchers have adopted several machine learn-
ing algorithms for the binomial classification of malware
datasets into benign or malicious [5]. However, much research
has not been conducted on the multinomial classification of
malware. Malware should not only be detected but also catego-
rized according to the type of malicious attack it was designed
to perform [6]. This will facilitate applying precise and target
solutions to the instance of malware attack. In this research, an
Adaptive neuro-fuzzy inference system (ANFIS) will be devel-
oped for multinomial malware classification. This model will
facilitate the classification of malware to their specific types.

The remaining part of this paper is organized as follows.
Section 2 discusses malware. Section 3 presents the concept
of the adaptive neuro-fuzzy inference system. Studies carried
out on the detection and prediction of malware are reviewed in
section 4, and section 5 presents the methodology used in the
study including the study framework, data collection and pre-
processing method, the model, and the performance evaluation
measures. The results of the conducted experiments are pre-
sented and discussed in section 6, and the paper is concluded in
section 7 with a summary of the paper and some future works.

2. Malware

Malicious software, known as malware, is a computer code
designed to disrupt, damage, or gain unauthorized access to a
computer system or network. Malware comes in many variants.
Thus, there are numerous methods that they take to infect com-
puter systems. Though varied in type and capabilities, malware
usually has one or more of the following objectives:

1. Provide remote control for an attacker to use an infected
machine.

2. Send spam from the infected machine to unsuspecting
targets.

3. Investigate the infected user’s local network.
4. Steal sensitive data.

The following sections discuss the prominent classes of
malware that infect computer systems.

2.1. Ransomware
Ransomware is malicious software that restricts access to a

computer or encrypts data until a ransom is paid in exchange for
accessing the computer or device. An example is the decryptor
that encrypts the computer files and demands a ransom through
Bitcoin. Ransomware is one of the most dangerous malware
rapidly spreading worldwide. The number of users affected
by ransomware keeps growing along with an increase in mal-
ware modification. Recently, locker ransomware and crypto-
ransomware have been extensively used for attacks. The locker
ransomware locks the user out of the basic computer functions
forcing the user to pay ransom to regain control. Crypto on the
other hand encrypts files and other sensitive data threatening to
destroy them unless a fee is paid.

2.2. Adware
Adware is a malicious program designed to display adver-

tisements on a computer or mobile device directing the software
to advertisement websites or collecting data about the user. It
is usually bundled with other files and programs downloaded
from the Internet. Changes are made to the browser homepage
installing addon popups the user does not need. Besides causing
users discomfort, the adware can slow down and subsequently
crash the computer.

2.3. Scareware
Scareware is malicious software that tricks computer users

into visiting malware-infested websites. It is also known as
deception software, rogue scanner software, or fraud software.
Scareware may come as pop-ups appearing as legitimate warn-
ings from antivirus software companies claiming your com-
puter’s files have been infected. Thus, users are frightened into
paying for software that will fix the problem. What they end
up downloading, however, is fake antivirus software (malware)
intended to steal the victim’s data.

Fraudsters also use other tactics, such as sending out spam
mail to distribute scareware. Once that email is opened, vic-
tims are fooled into buying worthless services. Falling for these
scams and releasing your credit card information opens the door
for future identity theft crimes.

2.4. Virus
Malicious software that replicates by copying itself to an-

other program. A virus aims to infect the vulnerable sys-
tem, gain administrator control, and steal sensitive data. Com-
puter viruses spread through emails, installation of executables,
downloading infected software, and through storage devices
such as USB drives and external hard disks. As soon as a virus
gets into the computer it replicates itself. There are different
types of viruses. Boot sector virus takes control when boot-
ing a computer. Web scripting viruses exploit the code of web
browsers and web pages. The residence virus installs itself into
the computer and gets executed at any moment. The polymor-
phic virus changes its code each time the file containing it is
executed.
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2.5. Trojan

Malicious software that looks harmless for users to down-
load. Trojans can give attackers back door control over the vic-
tim’s computer. They can also capture keyboard strokes or steal
sensitive information such as passwords and credit card pins.
Usually, they get downloaded on a computer and disguised as
legitimate programs through emails or free-to-download files
and programs. The delivery method typically sees an attacker
use social engineering to hide malicious code within legitimate
software and gain access to the victim’s system. Once down-
loaded, the trojan malicious code will execute the task for which
it was designed, such as gaining backdoor access to corporate
systems, spying on users’ online activity, or stealing sensitive
data. The presence of Trojan malware can be indicated by un-
usual activity such as unexpected and unsolicited changes in
computer settings.

3. Machine learning, fuzzy logic, and ANFIS

This section presents the concept of machine learning (ML),
fuzzy logic which underpins fuzzy inference systems, and adap-
tive neuro-fuzzy inference system (ANFIS).

3.1. Machine learning

ML is a sub-field of artificial intelligence that involves en-
dowing computers to act automatically by learning patterns in
data and using the knowledge to analyze new sets of related data
in the domain of interest. This concept has been applied in self-
driving cars, practical speech recognition, effective web agents,
and a vastly improved understanding of the human genome.
New areas such as telecommunication networks are adopting
ML. There are three ML approaches: supervised learning, un-
supervised learning, and reinforcement learning.

In the supervised learning approach, a pre-labeled dataset
set is used to train an ML model. After the training process,
a test dataset is used to validate the model to ensure that the
model performs as expected. This technique is widely used
today in medical diagnostics of diseases such as diabetes and
cancer. Also in the stock market, machine learning is used to
study trends and predict which stock to invest in based on the
trend. Unsupervised learning is the type of ML in which mod-
els are trained using unlabeled dataset and are allowed to act
on that data without any supervision. The goal of unsupervised
learning is to find the underlying structure of the dataset, group
that data according to similarities, and represent that dataset in
a compressed format. Reinforcement Learning technique al-
lows the system to determine the best way of taking an action
or performing a task automatically. This is made possible by
a reward system in which any action wrongly taken attracts a
penalty which will enable the system to re-adjust. Also, any
action taken correctly will be rewarded to enable the system to
perform better. It is successfully applied only in areas where
huge amounts of simulated data can be generated, like robotics
and games.

One of the most popular ML approaches is artificial neural
networks.

3.2. Artificial Neural Network (ANN)

A Neural Network is based on a collection of connected
units or nodes called artificial neurons, which loosely model
the neurons in a biological brain. Each connection, like
the synapses in a biological brain, can transmit a signal to other
neurons. An artificial neuron that receives a signal then pro-
cesses it and can signal neurons connected to it. The ”signal” at
a connection is a real number, and the output of each neuron is
computed by some non-linear function of the sum of its inputs.
The connections are called edges. Neurons and edges typically
have a weight that adjusts as learning proceeds. The weight in-
creases or decreases the strength of the signal at a connection.
Neurons may have a threshold such that a signal is sent only if
the aggregate signal crosses that threshold. Typically, neurons
are aggregated into layers. Different layers may perform dif-
ferent transformations on their inputs. Signals travel from the
first layer (the input layer) to the last layer (the output layer),
possibly after traversing the layers multiple times.

3.3. Fuzzy Logic (FL)

FL is a method of decision-making that mimics human rea-
soning. Like human reasoning, the FL approach involves all
intermediate possibilities between the digital values YES and
NO or 1 and 0. The conventional logic block that a computer
can understand takes crisp input and produces a definite output
as Yes or No, True or False. The inventor of fuzzy logic, Lotfi
Zadeh, observed that, unlike computers, the human decision-
making dataset includes a range of possibilities between YES
and NO, such as certainly yes, possibly yes, cannot say, possi-
bly no, certainly no.

3.4. Adaptive Neuro-Fuzzy Inference System (ANFIS)

An adaptive neuro-fuzzy inference system or adaptive
network-based fuzzy inference system (ANFIS) is a kind of ar-
tificial neural network based on a Sugeno fuzzy inference sys-
tem. Since it integrates both neural networks and fuzzy logic
principles, it has the potential to capture the benefits of both
in a single framework. Its inference system corresponds to a
set of fuzzy IF-THEN rules that have the learning capability to
approximate nonlinear functions. Hence, ANFIS is a universal
estimator. For efficient and optimal use of the ANFIS model,
the tuning parameters can be optimized by using optimization
algorithms such as the genetic algorithm [7].

4. Related works

The exponential growth of malware has created a signifi-
cant threat in our daily lives which heavily rely on computers
running all kinds of software. Malware writers using innovative
approaches create several variants of malicious software by us-
ing techniques such as packing and encrypting techniques. Ma-
licious software classification and detection play an important
role and a big challenge for cyber security research [8]. Studies
have been carried out on the detection or classification of com-
puter malware. This section presents some notable studies in
this area.
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Tanuwidjaja et al. [9] proposed a malware detection scheme
based on modified deep abstraction and weighted feature selec-
tion. In this study, experiments were performed to find the op-
timum setting for both stack autoencoder network (SAE) and
artificial neural network (ANN). The experiment shows that the
best result is given by the combination of SAE with 2 hidden
layers and ANN with 2 hidden layers. The experimental result
shows a 95.490% detection rate, 2.007% false alarm rate, and
6 times faster compared to deep abstraction weighted features
selected.

Most malware detection techniques include signature-
based, specification-based, and static-based. These techniques
have high false positives, low accuracy, and an inability to de-
tect zero-day and polymorphic malware. Sodiya et al. [10]
modeled an Adaptive Neuro-Fuzzy System for Malware Detec-
tion (ANFSMD) to address the problems of high false positives,
low accuracy, and inability to detect zero-day attacks. AN-
FSMD utilizes the Application Programming Interface (API)
calls and operation codes to study the behaviour of Portable
Executable (PE) files. The PE files were disassembled into low-
level codes and the identified features were grouped for efficient
detection. Five features used for fuzzification were selected us-
ing a weighted average [10].

Nugraha [11] studied the existing malware classification al-
gorithm’s features, applied the existing algorithm, and evalu-
ated the algorithm for malware classification. The algorithm
used is random forest and gradient boost. This algorithm can
detect malware with high accuracy up to 99.3%. The results
showed an accuracy of 99.42% and 98.73% for the random for-
est, and gradient boosting respectively.

Rabadi & Teo [12] proposed an advanced window method
for malware detection and classification. Machine learning al-
gorithms such as SVM, random forest, and decision trees were
used as classifiers. A lightweight API-based dynamic fea-
ture extraction technique was adopted. Experimental results
show that the developed model could reach an accuracy of over
99.89% and outperform many state-of-the-art API-based mal-
ware detectors.

Damaševičius et al. [5] proposed ensemble model based
on a neural network for malware classification. The first-stage
classification was performed by a stacked ensemble of dense
(fully connected) and convolutional neural networks (CNN).
At the final stage, the classification was performed by a meta-
learner. The experimental result shows an accuracy of 98.8%.

Khammas [13] proposed malware detection using sub-
signatures and machine learning techniques. In this five ma-
chine learning classifiers were used (IBK, SVM, Decision Tree
(J48), Naı̈ve Bayes, and AdaBoostIM) to detect malware at the
host level. General malware files that contain three different
types of malware (Trojan, worm, and virus) were input into the
developed model. The result shows an accuracy of 99.78% and
a zero false-positive rate.

Azeez et al. [1] proposed Windows PE malware detection
using ensemble learning. In this approach, an ensemble model
of a deep neural network was developed. The base classifica-
tion was done by a stacked ensemble of fully connected and
one-dimensional convolutional neural networks (CNNs). A ma-

chine learning algorithm did the final classification. Five ma-
chine learning algorithms were used, naive Bayes, decision tree,
random forest, gradient boosting, and AdaBoosting. The result
shows an accuracy of 98.62%.

Lu et al. [14] proposed android malware detection based on
a hybrid deep learning model. An android malware detection
model based on a hybrid deep learning model with a deep belief
network (DBN) and gated recurrent unit (GRU) was developed.
Android malware was analyzed after extracting static features,
and dynamic behavioral features with strong anti-obfuscation
ability were also extracted. The extracted features were then
input into the system for training and prediction. The result
shows an accuracy of 96.58%.

Yousefi-Azar et al. [15] proposed a malware detection
scheme. The proposed system analysis is based on a neural
network. Three phases were implemented by a neural network
with two hidden layers and an output layer. Tf-smashing was
used for the feature extraction. The developed model was eval-
uated on both Android and Windows OS. The result shows an
F1-score of 97.21% and 99.45% on Android dex files and Win-
dows PE files respectively, in the applied datasets.

Liu et al. [16] proposed a graph-based feature generation
approach in Android malware detection with machine learning
techniques. This approach highlights two major distinguishing
aspects: context-based feature selection and graph-based fea-
ture generation. An Android application was considered as a
collection of reduced CFDs (interpret control flow graphs) and
original features from these graphs were extracted. The results
show an accuracy of 95.4% and a recall of 96.5%.

Shhadat et al. [17] proposed the use of machine learning
techniques to advance the detection and classification of un-
known malware. A more enhanced feature set was presented
using the random forest to decrease the number of features.
KNN, SVM, NB, RF, LR, and DT algorithms were applied on
a benchmark dataset in the experiments. Results achieved ac-
curacy improvements overall binary and multi-classifiers. The
highest accuracy (98.2%) was achieved by decision trees for bi-
nary classification and 95.8% by random forest algorithms for
multi-class classification. The lowest accuracy was achieved
by naıve Bayes with an accuracy of 91% and 81.8% for binary
classification and multi-class classification, respectively.

Alzaylaee et al. [18] proposed deep learning-based Android
malware detection using real devices. Experiments were per-
formed with over 30,000 applications (benign and malware) on
real devices. Furthermore, experiments were conducted to com-
pare the detection performance and code coverage of the state-
ful input generation method with the commonly used stateless
approach using the deep learning system. The result shows that
the developed system achieved up to 97.8% detection rate (with
dynamic features only) and 99.6% detection rate (with dynamic
and static features) respectively which outperforms traditional
machine learning techniques.

Gao et al. [2] developed a malware classification for the
cloud via semi-supervised transfer learning. A byte classifier
based on a recurrent neural network (RNN) for its detection
component was designed to detect malware. The accuracy of
the byte classifier was only 94.72% after supervised learning.
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An ASM classifier was proposed for the prediction compo-
nent, and it achieves 99.69% accuracy. The transfer compo-
nent invokes the prediction component to classify an unlabeled
dataset, and it combines the predicted labels and byte features
of the unlabeled dataset into a new training dataset. The new
dataset was transferred to the byte classifier for training again.
The result shows that semi-supervised transfer learning im-
proved the accuracy of the detection component from 94.72%
to 96.9%.

Aiterher et al. [19] proposed a neural fuzzy classifier based
on Adaptive Neuro-Fuzzy Inference System (ANFIS) for mal-
ware detection. Firstly, the malware exe files were analyzed and
the most important API calls were selected and used as train-
ing and testing datasets. using the training data set the ANFIS
classifier learned how to detect the malware in the test dataset.
Result shows, the performances of the Neuro fuzzy classifier
were evaluated based on the performance of training and accu-
racy of classification, that the proposed Neuro fuzzy classifier
can detect the malware exe files effectively.

Asrafi [8] classified eight malware according to their fam-
ily. Four feature selection algorithms were provided to select
the best feature for the multiclass classification problem. The
top 100 features were selected and used for machine learning
modeling. Five machine learning algorithms are compared to
find the best models. The frequency distribution of features is
found by ranking the features of the best model. It was con-
cluded that the frequency distribution of every character of the
API call sequence can be used to classify the malware family.

Some researchers have used static based approach, machine
learning, controlled called graph to analyze malware. A static
based approach was used to detect malware by applying ordered
of weighted averaging and the method of a parameterized fam-
ily of aggregate operators was used to select prominent features
from malware [20]. Jamuna and Edwards [21] used Network-
based techniques used to monitor the traffic produced by some
categories of malware.

Vinod et al. [22] classified the technique that can be
used for malware detection into anomaly-based detection and
signature-based detection. Anomaly-based detection uses the
knowledge of what is considered normal to determine if a file
is malicious or not while signature-based detection searches for
known patterns of data within an executable. Eskandari and
Hashemi [20] and Schultz et al. [35] identified two major chal-
lenges that current signature-based techniques are faced with.
Firstly, they can only detect malware whose behaviours are
closed to the be/haviours of the known signature and any signif-
icance difference will make the malware to be unnoticed. Sec-
ondly, malware is generally unpredictable, and this frequently
causes false alarms.

The following studies proposed hybrid approaches to mal-
ware detection.

In Ref. [23], Yoo et al. proposed an advanced hybrid ap-
proach using random forest and deep learning for malware. The
developed hybrid model combines a random forest and a deep
learning model using 12 hidden layers to determine malware
and benign files, respectively. This model also includes cer-
tain proposed voting rules to make final decisions. In an ex-

periment involving 6,395 a typical sample, the hybrid decision
model achieved a higher detection rate (85.1% and standard de-
viation of 0.006) than that of the prior model (65.5%) without
voting rules.

Andrade et al. [24] proposed a model based on LSTM neu-
ral networks to identify five different types of malware. The
expert result shows a True positive rate (TPR) of 92.19% with
the rootkit class which was the best result. The worst result
was with the trojan class with 51.06%, the rootkit class has the
best false positive rate (FPR) of 3.07% followed by the worm
class with 3.93%. The trojan class got the worst result, 11.53%.
Compressing the classes into two classes, clean wares, and mal-
ware, an accuracy of 90.63%, a TPR of 92.76%, followed by an
FPR of 8.16% and FNR of 7.24% was achieved. In Ref. [25],
Norouzi et al. used memory access patterns to distinguish ma-
licious families. The feature selection process was performed
and trained by ML Models. They took 50,000 features by se-
lecting the highest information gain (IG) ranking. CFS in Weka
was also performed to find the best 10,000 features. However,
the accuracy was 0.845% with RF classifiers in their work.

Xiaofeng et al. [26] used API calls for the TF-IDF fea-
ture selection algorithm on 552 malicious and benign datasets
and achieved 96.4% accuracy. Banin & Dyrkolbotn [6] in-
vestigated the use of low-level features of memory access pat-
terns for the detection and classification malware into families
and types. Six (6) machine learning methods were modeled
for the classification. The study selected 1000 malware con-
sist of 100 from each of 10 types and 10 families of malware
from a dataset created under the initiative of Testimon research
group (https://testimon.ccis.no/). The malware types used for
the study include backdoor, pws, rogue, trojan, trojandown-
loader, trojandropper, trojanspy, virtool, virus, worm; while
the malware families considered in the study include agent,
hupigon, obfuscator, onlinegames, renos, small, vb, vbinject,
vundo, and zlob. The study assessed the performance of the
machine learning models in terms of accuracy. The best accu-
racy recorded for malware family classification is 0.688, and
for malware type classification is 0.845 by the RF model.

Al-Andoli et al. [27] presented a hybride deep leaning
model for malware detection. The model combined particle
swarm optimization for optimization and backpropagation. A
parallel computing architecture was used to execute the deep
learning to maximize efficiency and scalability. Several datasets
were used in the study. The experimental results showed that
the proposed technique is effective at detecting malware

Arif et al. [28] proposed a risk-based fuzzy analytical hi-
erarchy process-based multi-criteria decision-making mobile
malware detection system for analyzing Andrios applications.
This study focused on static analysis which analyses mobile ap-
plications using permission-based characteristics for malware
detection. Danger analysis was used to make mobile users more
conscious of the possibility that each permission request they
approve might include a significant degree of danger. The ex-
perimental result showed an accuracy of 90.54%.

In Ref. [29], Djenna et al. developed dynamic deep
learning-based models combined with heuristic approaches to
detect and classify five malware families: adware, Radware,
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Figure 1. Model Development Process Flow.

rootkit, SMS malware, and ransomware. The CICAndMal2017
dataset by the Canadian Institute for Cybersecurity was used
in the study. Deep learning and machine learning approaches
were used in this study. CNN and DNN deep learning methods,
and random forest and decision tree machine learning models
were developed. The study showed that the combination of
deep learning and heuristic approaches performs better than the
use of static deep learning methods.

Masud et al. [30] researched on IG feature selection method
and used a malware and benign dataset and achieve 95.7 percent

accuracy.
The Intrusion Detection System architecture commonly

used in commercial and research systems has several problems
that limit their configurability, scalability, or efficiency [31].
Chavan et al. [31] applied two machine-learning paradigms,
Artificial Neural Networks and Fuzzy Inference Systems to de-
sign an Intrusion Detection System. SNORT was used to per-
form real-time traffic analysis and packet logging on the IP net-
work during the training phase of the system. Then a signature
pattern database was constructed using protocol analysis and
the Neuro-Fuzzy learning method.

5. Methodology

This section presents the study framework, the dataset and
its preprocessing, the ANFIS architecture, and the performance
measures used in the study.

5.1. Study framework

Figure 1 depicts the study strategy. The process starts by
passing the dataset through a preprocessing stage. A prelimi-
nary study of ANFIS models showed that the performance of
the model degrades as the size of the dataset increases; see the
results in Figures 6 – 25 and Tables 2 - 21 where larger size of
datasets are used compared to the results in Figure 26 and Table
22 for smaller size of dataset, the model performed better on te
smaller dataset. Thus, the preprocessed dataset is divided into
10 subsets. Each subset is split into training and testing datasets
using 70:30 ratio respectively. The training set served as input
into the designed model for training. After that, the testing set is
used to validate the developed model. The preprocessed train-
ing dataset is inputted into the ANFIS model for training. At
every instance of training, the root means square error is calcu-
lated. Training stops when the mean square error is at a stable
minimum value.

5.2. Data acquisition and preprocessing

Two prominent datasets, CICMalDroid-2020 and CCCS-
CIC-AndMal-2020, from the Canada Institute for Cyber Se-
curity, are considered in this study. The CICMalDroid-2020
and the CCCS-CIC-AndMal-2020 datasets contain 11,598 and
195,624 instances. Ten malware families: Adware, Banking
Malware, Mobile Malware, SMS malware and Benign, are con-
sidered in the CICMalDroid-2020. Nine malware families:
Adware, Banking Malware, Riskware, Backdoor, File infec-
tor, Ransomware, Scareware, Zero-day malware and Benign,
are considered in the CCCS-CIC-AndMal-2020. Some of the
features of the datasets are described in Table 1. Data pre-
processing is one of the important and prerequisite steps in
data mining when the dataset consists of incomplete (missing),
noisy(outliers), and inconsistent data, In this study, the Pear-
son correlation coefficient was used for the data preprocessing
because it gives information about the magnitude of the associ-
ation, or correlation, as well as the direction of the relationship.
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Figure 2. ANFIS architecture (Mitiku & Manshahia [32].

Table 1. Features of the Dataset.
Feature Data type Description
Destination Port Numeric Destination port number or traffic used by

the software.
The total length of
forwarding packets

Numeric The total length of a forwarding packet
from software or program

FWD Pack length
maximum

Numeric A maximum number of packets sent by
software.

FWD Pack length
minimum

Numeric A minimum number of packets sent. By
software.

Backward packet
length STD

Numeric Backward packet length Standard devia-
tion

5.3. Adaptive neuro-fuzzy inference system

In this study, the first-order Sugeno model of adaptive
neuro-fuzzy (ANFIS) is used [5]. The first-order Sugeno model
ANFIS architecture uses two IF-THEN rules as follows:
Rule 1:
If x is A1 and y is B1, then f1=p1x+q1y+r1
Rule 2:
If x is A2 and y is B2, then f2=p2x+q2y+r2
In the rules, x and y denote the input, while Ai and Bi represent
the fuzzy sets used in the model.

The model consists of 5 layers as shown in Figure 2. The
function of each of the layers is described in the following sec-
tions.

5.3.1. Fuzzification
Fuzzification takes place in the first layer of ANFIS. The nu-

merical inputs are converted into a membership value computed
using the membership function subscript fuzzy sets defined in
the model. A membership function µA of a set A on a universe
of discuss X is define as µA:X→ [0, 1] . Every node in the first

layer acts as a membership function, and its output is referred
to as membership value or degree of membership which falls
between 0 and 1. The following equation applies to layer 1 [7]:

O1, i = µAi (x) , (1)

f or i = 1, 2, or

O1, i = µBi − 2 (y) , (2)

f or i = 3, 4,

µA(x) = 1

1+|
x−ci
ai |

2b
. (3)

The model uses 3 Gaussian membership functions per input.
Grid partition was used to generate the membership function.
At the beginning of training, this method divides the data
space into rectangular sub-spaces using axis-paralleled parti-
tion based on a predefined number of membership functions
and their types in each dimension.

7
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5.3.2. Firing strength of fuzzy rules
Every node in layer 2 multiplies the incoming signals and

passes the product to the next layer. The output of each node is
referred to as the firing strength of a rule [5]. Equation 4 states
the computation of the firing strength of the fuzzy rules where,

i = wi = µAi (x) µBi (y) (4)

i = 1, 2.

5.3.3. Normalize firing strength
Each node in layer 3 calculates the normalized firing

strength of a rule which is the ratio of the ith rule firing strength
to the sum of all rules’ firing strengths [5].

O3, i = ϖ =
wi

w1 + w2
, i = 1, 2. (5)

The outputs of this layer are called normalized firing strength-
ens.

5.3.4. Combining independent variable with dependent vari-
able

Every node j in layer 4 takes the weighted normalized fir-
ing strength values and combines them with the original inputs
from the training data set to calculate an output called weighted
consequent value as depicted in equation (6) [5].

O4, i = wi f i = i (pix + qiy + ri) . (6)

5.3.5. Prediction and final output
The final step is layer 5 which determines the sum of all

incoming signals and applies them to a test dataset to output a
predicted value. This step also coordinates the de-fuzzification
process which converts the data back to meaningful crisp val-
ues as shown in equation (7) [5]. This step also coordinates the
de-fuzzification process which converts the data back to mean-
ingful crisp values as shown in equation (7).

Oi =

∑
i wi fi∑
i wi
. (7)

In this study, MATLAB programming environment was
used for analysis, because neuro-fuzzy was effectively imple-
mented.

5.4. Performance evaluation
The proposed model was evaluated using root mean square

error, recall, precision, and accuracy. They are computed using
equations (8) – (11) respectively.

RMS E =

√√
1
n

n∑
1

(y1 − y2)2, (8)

Recall =
T P

T P + FN
, (9)

Precision =
T P

T P + FP
, (10)

Accuracy =
T P + T N

T P + T N + FN + FP
, (11)

where TP is true positive, TN is true negative, FP is false pos-
itive and FN is false negative. They are measured from the
confusion matrix obtained during the experiments.

Figure 3. Features Correlation matrix.

Figure 4. Generated ANFIS Structure.

6. Results and discussion

This section presents the results of the data preprocessing,
the ANFIS model, and the performance analysis of the model.

6.1. Data preprocessing

The features with a high correlation with the label or out-
come variable were selected as the important features for the
ANFIS model. Figure 3 shows the correlation matrix of the
dataset. The matrix clearly shows that some features have a
negative correlation while others have a positive correlation.
Features with negative correlation are not suitable representa-
tives of the dataset. Only five features with the highest posi-
tive correlation values were used to create the ANFIS model
while others were eliminated. The label attribute values were
encoded as 0, 1, 2, 3 to represent benign, adware, scareware,
and ransomware respectively.

6.2. Experimental results of the developed ANFIS model

Figure 4 depicts the structure of the developed ANFIS
model. It has five inputs and one output. Every input variable
uses a Gaussian membership function.

8
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Figure 5. Training ANFIS.

Table 2. Subset 1 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.87 0.75 0.59 0.66
Banking
Malware

0.88 0.67 0.68 0.67

SMS Mal-
ware

0.87 0.73 0.71 0.72

Riskware 0.83 0.59 0.55 0.57
Benign 0.87 0.60 0.81 0.68

6.3. Result of ANFIS training

The model was trained with 70% of the dataset for 10
epochs. Figure 5 depicts the training processing of the model
using the ANFIS fuzzy logic toolbox in MATLAB. As shown in
the figure, the 10 epoch was experimentally determined; several
epochs were tried and it was observed that the model performs
to its peak with 0 error tolerance at 10 epochs. Also, the hybrid
method was selected as the optimization function. The hybrid
method consists of backpropagation for the parameters asso-
ciated with the input membership functions, and least squares
estimation for the parameters of the output membership func-
tions. The training process tunes the parameters of the mem-
bership functions of the FIS, thereby modeling the relationship
between input and output data.

6.4. Classification result

The prediction results of the ANFIS model on the 10 subsets
of each of the two datasets are presented in this section.

Each subset of the CICMalDroid-2020 dataset contain 348
instances of the 5 families of malware considered. Figures 6
– 15 presents the classification confusion matrix of the ANFIS
model. The corresponding performance metrics for each subset
are presented in Tables 2 – 11 respectively.

Similarly, each of the subsets of the CCCS-CIC-AndMal-
2020 contains 2100 samples of the 10 malware families con-
sidered in this study. Figures 16 – 25 depict the classification
confusion matrix while the corresponding performace metrics

Table 3. Subset 2 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.87 0.75 0.59 0.66
Banking
Malware

0.87 0.65 0.65 0.65

SMS Mal-
ware

0.87 0.74 0.72 0.73

Riskware 0.83 0.59 0.55 0.57
Benign 0.88 0.60 0.82 0.69

Table 4. Subset 3 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.88 0.78 0.62 0.69
Banking
Malware

0.88 0.66 0.65 0.65

SMS Mal-
ware

0.87 0.75 0.69 0.72

Riskware 0.83 0.61 0.59 0.60
Benign 0.88 0.60 0.84 0.70

Table 5. Subset 4 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.87 0.73 0.60 0.66
Banking
Malware

0.89 0.70 0.69 0.70

SMS Mal-
ware

0.86 0.76 0.72 0.74

Riskware 0.83 0.59 0.54 0.56
Benign 0.89 0.57 0.81 0.67

Table 6. Subset 5 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.90 0.79 0.73 0.76
Banking
Malware

0.88 0.71 0.59 0.64

SMS Mal-
ware

0.89 0.78 0.74 0.76

Riskware 0.89 0.68 0.76 0.72
Benign 0.92 0.74 0.88 0.81

Table 7. Subset 6 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.90 0.83 0.60 0.70
Banking
Malware

0.89 0.70 0.71 0.70

MS Mal-
ware

0.86 0.73 0.72 0.73

Riskware 0.83 0.59 0.56 0.58
Benign 0.87 0.58 0.79 0.67

9
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Table 8. Subset 7 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.88 0.75 0.64 0.69
Banking
Malware

0.89 0.72 0.63 0.67

SMS Mal-
ware

0.84 0.76 0.76 0.76

Riskware 0.84 0.60 0.51 0.55
Benign 0.89 0.54 0.79 0.64

Table 9. Subset 8 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.86 0.70 0.58 0.63
Banking
Malware

0.87 0.67 0.56 0.61

SMS Mal-
ware

0.82 0.73 0.68 0.70

Riskware 0.83 0.59 0.52 0.55
Benign 0.87 0.51 0.81 0.62

Table 10. Subset 9 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.86 0.72 0.53 0.61
Banking
Malware

0.85 0.60 0.47 0.53

SMS Mal-
ware

0.79 0.65 0.64 0.65

Riskware 0.80 0.52 0.41 0.46
Benign 0.84 0.45 0.81 0.57

Table 11. Subset 10 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.86 0.73 0.51 0.60
Banking
Malware

0.83 0.52 0.42 0.46

SMS Mal-
ware

0.75 0.64 0.64 0.64

Riskware 0.78 0.43 0.32 0.37
Benign 0.83 0.39 0.73 0.51

Table 12. Subset 1 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.92 0.62 0.69 0.66
Banking
Malware

0.92 0.57 0.59 0.58

SMS Mal-
ware

0.92 0.67 0.59 0.62

Riskware 0.93 0.59 0.58 0.59
Backdoor 0.93 0.68 0.65 0.66
File Infec-
tor

0.92 0.64 0.53 0.58

Ransomware 0.92 0.59 0.76 0.66
Scareware 0.94 0.70 0.65 0.67
Zero-Day 0.93 0.65 0.70 0.67
Benign 0.92 0.59 0.55 0.57

Table 13. Subset 2 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.92 0.62 0.69 0.66
Banking
Malware

0.92 0.57 0.59 0.58

SMS Mal-
ware

0.92 0.67 0.59 0.62

Riskware 0.93 0.59 0.58 0.59
Backdoor 0.93 0.68 0.65 0.66
File Infec-
tor

0.92 0.64 0.53 0.58

Ransomware 0.92 0.59 0.76 0.66
Scareware 0.94 0.70 0.65 0.67
Zero-Day 0.93 0.65 0.70 0.67
Benign 0.92 0.59 0.55 0.57

Table 14. Subset 3 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.92 0.62 0.69 0.66
Banking
Malware

0.92 0.58 0.60 0.59

SMS Mal-
ware

0.92 0.67 0.59 0.62

Riskware 0.93 0.59 0.58 0.59
Backdoor 0.93 0.68 0.64 0.66
File Infec-
tor

0.93 0.64 0.53 0.58

Ransomware 0.92 0.59 0.76 0.66
Scareware 0.93 0.71

0.65 0.67
Zero-Day 0.93 0.65 0.70 0.67
Benign 0.92 0.60 0.55 0.57

10
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Table 15. Subset 4 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.92 0.58 0.58 0.58
Banking
Malware

0.93 0.67 0.64 0.66

SMS Mal-
ware

0.92 0.64 0.53 0.58

Riskware 0.92 0.58 0.74 0.65
Backdoor 0.93 0.69 0.64 0.66
File Infec-
tor

0.93 0.64 0.69 0.66

Ransomware 0.92 0.59 0.54 0.56
Scareware 0.92 0.58 0.58 0.58
Zero-Day 0.93 0.67 0.64 0.66
Benign 0.92 0.64 0.53 0.58

Table 16. Subset 5 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.93 0.64 0.70 0.67
Banking
Malware

0.93 0.68 0.61 0.68

SMS Mal-
ware

0.92 0.68 0.59 0.63

Riskware 0.93 0.61 0.59 0.60
Backdoor 0.93 0.67 0.67 0.67
File Infec-
tor

0.92 0.63 0.52 0.57

Ransomware 0.93 0.61 0.76 0.68
Scareware 0.94 0.70 0.65 0.67
Zero-Day 0.93 0.64 0.70 0.67
Benign 0.92 0.58 0.56 0.57

Table 17. Subset 6 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.93 0.64 0.71 0.67
Banking
Malware

0.93 0.61 0.61 0.61

SMS Mal-
ware

0.92 0.67 0.62 0.64

Riskware 0.92 0.56 0.56 0.56
Backdoor 0.93 0.67 0.65 0.66
File Infec-
tor

0.92 0.64 0.50 0.56

Ransomware 0.93 0.64 0.76 0.69
Scareware 0.93 0.65 0.63 0.64
Zero-Day 0.93 0.52 0.71 0.66
Benign 0.92 0.59 0.57 0.58

Table 18. Subset 7 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.93 0.65 0.70 0.68
Banking
Malware

0.92 0.60 0.57 0.58

SMS Mal-
ware

0.92 0.67 0.60 0.63

Riskware 0.93 0.59 0.54 0.57
Backdoor 0.93 0.70 0.69 0.69
File Infec-
tor

0.93 0.66 0.55 0.60

Ransomware 0.93 0.63 0.76 0.69
S careware 0.93 0.66 0.65 0.65
Zero-Day 0.93 0.61 0.71 0.65
Benign 0.92 0.56 0.56 0.56

Table 19. Subset 8 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.93 0.67 0.69 0.68
Banking
Malware

0.93 0.63 0.60 0.62

SMS Mal-
ware

0.93 0.69 0.62 0.65

Riskware 0.93 0.61 0.59 0.60
Backdoor 0.93 0.68 0.66 0.67
File Infec-
tor

0.91 0.62 0.52 0.57

Ransomware 0.93 0.63 0.74 0.68
Scareware 0.93 0.67 0.67 0.67
Zero-Day 0.93 0.61 0.72 0.66
Benign 0.91 0.54 0.55 0.55

Table 20. Subset 9 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.92 0.61 0.67 0.64
Banking
Malware

0.93 0.61 0.61 0.61

SMS Mal-
ware

0.93 0.70 0.59 0.64

Riskware 0.93 0.60 0.54 0.57
Backdoor 0.93 0.66 0.64 0.65
File Infec-
tor

0.91 0.61 0.47 0.53

Ransomware 0.92 0.60 0.75 0.66
Scareware 0.94 0.66 0.63 0.65
Zero-Day 0.93 0.60 0.72 0.65
Benign 0.92 0.56 0.57 0.57
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Figure 6. Subset 1 confusion matrix.

Figure 7. Subset 2 confusion matrix.

Figure 8. Subset 3 confusion matrix.

Figure 9. Subset 4 confusion matrix.

Figure 10. Subset 5 confusion matrix.

of the model on the 10 subsets are presented in Tables 12 – 21
respectively.

The splitting of each of the two datasets into 10 subsets is
premised on the experimental observation that the performance
of ANFIS models degrades as the size of the dataset increases.
Figure 26 depicts the confusion matrix of the models’ classifi-
cation when a dataset of 60 instances is used for testing. Ta-
ble 22 presents the corresponding performance metrics of the
model on the smaller dataset. Comparing the results of this
dataset size against the previous results of larger datasets (in
Figures 6 – 25 and Tables 2 – 21) , this performance of AN-
FIS model is better on the smaller size dataset; where the per-
formance of the model on smaller dataset yielded a maximum
accuracy of 98%, the larger size dataset from CICMalDroid-
2020 and CCCS-CIC-AndMal-2020 yielded a maximum accu-
racy of 92% and 94% respectively. The same pattern of result is
seen in terms of precision and recall performance metrics: the
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Figure 11. Subset 6 confusion matrix.

Figure 12. Subset 7 confusion matrix.

Figure 13. Subset 8 confusion matrix.

Figure 14. Subset 9 confusion matrix.

Figure 15. Subset 10 confusion matrix.

Figure 16. Subset 1 confusion matrix.

smaller dataset yielded a maximum precision and recall of 99%,
CICMalDroid-2020 and CCCS-CIC-AndMal-2020 yielded a
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Table 21. Subset 10 performance metrics.
Accuracy Precision Recall F1-

Score
Adware 0.92 0.62 0.68 0.65
Banking
Malware

0.91 0.54 0.54 0.54

SMS Mal-
ware

0.93 0.66 0.56 0.61

Riskware 0.92 0.57 0.53 0.55
Backdoor 0.93 0.67 0.62 0.65
File Infec-
tor

0.92 0.61 0.51 0.55

Ransomware 0.92 0.57 0.73 0.64
Scareware 0.92 0.64 0.63 0.63
Zero-Day 0.92 0.68 0.69 0.64
Benign 0.91 0.53 0.52 0.54

Figure 17. Subset 2 confusion matrix.

Figure 18. Subset 3 confusion matrix..

maximum precision of 83% and 71% respectively, and maxi-
mum recall of 88% and 76% respectively.

Thus, ANFIS model show good performance in the classi-
fication of malware families, its performace reduces as the size

Figure 19. Subset 4 confusion matrix..

Figure 20. Subset 5 confusion matrix..

Figure 21. Subset 6 confusion matrix..

of the dataset used for testing increases.

6.5. Comparative analysis

This section presents a comparative analysis of the results
of this study with some other studies reported in the literature.
Studies that use ANFIS and ML models are compared. The ML
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Figure 22. Subset 7 confusion matrix..

Figure 23. Subset 8 confusion matrix..

Figure 24. Subset 9 confusion matrix..

models are a select few in the literature, and they are to show
how the ANFIS model performs vis-à-vis ML models [33]. Ta-
ble 23 presents the performance comparison of accuracies irre-
spective of the malware family and datasets used in the studies.

Figure 25. Subset 10 confusion matrix..

Figure 26. Confusion Matrix of the ANFIS prediction.

Table 22. Model’s Prediction.
Metrics Accuracy Precision Recall
Adware 0.98 0.94 0.99
Scareware 0.95 0.99 0.82
Ransomware 0.90 0.79 0.79
Benign 0.93 0.80 0.86

The results show that although the ANFIS model yields good
results, it performs better with small datasets.
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Table 23. Comparative analysis.
Study ANFIS RF SVM NB DT KNN XGBoost MLP Gradient

Boost-
ing

Ensemble
models

Damaševičius et
al. [5]

98.9

Shhadat et al. [17] 95.8 88.6 81.8 92 88
Sodiya et al. [10] 97.96 84.78 92.87
Nugraha [11] 99.42 98.73
Rabadi & Teo [12] 98.43 99.43 99.16 99.89
This study 98+

94∗
+small dataset ∗large dataset

7. Conclusion

This study presented the application of an adaptive neuro-
fuzzy inference system for malware detection and multinomial
classification. Takagi’ Sugano ANFIS model was implemented
using MATLAB programming environment. The model uses
five inputs and one output. 3 Gaussian membership function
was used for each input. The hybrid optimization method was
selected for training the ANFIS model on the Fuzzy Logic Tool-
box of MATLAB [34]. The multinomial malware datasets used
for training the model was collected from the Canada Institute
of Cyber Security. With an RMSE of 0.19, the model showed
a promising result of 98% accuracy in predicting the Adware
malware family; 95% accuracy in predicting the Scareware
malware family; 90% accuracy in predicting the Ransomware
malware family; and 93% accuracy in predicting benign cases.
However, due to the preliminary observation that the perfor-
mance of the ANFIS model reduces as the size of the dataset in-
creases, the two datasets from the Canadian institute were split
into 10 subsets, and each was divided into training and test-
ing sets using a 70:30 ratio. Although the accuracy marginally
reduced, the precision and recall results were reduced in large-
size datasets.

The limitation experienced in this study is the lack of a
multinomial malware dataset for training the model. When
this study was carried out, the available multinomial malware
dataset was from the Canadian Institute of Cyber Security.

Further studies will consider other forms of the architec-
tures of the neuro-fuzzy approach besides the ANFIS model
considered in this study. Examples of such architecture in-
clude but are not limited to generalized approximate reason-
ing intelligent control (GARIC), fuzzy adaptive control network
(Falcon), and neuro-fuzzy controller (NEFCON). Also, future
works could consider more malware families especially those
not considered in this study.

Data Availability

The two datasets used in this study are available at the Cana-
dian Institute for Cybersecurity official websites:

1. CICMalDriod-2020: https://www.unb.ca/cic/datasets/
maldroid-2020.html.

2. CCCS-CIC-AndMal-2020: https://www.unb.ca/cic/
datasets/andmal2020.html.
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